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Theory of the silicon vacancy: An Anderson negative-U system
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We present a quantitative theory of electron states associated with strongly lattice-coupled localized

defects. Using the total energy functional, we derive optical transition energies, occupancy levels, and

activation energies. The parameters of this theory are calculated for silicon vacancies. Electron levels and

deformation potentials are derived by a self-consistent Green's-function technique. The elastic lattice

response is calculated using a modified valence force model. We find that the charge states V, V+, and
V++ form an "Anderson negative-U system, " and we predict two-electron transitions between V and
V++. To test these results, the three parameters of our theory are then treated as fully adjustable and fitted

to electron paramagnetic resonance and deep-level transient spectroscopy experiments. The fitted values also

lead to a prediction of the two-electron transition. Thus, experiment alone strongly suggests that the silicon

vacancy is an Anderson negative-U system. The results of the fitting confirm the correctness of our general

theory and also demonstrate the accuracy and usefulness of our a priori calculations.

I. INTRODUCTION

The problem of calculating the electronic and
structural properties of deep-level defects in
semiconductors is an inherently interesting and
difficult one, involving as it does the need to
specify energies to within a fraction of the energy
gap (the extent of the energy spectrum available
to present-day experimental probes), the need to
define levels in terms of total energy changes in
a strongly coupled defect-lattice system, and the
absence of a single dominant energy (rather than
several energies of approximately equal size),
which would aid in the construction of an appro-
priate zero-order theory.

For several reasons, the isolated vacancy in
silicon is an ideal system on which to test such
calculations. From the standpoint of ab initio
input, the system is composed solely of atoms of
a single type, silicon, for which there exist a
number of well-investigated pseudopotentials. ' '
From the standpoint of experimental richness, the
vacancy has been studied for over fifteen years by
electron paramagnetic resonance' (EPR), for
which temperature, uniaxial stress, light, and a
variable Fermi energy have been used as exter-
nal probes and more recently, by deep-level
transient spectroscopy' (DLTS) for which most of
the same external probes have been employed.
These studies have shown that the vacancy can
exist in several charge states, that these charge
states are associated with specific symmetry-
lowering lattice distortions, and that the stress
coupling coefficients for the various observed
charge states stand in suggestively simple integer
ratios to each other. '

Based on these and related studies, Watkins'
has devised a qualitative description which nicely

connects the form of the lattice distortion to the
charge state of the vacancy. What has been mis-
sing, however, is a quantitative theory capable of
calculating occuPancy levels (carefully defined
here as a value of the Fermi energy above and be-
low which the equilibrium charge state of the
vacancy is different) and activation energies
(carefully defined here as a description of the ex-
ponential dependence of transition rates on inverse
temperature), both of which can either be mea-
sured or bounded experimentally.

In the present work, we give more details of our
recent progress towards such a theory. The first
section of this paper describes the previously ac-
cepted picture of the vacancy and some of our new
findings. It contains a warning about use of eigen-
values alone, without considering the elastic en-
ergy, when discussing experiments in the strongly
coupled system. In Sec. II, we summarize some
very general ideas which relate the levels to the
total energy functional of the system. In construct-
ing that functional, we build on insights of Watkins
on which the previously accepted picture is based.
In Sec. III, we use our Green's-function tech-
nique' ' to calculate directly some of the parame-
ters of the functional and we use a modified Keat-
ing model" to evaluate semiempirically some of
the others. From these emerge a picture of the
vacancy which differs from the previously accept-
ed interpretation in several interesting ways.
First, for P-type silicon, we predict the stability
of the doubly positively charged state of the vacan-
cy V", a state which, being EPR invisible, has
never been directly observed nor previously con-
sidered but whose existence is crucial in expl. ain-
ing some recently reported experiments. Second,
we find that the states V', V+, and V form an
"Anderson negative-effective-U system, ""
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which is meant that the level (as defined above)
is associated with a theo-electron transition be-
tween V' and V". This is unusual, because nor-
mally one would expect that electron-electron re-
pulsion requires an extra energy, call it U, to add
a second electron to a singly occupied state.
Thus, as the Fermi energy is raised, the se-
quence of exPected equilibrium states would be
V", V', and V'. The essence of Anderson's
"effective-negative-U" idea, however, is that an
energy-lowering structural distortion may be suf-
ficiently enhanced by the presence of a second
electron that the energy gain more than compen-
sates the e-e repulsive energy cost. In this case,
a second electron will rapidl. y follow the first one
on or off the center. The parameters we have cal-
culated suggest that this indeed occurs for the
states V", V', and V' and that consequently, the
transition induced by a change of Fermi energy is
between equilibrium states V' and V", while
V' is never the stable state of lowest energy.

In the fourth section of the paper, we discuss
and compare with experiment. First, we treat the
parameters of our formal theory as fully adjust-
able and determine them to the extent we can by
fitting to two of Watkins's experiments. The par-
ameters determined in this way come close
enough to what we had calculated g priori to con-
firm that (a) the general scheme relating the ener-
gy functional and the experimental observables
is substantially correct and (b) our method of cal-
culating the parameters of the theory is accurate
enough to be useful. We emphasize here that the
parametrized theory depends on only three para-
meters which can be bounded, using purely ex-
perimentally determined numbers, to yield the
conclusion that the silicon vacancy is indeed an
Anderson-negative-U system. Therefore this im-
portant prediction of our theory is substantially
strengthened. We then turn to a consideration of
Watkins's other experimental findings and show
that they are in accord with the theoretical pre-
dictions. Finally, in the last section of the paper,
we discuss shortcomings of the present approach,
suggest lines for further theoretical and experi-
mental investigation, and summarize our conclus-
ions.

A. The %atkins vacancy model

Let us now review the previously accepted pic-
ture of the vacancy, which is due to the work of
Watkins. The underlying model is the Coulson-
Kearsley defect molecule, "where attention is
focused on those orbitals in the crystal which are
most perturbed by removal of the single atom to
form the vacancy. As is illustrated in Fig. 1,
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FIG. 1. One-electron orbital associated with the lat-
tice vacancy: (a) undistorted, in tetrahedral symmetry;
(b) after Jahn-Teller lattice distortion into a tetragonal
symmetry.

there are four such orbitals, one on each of the
four atoms nearest the vacancy, each associated
with one of the four valence bonds broken by re-
moval of the central atom. One-electron mole-
cular orbitals are constructed as linear combina-
tions of the four broken bond orbitals a, b, c, and

d, associated with the atomsA, B, C, and D, re-
spectively. Four such independent molecular or-
bitals can be constructed. The completely sym-
metric combination (a, ) is expected to be lowest in

energy because it is nodeless. The other three
are partner functions for a three-dimensional
representation (t,) of the T, symmetry group of
the undistorted crystal.

Most of the recent one-electron calculations of
the electronic states of the undistorted silicon
vacancy' ""confirm that the threefold-degen-
erate t, level lies in the gap and that the a, state,
or the resonance to which it gives rise, is located
about 1 eV below the top of the valence band. For
the vacancy to be in the singly positively charged
state V', three electrons must be distributed
among these four states. Two of them go into the
a, state (or that resonance) with their spine
paired. The third goes into the t, level, a situa-
tion which, because of the orbital degeneracy, is
unstable with respect to Jahn-Teller distortions. "
The type of distortion, which drops the energy of
the t, state and raises the t„and t, energy uithout
splitting them, is illustrated in Fig. 1(b). The
atoms are shown pulling together in pairs, a dis-
tortion tending to rebond the four broken bonds
into two unbroken ones. This distortion is tetra-
gonal, with a (100) axis. Its symmetry group is
D~.

For the vacancy to be in its neutral state, Vp an
additional electron is needed. This too goes into
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the t„state, further increasing the amount of tetra-
gonal distortion and pairing the spins.

An additional electron is needed to produce the
singly negatively charged state V . It goes into
one of the unsplit t, levels, a situation which, be-
cause of the orbital degeneracy still remaining, is
again unstable with respect to another Jahn-Teller
distortion. The distortion needed this time to re-
move the degeneracy is trigonal, as is illustrated
in Fig. 2. Its symmetry group is C~.

The doubly negatively charged state V has an
additional electron in the b, state, increasing still
further the amount of trigonal distortion. The two
electrons in this state have their spins paired so
that it, like V', is EPR invisible.

Experimental support for this picture is provided
by Watkins's EPR experiments, out of which has
also emerged the level scheme illustrated in Fig.
3. In that figure the range of Fermi energy be-
tween valence band and conduction band is shown
divided by horizontal bars representing the oc-
cupancy levels. The region between levels denotes
the range of Fermi energy over which the indicated
charge state is stable. Figures such as this fre-
quently appear in which the levels are labeled by an
activation energy for some transition rate. Al-
though the activation energy and occupancy level
(as we have defined it above) may be numerically
close, the concepts are so different that we wish
to use such a diagram only to denote the level it-
self, stressing the role played by the Fermi ener-
gy in determining the equilibrium charge state.

Watkins placed the level E(0/+ ) (above and be-
low which the stable states are V' and V', re-
spectively) closer than 0.05 eV to the valence band
because, in boron-doped silicon, for which EE
= 0.045 eV, he observed that V' was unstable. He
thus concluded that the region of stability of V'
did not extend as high as 0.045 eV. The assign-
ment and nature of this level is contradicted by our
calculation. Our claim, in this paper and in the
accounts of the work leading to it, "'"is that the
lowest electrical level is not E(0/+), but is E(0/++).

c 0.05

FIG. 3. Currently accepted occupancy level structure
of the silicon vacancy. Horizontal bars are occupancy
levels, above and below which the stable charge states
are different. The circled charge states are those ob-
served by EPR.

We assert that E(0/++) lies below 0.16 eV (the
Fermi. level in In-doped silicon), probably below
0.10 eV, but certainly above 0.065 eV (the Fermi
energy in Ga-doped silicon).

There is a close parallel between the tetragonal
distortion associated with the sequence of states
V, V', V', and the trigonal distortion associated
with the sequence of states V', V, V . Although
we are not going to calculate explicitly any ener-
gies connected to the trigonal distortion here, it is
tempting to speculate on the possibility that there
is but a, single level, E(, /0) in the u-pper part of
Fig. 3, giving a level structure as in Fig. 4. Per-
haps V, like V', is metastable at all values of
Fermi energy, because the trio of states V', V,
and V also form an Anderson negative-effective-
U system, with the trigonal distortion playing the
same role as does the tetragonal distortion for the
trio of states V, and V', and V'. We shall com-
ment more about this possibility elsewhere. "
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FIG. 2. One-electron molecular orbitals for the EPR
active states of the silicon vacancy.

FIG. 4. Occupancy level structure which corresponds
to having an Anderson negative-U system as predicted
by our calculations.
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B. The concept of level: A warning

The use of the term "level" in the context of these
last two paragraphs and the symbol we choose to
represent it is sufficiently nonstandard that we feel
it deserves some elaboration. The term '*level'*

as normally used describes in part the energy dif-
ference between two states of a system composed
of a defect, for example, and a reservoir, in which
the defect occupancy changes between n+1 and n.
We make this explicit by using the notation E(n+ 1/
n) for the "level. " The energy change in the trans-
ition is then E(n+1/n) —p. , where p, is the energy
per particle of the reservoir. We also consider
two-electron transitions for which the "level" is
denoted E(n+ 2/n) and the energy change is 2[E(n
+2/n) —p]. Withthis slight generalization we call
the level so defined an occupancy level, since it
gives the value of the Fermi level for which the
ground-state occupancy changes from n to n+ 1 (or
n to n+ 2 in the case of an Anderson negative-U
system) Thi.s definition includes both electronic
and lattice readjustment energies and thus is not
given by a one-electron eigenvalue calculation. It
is only these levels (characteristic of two charge
states}, and not the one-electron eigenvalues,
which can be measured in a quasiequilibrium ex-
periment.

DLTS and related experiments measure yet
another energy, an activation energy, which is a
conceptually different quantity. Where there is
strong lattice relaxation, failure to distinguish
between activation energy and occupancy level, or
worse, to compare either of them with an eigen-
value, leads to a complete misunderstanding and

obscures whether theory and experiment are in
agreement. A recent example of this confusion
may be found in Ref. 38.

II. MODEL FOR THE TOTAL ENERGY OF THE SYSTEM

p(r', r) -=g n,.4, (r')4~(r) (2.1)

and R„, the nuclear or ion core positions. The
functional itself is given by

E„,(p, (B„j) = T + V + 4+ Vz +E„, Nr p. , -(2.2)

atoms' "'"and (b) no crystal polarizability is
included in their four-atom cluster calculation.
The inclusion of both effects should lower 4E con-
siderably, according to estimates of ~ vs cluster
size as calculated by %atkins and Messmer. "
Experimentally, "EPR findings strongly suggest
that for vacancies in silicon, Jahn-Teller ener-
gies override or at least compensate e-e corre-
lation effects.

Here we develop an account of the isolated vac-
ancy in silicon based on this point of view, i.e. ,
the neglect of correlation-induced spin-multiplet
structure. The theoretical construct linking cal-
culation and experiment is the total energy func-
tional, "which we use in the local-density-func-
tional (LDF) formalism. " Its dependence on
position of atoms near the vacancy provides, for
each set of electronic occupation numbers (n, j,
the proper potential energy for the lattice motion.
It is not, however, the full Hamiltonian for the
system because it does not contain the kinetic en-
ergy operator for the nuclear motion. Therefore,
by using it as the fundamental object of interest,
we are adopting a Born-Oppenheimer" approach.
Specifically, its electronic states are adiabatic
states, and transitions between them, which are
induced by the nuclear kinetic energy operator
treated as a perturbation, "are simply not a part
of this limited description.

The energy functional E„, expresses the total
energy of the system of electrons and stationary
nuclei in terms of the single-particle density
matrix p,

A detailed understanding of the electronic
structure of the vacancy is complicated by the
possibility that the associated electronic states,
being rather localized, may be subject to sizable
e-e correlations. The general question of the im-
portance of correlations in dangling-bond states in
semiconductors has been studied recently by Lan-
noo, " and there is still no definitive statement as
to the importance of specific multiplet effects.
However, Surratt and Goddard" have performed
self -consistent configuration-interaction calcula-
tions on silicon vacancies using four-atom clusters
and found 6$, an averaged singlet-triplet splitting,
=0.2 eV. This value certainly represents a gener-
ous upper limit since (a) silicon vacancy states
have been found to extend further than four

T=- 2 rp y „„dr, (2.3a)

V=- prv rd'r, (2.3b}

p(r)= p(r, r), (2.3c)

&(r)-=g &"(lr -&,I), (2.3d)

r r') d'r d'r'—= —,
'

p r r d'r,

(2.3e)

where T, V, @', V, , and E„, are the electronic
kinetic, electron-ion, electron-electron, ion-ion,
and exchange-correlation energies, respectively:
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=Z' 1

P xc p= p(y) ~

(2.3f)

(2 8g)

With a reference configuration of sufficient sym-
metry, the spring-constant matrix is diagonal, and
the minimum energy configuration is described by

The last term in (2.2} has been introduced so
that we can use E„, to calculate occupancy levels:
We consider our system as being connected to a
reservoir containing noninteracting electrons, each
of which has an energy p, , the Fermi energy. For
a given value of p, , electrons will distribute them-
selves between the reservoir and the system in
such a way as to achieve the lowest energy of the
total entity —system plus reservoir. In this man-
ner, we determine how the occupancy of the local-
ized states depends on p. . We choose our energy
reference corresponding to all valence-band states
occupied and all levels above the valence band

empty. Transferring X~=0, 1, or 2 electrons to
the bound state in the gap changes the energy of the
reservoir by -R~p. . This reservoir energy is
included in E„,.

A Schrodinger-type equation results from the
requirement that E„,be stationary with respect to
variations of the density matrix which conserve
the number of electrons in the system:

[- ,V'+v(r)+ p(r)-+U„, (r) —e,. ]g,.(r) =0, (2.4a)

(2.7a)

(2.7b)

+PaE„((n, })-. Nrp. (2.8)

The meaning and use of Eqs. (2.6) and (2.8) is
illustrated in Fig. 5 for the simplifying example of
a single coordinate Q and a single occupation num-
ber Nr Here. we have plotted E...(1Vr, Q, p, ) vs Q,
for three curves labeled by their value of X~,
using one value of p, in the top panel and another
value of p, in the middle panel. Each of the two
curves separately has the appearance of a config-
uration coordinate diagram, and the equilibrium
value of Q for each%~ is at the minimum of that
particular curve. The lowest of the three minima
gives the ground state of the system. Because
Eq. (2.6) involves p, , the state for which the sys-
tem is lowest depends on p, , as is illustrated in

io

U„, (r) = [(d/dP)P—e„, (P)] (2.4b)
0.6

Solving this equation and evaluating (2.1) gives a,

density matrix p and eigenvalues &; which depend
on the ionic positions (R„}and on the electronic
occupation numbers tn, }.Having determined
these, it is possible in PrinciPIe to obtain the nu-
merical value of E... itself; i.e. ,
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Just as the electronic occupation numbers at a par-
ticular value of p, are those which minimize E„„
so too the ionic positions in equilibrium are those
which minimize E„,. Forces F ((n, }}and spring
constants EC ~({n;})can then (again in principle) be
obtained by expanding Etpg to second order in dis-
placements Q away from some reference config-
uration ]A~} and evaluating first and second deri-
vatives at Q = 0:

+-.ZQ.Q &. (&;})-N, p.
n8

(2.6)

—02—

0.4

0.2

er 0
hl

—0.2

—0.4—

FIG. 5. Total energy functional Et,t(N&, Q, p) as a func-
tion of Q for three different charge states, N&= 0, 1,2.
Two situations for different Fermi-level positions p are
shown. The bottom panel shows the equilibrium energies
{Eeqp) Eggf n (N g, p) as a function of p.. The system ground
state is indicated by a heavy line, coincident with

E~ {0,p) for p& 0.2 and coincident with E~ (2, p) for p,

) 0.2.
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Figs. 5(a) and 5(b). By plotting that minimum en-
ergy E „(Nr, p, ) vs }j, as done in Fig. 5(c), we can
determine which N~ is the ground state for any
value of p, and thus determine the p. dependence
of the charge state of the vacancy. In spite of
their similarity to configuration coordinate dia-
grams, these p. -dePendent curves are not to be
used for calculating activation energies.

Calculation of the activation energies involves
use of the distribution function for the total entity,
exp(-E.../kT), and study of its dependence on

fn, }a.nd (R„}.We have investigated these else-
where" for the specific example of the states V
V', V', although not in the language of the total
energy functional. There is nothing to be gained
by generalizing that work, which gave the same
prescription as here for specifying occupancy
levels. We shall instead simply quote, from Ref.
19, formulas for activation energies when they
are needed, and shall give, at the end of this sec-
tion, a configuration coordinate diagram from
which both occupancy levels and activation ener-
gies can be read.

Let us reconsider the value of E„,, Eq. (2.5a),
which led to (2.6) and (2.8) and start to specialize
it into a model for the states of the vacancy.
There are three types of distortion which come
immediately to mind. The first is a breathing dis-
tortion: When an atom is plucked from the crystal
to create a vacancy, each of the four nearest
neighbors is left with a single dangling bond point-
ing into the vacancy position, a situation not unlike
that on the unreconstructed (111) surface of sili-
con, where each surface atom is left with a single
dangling bond pointing perpendicularly out into the
vacuum. The surface atoms undergo a relaxation
one of whose components is motion of the surface
plane towards the bulk of the crystal. " The back
bonds of the surface atoms then shorten and
strengthen.

The same sort of relaxation is to be expected at
the vacancy. The four atoms nearest the vacancy
should have an outward breathing component of
motion which moves them into the bulk, strength-
ening their bonds with the rest of the crystal.
Their outward motion will induce outward motion
in their neighbors, and so on. We refer to this
entire pattern of outward displacements as the
breathing mode. It has the full symmetry of the
T» point group, and transforms as the A, (identi-
ty) representation.

Independent of this breathing mode, certain
charge states of the vacancy have tetragonal sym-
metry. We can consider the four atoms nearest
the vacancy moving to a tetragonally symmetric
configuration with no breathing component of dis-
tortion, as depicted schematically in Fig. 1.

E... (N = 0—, Q, Q, , i&), (2.9a)

e,(Qs, Q, ) —{&, = E...(N, = 2, Qs, Q, , }&,)

E&o& (Nr-=1, Q~, Q», P), (2.8b)

and for convenience in notation, let us denote the
value of the total energy functional for the state

by Eo(Q«Q»)

Eo(Q«, Q») =E...(Nr=o, Qs, Q&, , & ) (2.8c)

Then the value of E„, for the states of interest
here are, for V, V', and V', respectively,

Eo(Qz, Q»), Nz, --0 (2.10a)

Eo(Qs, Q» )+ e, (Qs, Q» ) —P, Nr = 1 (2.10b)

«, (Q«~ Q» ) + &, (Qs~ Q» ) + &,(Q«~ Q» ) —2u ~

Nr = 2. (2.10c)

Forces F (Nr) and spring constants IC„S(Nr) are
obtained by expanding E„,(Nr) to second order
about Qs, Q, = 0, as in (2.6). For example, let
us write such an expansion for the case N~= 0.
This is the state V", and there is sufficient sym-
metry so that there is no mixed second-order
term in the energy. Then we have

Their motion will induce tetragonal displacements
in their neighbors and so on. We refer to this en-
tire pattern of displacements as the tetragonal
mode. It transforms like the E representation of
Td '

Independent of the breathing mode and the tetra-
gonal mode are purely trigonal modes. " Experi-
ment" shows they play no role in the states in

which we are interested here so we shall not con-
sider them further. We have then two modes of in-
terest, a breathing mode whose amplitude we de-
note Q», and a tetragonal (E) mode, whose ampli-
tude we denote Q~. We define Q, and Q~ as the
displacement of any one of the four nearest-neigh-
bor atoms in the particular mode, although a dif-
ferent convention is often used in discussions of
the Jahn-Teller distortion in X&, tetrahedral
molecules. " The coordinates of our model are
Q~, Q, , and N~, the number of electrons on the
bound state, i.e. , B, state in the gap.

Let us now define ~, &, & (Qz, Q, ) —i&, as the addi-
tional energy needed to move the first (second)
electron to the B, state from the reservoir when

the lattice distortion is Q~, Q, . That is, we de-
fine

~,(Q, Q, ) —P, -=E...(N r = 1, Qz, Q, , &«)
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Eo(Qz, Qg ) = &, —&Qz P—Q, + ~ (kzQz+ k,Q',)-

(2.11)

Equilibrium values of the displacements, Q~ and

Q'~, are determined by minimizing E,(Qz, Q, ),
giving

Qz(V") = n/kz,

Q', (V ) =P&k, .

{2.12a)

(2.12b)

~, (Qz, Q, ) —P =[S&...(&r. Q„Q, ~ P)«&,lz, =, &,

+0(AN)',

~,(Q„Q, ) - u = I&&,. (&r, Q„Q„P)~»,l, =, i,
+O(~)',

where 0{~)'indicates that terms of order (~)'
are being ignored. A general property of any lo-
cal density functional is that its derivative with

respect to a particular occupation number equals
the eigenvalue for that particular state. " Thus,
to within the accuracy we have indicated,

Since there is no Jahn-Teller mechanism to drive
any tetragonal distortion for V", we know that
QE=O, and infer then that u —= O. We shall return
later to consider the remaining constants 6„P,
kz, and k, in Eq. (2.11).

Now consider the expansion for the case X~ = 1,
the state V'. Instead of evaluating e, in (2.9a) as
the small difference between two large total ener-
gies, neither of which we can evaluate to the re-
quired accuracy, we make use of Slater's transi-
tion-state idea. " The occupation number K~ is
treated as a, continuous variable so that E,„, (Nr)
can be regarded as an analytic function of N~.
This gives

c,(Qz, Q, ) and c,(Qz, Q, ) are equal to the eigen-
value for the B, state in the gap, calculated self-
consistently with that state occupied by —, and —,

electrons, at a lattice distortion QE, Q, .
At this point, we reason that e„ the energy to

add a second electron, is greater than e„ the
energy to add the first, because of e-e repulsion
in the B, state. Since the spatial extent of that
state is large compared to the amplitude of the
distortion, we do not expect that energy differ-
ence to be strongly dependent on lattice distor-
tion. Therefore a useful approximation is to as-
sume that

e,(Q„Q, ) = ~,(Q, Q, )+ fi, (2.13)

'|(Qz Q~) ='i —VzQz —~~Qo . (2.14)

Using the forms (2.11), (2.13), and (2.14), and
choosing the overall reference energy zero at 6Q,
the equations (2.10) become

where U, the e-e repulsion term, is a constant,
independent of Q~, Q„. We evaluate it by calcu-
lating the Ã~= g and p eigenvalues at Q~=O, Q,
=0

We make use of this same approximation again
(namely, that the difference in eigenvalues is in-
dependent of distortion) by studying the distortion
dependence of the eigenvalue e(Qz, Q,), not at an
occupation of —,

' or ~ electrons in the gap state, but
at N~= 2. The self-consistent potential is then that
of the neutral state V', a situation which we can
treat somewhat more reliably than we can a
charged state, as explained in the next section.

The eigenvalue for the B, state, calculated in the
V" potential at various distortions, shows only a
small quadratic distortion dependence over the
range we have studied. Therefore we shall use a
linear expression of the form

—,'(k,Q', +k, Q,') -PQ, , fi, =o

Z , , = —,.'(k Q', +k„Q,') -PQ, +~, -V, Q, -V, Q, —P, , A, =1

~ ~ (kz Qz + k, Q~ ) —P Q~ + 2(& I. —Vz Qz —Vb 4 —P ) + U &r = 2.

(2.15a)

(2.15b)

(2.15c)

E~ (0) =P, F~(1) =P +Vq, Eq(2) =P+ 2V, (2.16a)

for the breathing mode and by

Ez(0) = 0, Fz(1) = Vz, Ez(2) = 2Vz (2.16b)

The forces F {N~) for the three charge states are
given by

for the tetragonal mode. The spring constants
K„„(Kr)are E~ = k, for the breathing mode and
K~= kE for the tetragonal, independent of the value
of 1V~. The 1V~ dependence of the spring constant,
which we had anticipated in writing K„z ((n,.j) in
(2.6), is important only to the extent that the eigen-
value exhibits a q~a«a~i~ dependence on distor-
tion.
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Note the implications of this approach: Changes
in the forces and spring constants caused by a
change in charge state can be obtained by studying
an eigenvalue for half-integral occupancy, without
evaluating a complicated total energy. This fol-
lows directly from Eq. (2.10) and will be applicable
to many charge-driven distortions.

To this point, the constants whose evaluation we
have discussed, &~, U, V~ and V„are those as-
sociated with adding additional electrons. The
constants whose evaluation we have not yet dis-
cussed, p, k~ and k~, are associated with a total
energy itself, that of the V" state, and they have
to be treated in a different manner.

Our numerical finding that we can ignore the

Non dependence of the spring constants means that
we can evaluate &~ and k, for the V' neutral state
of the system. We do this, as explained in the
next section, by considering a cluster of about 1OO

atoms surrounding the vacancy. The atoms in it

interact according to a modified Keating model
(quadratic terms, no linear terms) and are free to
move, minimizing their energy, in response to a
displacement imposed on the four atoms nearest
the vacancy. The energy of the cluster depends
quadratically on the amplitude of the displacements
Q~ and Q, imposed, and from that, we obtain k~
and k,. The approach is identical in spirit, though
not in detail, with that used by Larkins and Stone-
ham. " We do not try to calculate p, the force
driving the outward breathing, but we estimate, in
analogy with the (111) surface, the displacement
to which it gives rise.

We may now calculate the occupancy levels re-
sulting from the total energy functional in the form
given by Eq. (2.15}. For each value of Nr, the
equilibrium value of distortion is determined by
minimizing E„,. The resulting distortions are as
follows:

P/k~, Nr= 0

Q~= (P+ V~)/k~, Nr= 1

(P+ 2V~)/k~, Nr = 2

0, N~=0

ps= Vs/ks, Nr= 1

2Vs/ks, Nr = 2 .

(2.17a)

(2.17b)

(2.17c)

The associated minimum values of E„,are

P'/2k-„N z, = 0

E„,= -(P+ V~)'/2k~ —Vs/2ks+ &~ —p, , Nr = 1

-(P+ 2V~)'/2k~ —(2Vs)'/2ks+ 2&~+ U —2p, , Nr= 2.

Let us define the energies

E~ —= Vs/2ks,

E, -=P'/2k, ,

EJ =Ex +V"2&»

cr, =—eI, —V~@~(V") .

(2.18a)

(2.18b)

{2.18c)

(2.18d}

-E~, N~= 0 (2.19a)

-Eo+ ~1, —E~ —p. , Nz = 1 (2.19b}

E,+2e~+U —4E» -—2p, Nr=2. {2.19c)

The additive constant E, plays no role in deter-
mining occupancy levels or activation energies.
For our purposes, it is unobservable and can be

Note that e~ is the eigenvalue for the B, level at
occupancy S~ = &, no Jahn-Teller distortion, and
the outward breathing distortion Q~o(V ) = P/k, . In
terms of these energies, we reexpress the total
energies as follows:

ignored. There are thus three parameters of
interest here, «~, U, and EzT.

We now consider which E„, is lowest at a given
We can either plot E„,vs p, , as in Fig. 5, or

we can give a description in terms of levels. The
use of "levels" is so standard in semiconductor
physics that we think it desirable to try to describe
our results in these terms even though certain
extensions of the concept are required when the
effective correlation energy of two electrons is
negative.

The term level actually refers to part of the
energy difference between tavo states of the sys-
tem, as already suggested by our notation E(n/n')
In the normal situation, the "level" is E(n+ 1/n)
and its energy difference relative to the Fermi
energy, E(n+ 1/n) —p, is the energy to take an
electron from the Fermi reservoir and add it to
the defect, raising the defect occupation from n to
n+ 1.

Consider the possible energy differences be-
tween the three charge states of the vacancy, as
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given in (2.19). Letting E„(p) denote the value
of E„,, we have levels defined by

E,(u) E—.(l )= E-(+I++) —l,
E,(l ) -E,(l ) -=E(o/+) —i,
E,(l ) E.(-l )= 2[E-(OI'++ )- i ],

so that

E(+/++ ) = ei —EzT,

E(OI+)= i~+ U —3E T

=E(+I++ ) —q .

We have defined

7j = 2EJT —U .

It is also clear that

(2.20a)

(2.20b}

(2.20c)

(2.21)

(~ CONVENTIONAL SYSTEMS 0 NEGATIVE-U SYSTEMS

~ = E(+/++) —E(0/+]
A= 2EgT —U

E(0/++ ) = ei + U /2 —2Ez T

= E(+/++ ) —q/2

(2.22a)

(2.22b)

= 2 [E(0/+)+ E(+/++ )] . (2.22c)

Although our calculations are going to show that

g is a positive constant for the silicon vacancy,
it is useful to think of q as a variable, and plot the
levels E(n/n') vs g as in Fig. 6(a).

On the left-hand side of the diagram, q is neg-
ative, and [according to (2.20c)] we have the con-
ventional situation of E(0/+)& E(+I++} These.
levels then divide the Fermi energy (the vertical
direction) into three regions where V", V', and
V' are the ground-state configuration of the va-
cancy.

On the right-hand side with q positive, there are
only two stable configurations, ++ and 0, sep-
arated by the level E(0/++) as shown. We call
these levels where the occupation number of the
ground state changes "occupancy levels. " Since
there are two such levels on the left-hand side
and only one on the right, we have clearly lost
some information from the diagram, namely, the
description of how much the energy of V' exceeds
the ground-state energy, i.e. , the V' excitation
energy. We can therefore introduce an excitation
level, defined in such a way that its position rela-
tive to the Fermi level gives the energy by which
the metastable state V' lies above the ground
state. The excitation level is E(+I++ ) for p,
~ E(0/++ ) or E(OI+) for p, ~ E(0/++ ). The two
cases are shown by the dashed lines in Fig. 6.

With these definitions the "occupancy" and "ex-
citation" levels provide the same information for
q& 0 as the two normal (occupancy) levels for g& 0.
They are to be used in the same way. Because
E(OI++ ) refers to a two-electron occupancy
change, however, the thermal occupancy of V' is
determined by 2[E(0/++) —p]IAT rather than by

o.a

o.e

0.7

o.e
o 0.6

0.1
0.3

0.2
0.1

a 0 ty++)
E

0.1 0.2 0.3
a((y')

a a) a', (y4)

0.4

(E —p)/kT as for a one-electron change.
For transfer of electrons between the vacancy

and the valence band, activation energies, optical
energies and occupancy levels can be read from a

FIG. 6. (a) Occupancy level structure for conventional
systems, r)& 0, and for negative-effective-P systems,
p& 0, shown schematically as a function of p. As p
approaches zero from negative values, the region of
Fermi energy for which p' is the ground state shrinks
and disappears. For g& 0, V' is never the state of
lowest energy and the only occupancy level is that be-
tween V and P . The excitation energy by which V
fails to be the ground state, is given, for p&0, by
E(+/++ ) —@if p~E(0/++ ) and by p —E(0/+) if p,

~ E(0/++ ). (b) Configuration coordinate diagram for
transfer of electrons between the vacancy and valence
band. The levels E(0/+ ) and E(+/++ ) are indicated as
the energy required to add an electron to the vacancy
from the top of the valence band. If E(0/+ ) &E(+ /++ ),
then both of these are occupancy levels and electrons
can be added to the vacancy one at a time. If E(0/+ )
&E(+ /++ ), the electrons must be added two at a time,
at an energy cost per electron of E(0/++ ) =

2 [E(0/+ )
+ E(+ /++ )J. In this case, E(0/++ ) is the only occupancy
level. Activation energies for transitions Nz, N&+ 1
are indicated. For transitions N& —N& —1, the electron
can return to the valence band only if there is a preex-
isting hole there, so activation energies for such tran-
sitions contain an additive constant p, (not shown in the
figure), the activation energy of hole creation.



21 THEORY OF THE SILICON VACANCY: AN ANDERSON. . . 5671

conventional configuration coordinate diagram,
constructed in the usual manner with p, = 0. Fig-
ure 6(b} is such a diagram, constructed using
values close to those we have calculated as des-
cribed in the next section, and denoted by Calc. 2,
a set of theoretically predicted values displayed
in Table VIII, in Sec. V. The levels E(+/++) and

E(0/+) are indicated. Each level is the energy
required to add an electron to the vacancy (from a
reservoir coincident with the top of the valence
band). If E(0/+)&E(+/++), then both of these are
occupancy levels, and we can add electrons to the
vacancy one at a time. If E(0/+}&E(+/++), then
we must add electrons tlo at a time, and the en-
ergy per electron to add them is E{0/++)= ~ [E(0/+)
+ E(+/++)] In t.his case, E{0/++}is the only oc-
cupancy level.

Activation energies for transitions N~-N~+1
can be obtained from this diagram by noting the
energy difference between the minimum of the N~
curve and its crossing with the N~+1 curve. For
the transition N~- N~+1, the activation energy
equals this energy difference. For the transition
N~-N~-1, the electron cannot return to the va-
lence band unless there is a preexisting hole
there, so the activation ener gy for the transition
N~-N~ -1 is the sum of that energy difference
and p, , the activation energy for hole creation. "

III. COMPUTATIONAL METHODS AND RESULTS

A. Self-consistent Green's-function formalism

[@.+U(r)]P(r) =E{j'(r), (3.1)

where H, is the Hamiltonian of the perfect crystal
and where U{r) is the self-consistent defect po-
tential which tends to zero at large distance. A
detailed description of the techniques used to solve
Eq. (3.1}is given in a previous paper. Here we
briefly recapitulate some key steps in our method
of solution.

In the first step, the wave function P(r) is ap-
proximated as a linear combination of atomic or-
bitals (LCAO)

4(r)= P c;0;(r), (3.2)

with orbitals centered on actual atomic sites. The
number and type of orbitals at each site is chosen
with the intent that

U(r})i)(r)= U(r) g c, Q;(r); (3 3)

i.e. , we choose a "chemical" LCAO-like set of
local orbitals P;(r) ("inner set" } that approximates

Recall that the electronic structure of an isolated
defect is described by

the solutions of Eq. (3.1) within the range of U{r)
We consider Eq. (3.1) in the Green's-function

form:

d(r)=d, (r)+ JG (r'')r,U( ')rd(r')d (3.4)

We define a second set of localized functions 4 (r)
("outer set"), distinct from and independent of the
LCAO basis P, (r), and. use it to express the ei-
genfunctions of Hp.

)i)„(k,r)= g Bgn, k)4 (r). (3.5)

which then takes the form

Ga(r, r') = g4 (r)G', (E)4„.(r').
mm'

(3.7}

Formally, an infinite matrix G', is needed.
Practically, the size of this matrix is determined
by two considerations:

(a) the set 4 (r) should accurately reproduce the
host band structure and

{b) the Green's function [Eq. {3.7)] should be
complete enough to respond accurately to the
shape of U(r')g(r') in Eq. (3.4).

We shall return to these completeness criteria in
more detail below.

Once G, (E) is known, Eq. (3.4) can be written
as a matrix equation which is either homogeneous
for energies 8 outside the spectrum of H„ i.e. ,
for bound states, or inhomogeneous for scatter-
ing states [see also Eqs. (22)—(28) in Ref. 9].
Furthermore, using the matrix representation of
Eq. (3.4), we can evaluate the total charge density:

(o(r)=Z 4.(r)p..4. (r)
mm'

(3 8)

The original form of p . given in Ref. 9 can be
simplified using some matrix identities as outlined
in Ref. 33. With knowledge of the density p{r) for
both the perfect and the defect crystal, the defect
(difference) potential U(r) can be evaluated. We
use a local approximation for exchange and cor-
relation (see Ref. 9), identical to the one used in
the perfect-crystal band-structure calculation.
The calculation of p(r) is then iterated until self-
consistency in U(r} is reached.

In contrast to our earlier procedure, ' we now use
the set dk (r) directly in a local-orbital band-struc-
ture calculation to obtain eigenvalues E„(k) and
eigenfunctions g„(k,r). These in turn are used to
construct the perfect-crystal Green's function
(BZ denotes Brillouin zone}

„y„(k,r)y„"(k,r ')
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t/r/(r)= g g c&(n, R)4„(r -R),
R

(3.9)

where the sum n runs over orbitals in the unit cell
and R runs over all cells. While in principle both
sums are infinite, in practice a finite number of
terms is retained. In this context we distinguish
an energy or angular momentum cutoff for the or-
bital index n and a real-space cutoff for the lattice
site index R, both of which characterize the com-
pleteness of Gs(r, r') in Eqs. (3.6) and (3.7).

To test for completeness we define

1
&(r,r'}=— dE ImGso(r, r') . (3.10)

For any exact Green's function, &(h, h') defined
this way is the delta function 5(r r'}. T-he com-
pleteness test is a study of how well 4(r, r') acts
like 5(r r') in-the function space of interest.
4(r, r') can also be written as

m m'
(3.11)

where m stands for n and R, and where S ', is
the inverse of the infinite overlap matrix

S, = C*h +, (h Ck. (3.12)

To actually evaluate S ', we make use of per-
iodicity by first calculating S, in Fourier space,
which allows us to invert a finite matrix. After
transforming back into real space, only a finite
number of elements of S ', are retained, namely,
those we intend to use in G„,(E}.

To test the completeness of Gos(r, r') or b(r, r')
we calculate

I If(r)l'dr —IJf*(r)&(r,r') f(r')dr dr'
f If(r)I 'dr

(3.13)

a quantity which vanishes if & is indeed a 6 func-
tion. From Eq. (3.4) it follows that completeness
is in our case needed only for functions of the
type

B. Convergence and completeness of Green's function

The solution of Eq. (3.4) requires that each state
P, of the unperturbed crystal and each state g of
the perturbed crystal be expressible in terms of
outer-set orbitals 4 „(r -R):

for each inner-set orbital separately replacing g
in (3.14), to insure that G' is complete for every
function of the type f= U P.

Figure 7 illustrates the spatial behavior of
U(x)P(r) for the cases of an unrelaxed (top) and a
relaxed (bottom) vacancy. The unrelaxed case
whose results were presented in Ref. 9 is char-
acterized by two simplifying features: The over-
lap U(r}g(y } is small, and the defect "dangling"
bonds expressed by Q/(r) are centered at the same
sites as are the outer-set perfect-crystal orbitals
4 (r). Thus satisfactory completeness can be
reached with relatively few orbitals of rather long
range (see Table I). The situation changes dras-
tically when an atom is displaced. Figure 7 (bot-
tom) schematically shows the resulting potential
perturbation which corresponds to the removal of
an atom at the "old" lattice site and the insertion
of an atom at the "new" lattice site. The overlap
with the outer-set orbitals 4 is large. Complete-
ness requires the reproduction of UP& by the set
4

Differently formulated, the electronic wave func-
tion g=Z/cP, , which moves with the displaced
atom, has to be expanded in terms of outer-set
functions 4 which are still centered at the or-
iginal lattice sites. Simple linear-expansion argu-
ments show that a displaced s-like Gaussian func-
tion in first order is described by an s-like and
three p-like Gaussian functions, while displaced
p-like Gaussian functions require the complete set
of p- and d-like functions augmented by the sym-
metric function h'. The linear description of dis-

4m, g) 4
/

/
/ /

/ / /
/ / /

/ /
/

I I r

CRYSTAL ATOM

SITE

f(~) = U(r)(I(~) . (3.14)

This implies that the spatial extent of U(r) deter-
mines the lattice space cutoff R in Eqs. (3.9) and

(3.11) and that the specific form of f(r), i.e. ,

short-range oscillations, etc. , determine the en-
ergy cutoff. In practice, this test is carried out

—U r

FIG. 7. Schematic view of defect potential U(r), outer-
set orbitals 4 (r), and inner-set orbitals @&(r). Top
figure illustrates the situation of the unrelaxed vacancy
(simple removal of an atom), bottom figure the situation
created by the displacement of one atom only.
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TABLE I. Values of the Green's-function completeness test fEq. (3.13)l for different orbi-
tal sets for undistorted (bQ=O) and distorted (4@~=0.2 ~) vacancy geometries. Seventeen
lattice sites were included in each test.

= Uvacancy

6@~=0
U= Uvacancy + Udistortion

hQq-—0.2 A

~ = 0.20
10 orbitals per atom

o'= 0.20, 0.60
20 orbitals per atom

$ = 0.1-0.2

0.1

5 = 0.6-1.0

$ - 0.1-0.2

placed sP' hybrids thus requires at least ten basic
functions 4 . Furthermore, the specific short-
range fluctuations of U representing atom dis-
placement require inclusion of additional short-
range orbitals supplementing the usual set of or-
bitals needed for a band-structure calculation.
Table I shows several $ values [Eq. (3.13)] char-
acteristic for chosen orbital basis sets. It is
evident from these tests that the use of only long-
range (o.'= 0.2) orbitals is sufficient to describe
the undistorted vacancy (Ref. 9), while the distort-
ed vacancy requires additional s-, p-, and d-like
short-range orbitals.

To test the lattice space cutoff for the A sum in
Eq. (3.9), we have experimented with 17, 35, and
41 lattice sites. Satisfactory convergence was
found with 17 sites for distortions restricted to
the four nearest-neighbor atoms of the vacancy.

C. Tight-binding band structure of silicon

The representation of silicon pseudopotential
wave functions by Bloch sums of s, P, and d Gaus-
sians centered on atom sites has been discussed
in full length by Kane. " It has been shown that
reasonable valence band structures can be ob-
tained with single s and p Gaussians of one decay
constant &. Conduction bands, however, and also
to some extent the position of the top I'2, valence
band improve if d-like Gaussians are added.

Here we have carried out test calculations using
ten Gaussians of s-, p-, d-type and an additional
r'-type. We used one decay constant + = 0.20 a.u.
and two constants & = 0.20, 0.60 a.u. , respectively.
The potential was the self-consistently screened
"soft-core" pseudopotential used in Ref. 2. This
potential has also been used in our previous cal-
culation of the unrelaxed vacancy. ' In Table II we
compare energy eigenvalues of our local-orbital
calculations with independent linearized-augment-
ed-plane-wave (LAPW) calculations by Hamann, "
based on the same ionic pseudopotential. The
agreement is generally within a few tenths of an
eV and similarly good for one and two decay con-
stants. Note, however, that the inclusion of short-

TABLE II. Comparison of energy eigenvalues obtained
by LAPW scheme (using the Wigner interpolation formu-
la for exchange) with localmrbital calculations (using
X+ for exchange). All calculations are based on a soft-
core ionic pseudopotential (Ref. 2). For later use the
potential was adjusted to yield the correct experimental
gap value of 1.1 eV.

LAPW
Ref. 35

10 Gaussians
One decay Two decays
0.2 a.u. 0.2, 0.6 a.u.

-12.79 -12.89 -12.88

x,
X4

x, (E,)

X4

Lg

L3

2.80

3.37

-8.49

-3.16

0.64

11.94

-10.39

-7.57

-1.35

1.49

3.63

2.84

3.32

-8.63

-3.18

0.78

11.87

-10.55

-7.60

-1.34

1.52

3.70

2.98

3.23

-8.62

-3.13

0.79

12.13

-10.54

-7.58

-1.30

1.50

3.79

range Gaussians proved to be necessary for
Green's function completeness. As seen from Tab-
le II, the indirect gap of -0.8 eV is about 0.3 eV
too small as compared to experiment. We cor-
rected this by slightly adjusting the crystal po-
tential while minimizing other changes occurring
throughout the band structure. In Fig. 8 we pre-
sent the calculated charge profiles plotted along
an axis connecting two silicon atoms. The com-
parison is made between Hamann's LAPW re-
sults" and our (a = 0.2) and (ct = 0.2, 0.6) local-or-
bital results. The charge suppression at the
atom sites is improved by adding short-range
(a = 0.6) orbitals and is brought into approximate
coincidence with the LAPW results. Figure 9
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FIG. 8. Valence charge density profile plotted along
the bond connecting two Si atoms. Dashed line, LAPW
calculation by Hamann (Ref. 35); dotted line, n = 0.20
local-orbital calculation; full line, n = 0.20, ~ =-0.60
local-orbital calculation. All calculations are based on
the same core pseudopotential (Ref. 2).

D. General results of Green's-function calculation

The results for the neutral Si lattice vacancy in
its hypothetical "ideal" unrelaxed structure of T~

symmetry are described in detail in Ref. 9.
Briefly, the removal of an atom creates four
broken bonds. Four valence electrons which pre-
viously participated in the bonds are removed to-
gether with the neutralizing Si" core. The atoms
around the defect now experience a different (re-

]0 —
Si

O

shows the density of states for silicon derived
from the (o( = 0.2, 0.6} 40 orbitals per cell basis
set by integrating over 203 k points in the irre-
ducible part of the Brillouin zone. The same in-
tegration scheme, i.e. , the Gilat-Raubenheimer"
technique, is used to calculate the matrix ele-
ments of the imaginary part of the Green's func-
tion. While the band-structure integration is ca,r-
ried out over 203 k points, the wave functions are
interpolated from 70 k points.

pulsive) potential and localized resonances and

bound states occur. Describing these states in
the T, point group of the undistorted vacancy, one
finds a strong A, -type resonance located in the
"pseudogap" at -8.5 eV followed by another A,
resonance around -1.1 eV. These resonances cor-
respond to symmetric (Ay) combinations of mostly
s-like orbitais (-8.5 eV} and mostly p-like orbitais
(-1.1 eV) centered at the four nearest-neighbor
atoms surrounding the vacancy. In addition, one finds
a T, bound state at 0.7 eV in the forbidden gap.
This degenerate state can accommodate up to six
electrons; its numerical occupation defines the
various charge states of the vacancy.

Incomplete occupancy creates a. situation which
is unstable with respect to static symmetry-low-
ering Jahn-Teller distortions as we described in
Secs. I and II. The charge-state-dependent dis-
tortions are summarized in Table III. We
have added the undistorted V" state to the four
charge states proposed by Watkins. Higher neg-
ative charge states than V have not been ob-
served and can probably be ruled out because of
excessive Coulomb repulsion and insufficient Jahn-
Teller lowering, as we approach the fully occu-
pied multiplet which has no tendency to distort in
a symmetry-lowering fashion.

As we mentioned in Sec. II, symmetry-lowering
distortions are in general accompanied by sym-
metric breathing-type distortions whose magnitude
may in general depend on the charge state. We
have thus investigated by our Green's-function
technique symmetric breathing-type and asym-
metric tetragonal "pairing-antipairing" -type dis-
tortions. For the calculation of energy levels and
deformation potentials, we have restricted the
distortions to the four nearest neighbors of the
vacancy, as in Fig. 10, an approximation which is
motivated by the actual localization of the bound-
state wave function. While the bound-state defor-
mation potential is directly linked to the localized

0&

M
LJJ

CO

0 ~ S

(A

TABLE III. List of various charge states of vacancy.
The level splittings, degeneracies, and occupancies are
shown. The point group symmetries are experimentally
determined (Ref. 6). V, V', and & are found in p-
type silicon, while & and V are found in n-type sili-
con.

0
-12 -10 -8 -6 -4 -2 0 2

Charge state
Number of electrons in

bound state
Crystal

symmetry

ENERGY (eV)

FIG. 9. Valence density of states for Si calculated
with a local-orbital basis of e = 0.20, n = 0.60 (40 orbit-
als per cell) as used in the evaluation of the Green's
function.
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FIG. 10. Perspective view of the diamond structure
with a single vacancy. Symmetric breathing-type (Q&)
and symmetry-lowering-pairing- depairing —type (Qz)
distortion directions of nearest-neighbor atoms are in-
dicated.

~ (z )=Z ~~e 1+x6&fZ
1+ 2x+ 2xC

(3.15)

with y= I/(aR, ), and 8=0.4, the fraction of the
vacancy wave function lying beyond R, . A simple
upper bound to this correction is obtained for x = 0,
as though all tail charge is concentrated at R, .
Evaluating Eq. (3.15) we obtain 4 (Z,e«= 1)=-0.15
eV for the silicon vacancy. Together with the re-
sults of the Green's-function treatment we obtain

nature of the bound-state wave function, any quan-
tities involving electron states other than the
bound state as, e.g. , the driving force for breath-
ing-type distortions or the lattice elastic restor-
ing forces, are strongly dePendent on the long-
range nature of distortions (see Sec. IIIE below).

The calculation of charged defects with our
Green's-function scattering approach deserves
more comment. The technique of solving Eq. (3.4)
with a finite basis of localized functions requires
the defect potential U(r) to be of short range. The
long-range Coulomb potential of the form Z,«/er
arising from charging the defect is conveniently
treated perturbatively. For this purpose we define
an outer potential radius A, = 4.0 A within the
short-range defect potential decays to its "dielec-
tric" long-range value Z,«/ar The va.lue U(R, )
is set equal to Z,«IVER, and U(r&R, ) is set equal
to zero during the self-consistency iteration pro-
cedure. We then calculate the energy contribution
arising from the tails of the bound-state wave func-
tion in the screened Coulomb potential perturba-
tively. Since these tails are not explicitly known,
we model them by an exponentially decaying (p-
like) function, r exp(-o.r), and obtain for the cor-
rection (in a.u. ),

&(n =
& ) = 0.32 eV, e(n =-,') = 0.57 eV, yielding e~

= 0.32 eV and U = 0.25 eV. The Green's-function
calculations were done for full T, symmetry, oc-
cupying each of the three T, orbitals equally. Even
at zero distortion this is only an approximation
to the situation in which one of the three T, states
(B,) is preferentially occupied and self-consistent-
ly screened. We estimate that it will not affect
U, and its effect on e~ is likely tobe less than
0.1 eV.

The same value of U, 0.25 eV, can be extracted
from an interesting recent calculation of the sili-
con vacancy by Kauffer, Pecheur, and Gerl."
They report that the z» eigenvalue is 0.14, 0.3V,
and 0.64 eV for the unrelaxed vacancy states V',
V, and V . The differences in these eigenvalues
are 0.23 eV and 0.27 eV. We regard this agree-
ment as a useful confirmation of the reasoning
which they used to arrive at their parametrized
self -consistency.

We now discuss the results for various mode
distortions. As reported in Ref. 9, the change in
the density of electronic states caused by a local-
ized defect is given by

~n(E) =--1 d4(B) (3.16)
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FIG. 11. Calculated A~ phase shifts and T2 bound-state
energies induced by neutral vacancy for different breath-
ing-type distortions.

where 4 (E) is the scattering phase shift which is
obtained from the determinant of the Green's-func-
tion matrix equation [Eq. (37) in Ref. 9]. In Fig.
11 we display the A, scattering phase shift (top)
for V' as a function of energy for several breathing
distortions. While the A, s-like resonance around
-8.5 eV becomes only slightly weakened, the p-like
resonance below the top of the valence band gets
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shifted to higher energies and sharpens strongly
upon outward breathing (away from the vacancy).
It becomes a genuine A, bound state in the gap for
distortions Q & 0.3 A.

Breathing away from the vacancy renders the
back-bond geometry more graphitelike, i.e. , sp'
like, which increases the p-orbital content in the
dangling bond directed towards the vacancy. In-
creased p-orbital content increases the energy of
the upper A, resonance and produces a fading of
the lower (s-like) resonance.

Conversely, inward breathing (towards the va-
cancy) sharpens the s-like resonance and weakens
the p-like resonance along with a downward shift
in energy. 'This is caused by the increase in p'-
like bonding of the back bonds which renders the
dangling bond more s-like. The T, bound state
which corresponds to a "p-like" combination of
dangling-bond states responds in a similar way
to breathing distortions as does the upper Ay reso-
nance. Its energy position as a function of distor-
tion is shown in Fig. 11 (bottom). For it we derive
a rather small linear deformation potential of V~
=—ne/dQ, =0.5 eV/A. This value agrees reasonably
well with results by Lipari, Bernholc, and Pante-
lides" and also results by Jaros, Rodrigues, and
Brand. " The above description is very remini-
scent of the arguments proposed by Haneman" to
rationalize the up and down motion of surface
atoms on silicon (111). Moreover, the calculated
deformation potential value V, qualitatively agrees
with theoretical findings on this surface. " We
shall, therefore, use this analogy to the (111)sur-
face to estimate approximate breathing distortion
values.

We now turn to the calculation of pure tetragonal,
symmetry-breaking distortions leading to a lower-
ing of symmetry from T, to D~.

Figure 12 (top) illustrates the behavior of the

A, (T~) and A, (D~) phase shifts of the neutral va.-
cancy V' upon pairing and depairing E-type dis-
tortions. As can be seen, the effects on position
and strength of resonances are minor. The split-
ting of the T, bound state into the (B„E)pair is
shown in the bottom panel. Pairing lowers the
onefold B, level while depairing lowers the two-
fold E level. Also shown (as dotted line) is the
deformation dependence of the center of gravity of
the (B„E)pair. Its slight dependence on the
amount or sense of the distortion checks the as-
sumption of linearity for small atomic motions
of pure symmetry-lowering character. Again ap-
proximating the (B„E)pair for zero distortion
by the degenerate T, level, we derive a linear de-
formation potential for tetragonal distortions of
V, to be Ve —= dc/d@e = -2.25+ 0.2 eV/A for the B,
level. We find that this calculated value depends

1.0—
U.

cn
X

0.6—
X:
i2. 0.4—

0.2—

DISTORTED

Y/~

l~~

Z/~

-12 -10 -8 -6 —4 -2

ENERGY (eV)

0 2

quantitatively on the "completness" of the Green's
function used to evaluate it. In particular, neglect
of the short-range orbitals in G' results in a de-
crease of d&/dies by about 30%%uo. In this context we
note some discrepancies between our results and
other calculations. Lipari et al. have reported
de/dQs values 40%%ue smaller than ours while Jaros
et al. '9 have reported de/dQs values considerably
smaller than these.

In the following we shall present results of de-
fect potentials and charge densities which were
calculated for a combined breathing-symmetry-
lowering distortion. The chosen distortion of
+ 0.2-A outward breathing is representative. The

0
+ 0.3-A atom pairing distortion was derived from
total energy minimization. The phase shifts in-
duced by this combined distortion are shown in
Fig. 13 where they are compared to the results
of the ideal undistorted vacancy. The distortion
splits the T, level by 0.68 eV, i.e. , lowers B, by
0.45 eV from its undistorted value.

In Fig. 14 we present contour plots of the defect
potential U(r), displayed in a (110) plane contain-
ing the vacancy and nearest-neighbor atoms. The
potential for the unrelaxed vacancy (bottom) is
nearly spherical and roughly corresponds to a
"negative" screened Si-atom pseudopotential (see
also Fig. 9 in Ref. 9). It is of short range, de-
caying within nearest-neighbor distance. The di-
polelike short-range potential fluctuations induced
by atom relaxation are clearly visible in the top
figure. They can be thought of as originating from
removing atoms at the perfect-crystal lattice sites
and inserting atoms at the relaxed lattice sites.

1.0— B2
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FIG. 12. Calculated A~ phase shifts and 72-(B2,8)
bound-state energies induced by the neutral vacancy for
different symmetry-lowering pairing, depairing-type
distortions.
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FIG. 13. Bulk density of states of Si and the A~ and

&2(B2,E) phase shifts induced by neutral isolated vacan-
cy. Full line, undistorted vacancy; broken lines, dis-
torted vacancy. The distortion is a superposition of 0.2
A outward breathing and 0.3 A atom pairing.

For distortions =0.3 A the dipole potential ampli-
tudes are roughly comparable to the vacancy po-
tential itself.

Figure 15 shows contour plots of pseudopotential
total valence charge densities around the undis-
torted vacancy (bottom) and distorted vacancy
(top}. The displays have been prepared by ex-
panding the Bloch waves in an infinite set of orbi-
tals 4„[Eq. (3.5)) and retaining only those orbitals
(outer set) which influence the density in the neigh-
borhood of the defect. No information is lost, but
the display lacks the translational periodicity one
would expect to see (see also Ref. 9). The plots
clearly show the disappearance of bonding charge
with the removal of an atom. Moreover, little
change occurs upon atom relaxation, essentially
following our intuitive expectations derived from
the Born-Oppenheimer picture. Some quantitative
changes, however, are noticeable. The displayed
back bonds lose charge and strengl:h upon this par-
ticular relaxation since they are stretched. Con-
versely, back bonds (not shown here) which are
compressed show increased bonding charges. The
amount of distortion appearing here represents a
slight overestimate. Since our Green's-function
calculations were intended to yield bound-state
eigenvalues and their deformation dependence, it

FIG. 14. Contour plot in a (110) plane of total self-
consistent defect potential U(y) for the undistorted va-
cancy (bottom) and the distorted vacancy (top).

was a reasonable approximation for us to ignore
atom relaxation beyond nearest neighbors.

We notice that the charge density at atom cen-
ters and bond maxima follows the motion of the
atoms. This is of particular importance, since
the charge density is derived from outer set or-
bitals 4 which are centered at perfect-crystal
lattice sites. Figure 15 thus is an illustration of
the adequacy of the Green's function [Eq. (3.7)] in
regard to completeness. The effect is even more
emphasized in Fig. 16 where we present difference

harge densities Ap= p,4' 4ct crrstal pd4f ect crrstal
for both, unrelaxed (bottom} and relaxed (top)
vacancy configurations. The top figure clearly
shows the decrease in back bonding charge and the
shift of charge in the immediate neighborhood of
the relaxed atoms. The charge perturbation is
consequently more spread out than for the unre-
laxed case.

We next consider the charge distribution of the
defect bound state. For the unrelaxed case each
of the three partner functions of the T, bound state



5678 G. A. BARAFF, E. O. KANE, AND M. SCHLUTER 21

was occupied to equal amounts to produce a
charge distribution invariant under T, . Its real-
space distribution is shown in Fig. 17 (bottom).
It exhibits dangling-bond character with the indi-
vidual dangling bonds located at the four nearest-
neighbor atoms. Upon symmetry-breaking relaxa-
tion (T~-D~) it splits into an occupied (2e for V')
B, level (top panel) and an empty E level (middle
panel). The wave-function symmetry is such as to
exhibit no node for B, between the paired atoms
(shown) but nodes between the unpaired atoms
(not shown). Conversely for the E states, nodes
exist between the paired atoms (shown) and no
nodes between the unpaired atoms (not shown).
The difference in self-consistent potential along
lines connecting paired atoms (more attractive)
and unpaired atoms (more repulsive) is the or-
igin of the B,-E splitting. This difference also
modifies, though only slightly, the resulting wave-
function shapes. The more attractive potential

FIG. 15. Total valence charge distribution around
neutral vacancy for undistorted (bottom) and distorted
(top) geometries. The values are given in units of elec-
trons per Si bulk unit cell.

FIG. 16. Change in total valence charge density in-
duced by neutral vacancy for undistorted (bottom) and
distorted (top) geometries. Units as in Fig. 14.

FIG. 17. Charge density of T2 bound state (bottom)
for undistorted vacancy and E (middle) and B2 (top) bound
states for distorted vacancy.
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between paired atoms "pulls in" some charge re-
sulting in a small tilt (-10') of the dangling bonds
towards each other for the lower B, state. The
opposite effect (i.e. , a tilt away from each other)
is found for the higher E state. On the basis of
these small wave-function changes the (B,-E)
pair may also be viewed as bonding and antibond-
ing partners of a new weak "bond" between paired
second-nearest-neighbor atoms. The pairing may
be regarded to be the tendency to rebond threefold
coordinated Si atoms around the vacancy in order
to "heal" the defect.

The findings described above and illustrated in
Fig. 17 seem to contradict findings from extended
Huckel calculations on diamond vacancies by Mes-
smer and Watkins. " They reported tilting of the
occupied dangling-bond axes towards the axis of
distortion, i.e., tilting of danglingbonds away from
each other upon pairing. They furthermore reported
that this tilt direction was necessary to accountfor
experimental hyperfine tensor symmetries ob-
served on silicon vacancies. " Further investiga-
tions are planned to resolve this discrepancy.

E. Model calcuLations of elastic restoring forces

As mentioned in Sec. II, the model we use here
is based on the valence-force-field method of
Keating'0 in which al/ interatomic forces are re-
solved into nearest-neighbor bond-stretching
and bond-bending forces. Following Martin' s"
notation the model total energy is given as

(3.17)

where the bonds about each atom in the unit cell
are denoted by i,j = 1, . . . , 4, d is the equilibrium
bond length and a(r,'. ~ r&) are the scalar variations
of bond vectors about atoms. Equation (3.17)
yields terms up to quartic in the displacements.
We retain only the quadratic terms.

'The Keating parameters n and P describe pure
bond stretching (o.') and bond bending with some
stretching component (P). The values of a and P
published by Martin44 (Table fV) are fitted to re-

produce the experimental long-wavelength elastic
constants c», c,4, and c» with an internal. con-
sistency of better than 1%. However, the simpli-
city of the model causes inaccuracies for other
distortion modes. Deviations of about 5% are re-
ported by Martin'4 for the 4=0 transverse optic
mode frequency TO(I'). For finite wave vectors,
large deviations occur. In particular the "flat-
ness" of the TA branch towards the Brillouin-zone
boundary is very inadequately reproduced4' (see
Table IV).

In this work we have to describe localized dis-
tortions around defects. Fourier analysis would
involve distortions with wave vectors distributed
throughout the Brillouin zone, with considerable
weighting for larger wave vectors. To obtain an
optimum description of these distortions within
the simple Keating model, we modify Martin' s
values of a and P to reproduce finite wave vector
modes throughout large portions of the Brillouin
zone. 'The modifications are restricted to retain
the correct compressibility K = 3/(c»+ 2c»). The
resulting values n and I3 are listed in Table IV
together with values for el.astic constants and
phonon frequencies. We notice that the modifica-
tions essentially correspond to a reduction of the
bond-bending force by a factor of 3. This simu-
lates the TA-mode softening so characteristic of
Si and Ge, at the expense of unrealistic softening
of the long-wavelength shear mode which, be-
cause of the Brillouin-zone weighting argument
given above, is of minor importance here.

With these values of n and P we have evaluated
the total energy of a cluster containing about 100
atoms (up to 11 shells) and one vacancy. 'To obtain
an effective lattice restoring force k, «= 2E.../Qr
we have imposed distortions Q„of the four-near-
est-neighbor atoms to the vacancy, allowed all
remaining atoms in the cluster to relax freely,
and evaluated the minimum in the total energy ac-
cording to Eq. (3.17) exactly up to quadratic terms.
The results for breathing-type, tetragonal and tri-
gonal distortions are given in 'Table V. To investi-
gate the dependence of k, «on local variations of
n and P in the neighborhood of the vacancy, E„,
has been evaluated for two extreme limits: (a)
with no bond-bending forces between the dangling

TABLE IV. Comparison of Keatiz~ parameter values given by Martin (Ref. 43) and those
used in the present work. The resulting elastic constants (in 10 dyn/cm ), compressibility
K (in 10 cm /dyn) and mode-frequency ratios are given.

C|2
~~ TO(&) ~t TA(X)

~cue ~cZc

Reference 43
This work

48.50 13.81 16.57
51.51 4.70 12.07

6.39
8.60

7.96 0.102
3.17 0.102

0.96
1.01

0.58
1.00
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TABLE V. Calculated effective force constants of Si
for breathing-type, tetragonal, and two different trigo-
nal distortions of nearest-neighbor atoms around the
vacancy. The units of k are eV/~ for actual atom dis-
placements, not normal-mode amplitudes (to normalize
to normal-mode amplitudes divide the values in Table V

by a factor of 4).

This work
Reference 32

k()

14.81
5.20

7.27
3.88

kz
2

14.47

bonds and the back bonds and (b) with full bulklike
bond-bending forces. The resulting k, «values
differed by roughly 20% indicating relative insen-
sitivity to local variations. This insensitivity
results from the relatively weak bond-bending
forces and from quite large second-, third-, etc. ,
nearest-neighbor distortions occurring when the
crystal is all.owed to relax freely. Figure 18 shows
the relative displacement amplitudes of atoms in
subsequent shells plotted versus shell radius. The
decay of the amplitudes is compared to a 1/r'
behavior. Second-nearest-neighbor amplitudes of

up to -60% are observed. Physically, because of
the relatively soft bond-bending forces, all atoms
avoid bond-length changes when possible. This
results in large displacements even for distant
neighbors. Test calculations without free-atom
relaxation, i.e. , fixed neighbor positions, show a

dramatic increase (- factor of 2) in k, «.
Also in Table V are indicated effective force

constants evaluated by Larkins and Stoneham. "
These authors used a four-parameter valence
force model to describe the interaction potential.
They then solved for the total energy minimum as
a function of imposed distortion by solving itera-
tively the dynamical equations of motion of a sys-
tem of about 2000 atoms. The differences between
their results and ours are considerable, In parti-
cular, k~ differs by a factor of about 3. We find

from our calculations that both k, and kE scale
roughly with the bond-bending force constant I3.

A decrease of P by a factor of 2-3, which would

bring our results in rough agreement with those
of Larkins and Stoneham, yields finite wave-vector
phonon modes [such as, e.g. , TA(X)] too low in

frequency by about a factor of 1.5-2.0. Unfortu-
nately no TA(X) mode-frequency calculation with

the four-parameter model has been published by
Larkins and Stoneham.

Another independent, a posteriori, argument in
favor of o r ks= 15 eV/A value comes from the

analysis of experiniental data on silicon vacancies"
to be discussed in detail in Sec. IV. Consistency
between several independent experiments requires
formally that E~r = V~/2ks & 0.21 eV, independent
of any theoretical value for V~ or k~. Combining
our independently calculated value of Vs-= dE/dQs
= 2.25 eV/A with this upper bound we arrive at a
lower bound for kz =12 eV/A, about twice the

value proposed by Larkins and Staneham but in

agreement with our Keating model calculations.
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FIG. 18. Relative displacement amplitudes of atoms
in subsequent shells surrounding vacancy. A pairing-
type distortion of amplitude 1 is imposed onto the four
nearest neighbors f(111) she11]; all other atoms are
allowed to relax freely within the Keating force model.
The particular choice of parameters for this model is
discussed in the text.

IV. DISCUSSION AND COMPARISON WITH EXPERIMENT

A. Summary of calculated values

ks = 14.8 eV/A',

k~ = '7. 5 eV/A',

Vs=2. 25 eV/A,

V, =0.5 eV/A,

&1. =0.32 eV,

U=0.25 eV,

(4.1)

and, by analogy with the (ill) surface, ""we have
assumed an outward breathing equilibrium dis-
tortion for the neutral system of 0.1 A. 'This gives

(P+ 2V~)/k~= 0.1 A. (4.2)

In Sec. II, we formally defined the parameters
needed to describe the total energy of the vacancy
in various charge states and gave equations re-
lating these quantities to the occupancy levels. In

Sec. III, we obtained the following numerical values
for them:
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0.23 A,

Q~= 0.17 A,

0.10 A,

0,

Q~= 0.15 A,

0.3 A.

(4 8)

Remembering that V, is an inward directed force
(i.e. , it has a sign opposite to that of P, which is
an outward one) we use the values in (4.1) and
obtain P = 1.75 eV/A. From these values and Eq.
(2.17) we obtain the following distortions for V-,
V', and V', respectively:

lence band:

(0-1)„,=(0 — . E
2E

(1-2)„,= (1 — . E

A

(1 -0)„,=
(1

— E
JT

EL +U '-
(2 —1).„=(2 — . 0„~0.

(4.4a)

(4.4b)

(4.4 c)

(4.4d)

The Jahn-'Teller energy, the total relaxation
energy, and the shifted level, as given by (2.18),
are E» =0.17 eV, E»=0.19 eV, and &~=0.44 eV.
The value of i~ contains an upward shift of 0.12
eV arising from the term V,Q', . This may be too
generous, as we shall see by comparison with
experiment at the end of this section. The ener-
gies of the states as a function of p is given by
(2.19) with E~r = 0.19 eV and r/=— 2E~r —U = 0.18 eV.
The energy levels are given by (2.20) and by (2.22).
The positive value of p means that the only oc-
cupancy level is E(0/++) and that E(+I++) or E(0/+)
is the excitation level which is a measure of the
metastable V'.

The condition for )7&0 is that e»&U/2, which
will be recognized as Anderson's condition" for
a negative-effective U, generalized so as to include
the two modes which are simultaneously driven by
the presence of one and two extra electrons. With
r/ calcuiated to be & 0, the predicted level E(0/++)
is at 0.18 eV. E(OI+) is 0.12 eV and E(+/++) is
0.25 eV. The values quoted here differ somewhat
from those in our Letter" because that earlier
work did not include the charge dependence of
breathing; i.e. , it used E» where we now find it
proper to use E». The two differ, however, by
only 0.02 eV, which is less than the precision we

put on these calculations.

B. Fitting to experiment

We now approach the problem from a comple-
mentary direction. We ignore theoretical esti-
mates of model parameters and use the kinetics
and statistical mechanics of the model itself to
fit the parameters to various experiments. At the
end, this procedure will allow us to check the
calculated values of model parameters. Instead
of using k~, el. , VE, and U, it is convenient to
use iL, U, and E» as independent model para-
meters. The kinetics and statistics of a system
of vacancies in contact with a reservoir of elec-
trons has been discussed by us in Ref. 19. We here
summarize the results for the possible activation
energies for transitions of the type hl~-NT +1 or
N~+1-N~ by hole capture or emission to the va-

The extra energy /2 in (4.4c) and (4.4d) is the
energy needed to produce the hole which is cap-
tured in the A~+1-N~ transition. " The terms in
parentheses are the differences in energy f rom the
initial-state minimum (Nr) or (Nr+ I) to the cross-
ing of the N~ —NT+1 configuration coordinate
curves, evaluated using (2.15) at /(, =0." Again,
notice that knowledge of lattice elastic energy
(via E») is needed to evaluate activation energies,
just as it was needed to evaluate occupancy levels.

The first experiment to be fitted is the activa-
tion energy for the decay of the V' EPR signal in
In-doped silicon (g = 0.16 eV) which Watkins has
measured' as 0.057 eV, and which he ascribes to
hole emission (a transition Nr--1-2 via capture
of an electron from the top of the valence band).
Once we postulate existence of V", another channel
of V' decay, namely, V'- V" must be considered.
However, the activation energy for this channel
(4.4c) is greater than /(, because a hole must be
present in the valence band before it can be cap-
tured by the vacancy. 'The numbers just quoted
rule out this channel for V' decay. The possibility
of V' decay via direct transfer between the va-
cancy and an In acceptor should also be small,
and so we are led to accept Watkins's assignment
of the 0.057 activation energy to V' decay via hole
emission. From (4.4b), we have [(i~+U)/2E»
—I]2E» =0.057 eV. This condition is conveniently
regarded as fixing i~+ U as a function of E», and
we exhibit this in columns 1 and 2 of 'Table VI.

The second experiment to be fitted is the activa-
tion energy of 0.13 eV, observed by DLTS mea-
surements in P-type silicon. 4' Watkins has sug-
gested to us privately that the transition being
observed here might be the V"- V' transition
which we had proposed, "and has suggested that
at these DLTS temperatures, after the initial
V '- V' transition, the subsequent V'- V' transi-
tion is so rapid that only the V"- V' step is ob-
served as an activated process in DLTS. 'The
reason that the first transition V"- V is the rate-
limiting process can be seen in Fig. 19, taken from
Ref. 47, which shows measured emission rate
versus inverse temperature, both for the 0.13-eV
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0.1500
0.2000
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0.3510
0.4849
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0.8615
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0.2280
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0.3606
0.3950
0.4266
0.4561

0.0455 0.0545
0.1230 0.0770
0.2056 0.0944
0.2911 0.1089

0.3782 0.1218
0.4666 0.1334
0.5559 0.1441
0.6459 0.1541

0.0840
0.0895
0.0821
0.0680

0.0497
0.0283
0.0046

-0.0210

DLTS signal and for the V' decay. Extrapolating
the V' rate upwards, we see that at the tempera-
tures for which the DLTS signal was observed,
the V' decay rate is of the order of 10'-10' times
greater than the V"- V' decay which we identify
with the 0.13-eV signal. With this suggestion we
obtain from (4.4a) e~/4Ezr --0.13. This condition
is conveniently regarded as fixing &~ as a function
of E», and we exhibit this in column 3 of Table
VI.

Columns 4, 5, and 6 of Table VI give certain
quantities which can be calculated from entries in

H (0.8)
(OLTS)

10

10—
OCI
cn
4O

3:

10'—

TABLE VI. Characteristic energies of Jahn-Teller
distorted vacancies obtained by fitting two independent
experiments to the three parameters of the model (see
text). The magnitude of E~ (column 1) is to be regarded
as the remaining independent variable. Values below the
dotted line can be ruled out by the existence of a DLTS
signal in gallium-doped silicon.

columns 1, 2, and 3. Column 4 gives the Coulomb
repulsion term U=(6~+ U) —&~. Column 5 gives
q=—2E,~ —U. If g &0, then there is no value of p,

for which V is the ground state of the system,
that is, the equilibrium configuration changes
directly from V" to V' as the Fermi energy p is
raised. Notice that g&0 for all entries in the
table. This implies that within our model we do,
in fact, have an Anderson negative-U system in
this entire range of possible E» values. Column
6 gives E(0/++) =i+ —2Ezr +U/2, which is the value
of p. at which the ground state changes from V to
V as p, is raised.

As a third independent experimental input we

consider now the implications of being able to
observe a V" —V' transition in DLTS. The es-
sence of a DLTS experiment is that the charge
state of the deep level should alter (producing an
observable change in the capacitance of a pn

junction) when all the mobile carriers are swept
away from the deep level. This means that its
charge state under equilibrium conditions (as
determined by the Fermi energy p. ) and its charge
state under depletion (when all mobile carriers
are swept away) cannot be the same. The experi-
ments make it clear that the state is a hole trap
close to the valence band, so that in depletion, it
is occupied with electrons, just as all the nearby
valence-band state are fully occupied by electrons
when there are no holes present. For this level
to be observed, it must therefore be in the state
V' or V" during that brief time at the beginning
of the experiment when its occupation is deter-
mined by p.. This requires that the value of p. be
less than E(0/++) in the sample in which the DLTS
signal is observed. Watkins ef nl. report" seeing
the 0.13-eV activation energy in p-type silicon
samples doped with boron (p. = 0.045), aluminum

(p = 0.057), and gallium (p, = 0.065). We therefore
conclude that E(0/++) & 0.065 eV. According to
Table VI, this implies a value of E» which is less
than 0.21 eV, and thereby establishes allowable
ranges of e~ and U (above dotted line).

Watkins also describes an attempt to measure
the excitation energy for the state V' in boron-

10

10'I—

H (0.08)
(TSC) +OECAY

l%) TABLE VII. Compar ison of calculated model parame-
ters with bounds obtained by fitting to experimental data
(from Refs. 6 and 47).

6
10'

1 2 3 4 e

100/T (K )

FIG. 19. Hole emission rate versus temperature for
the &' state measured by EPR and for the H(0.13) DLTS
level which we associate with the activated decay P
—Vo. Thermally stimulated capacitance (TSC) data are
also shown. Figure taken from Ref. 47.

Model calculations

Egg ——0.19 eV
0.32+ 0.12 eV

U=0.25 eV
V ' metastable

Parameter fit to experiments
(Refs. 6 and 47)

E~~ ~ 0.21 eV
&g ~ 0.33 eV

U & 0.33
V' metastable
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doped silicon by observing the strength of the
EPH signal from V' at a finite temperature and
comparing it with the strength of the EPR signal
when the number of vacancies in the V' state has
been enhanced by flooding the sample with in-
frared photons. ' 'The excitation energy for V'

(i.e. , the amount by which the energy of the sys-
tem in the state V' exceeds the energy of the
ground state [which we believe is V" because the
Fermi energy p, is less than E(0/++)]) is

E,„=E, (W) —E,(p)= &~, -E» (4.5)

For a value of p=0.045 eV and values of iL and

E~r from the allowed part of Table VII (E» &0.21
eV) we find 0.066 &E,„&0.077. Watkins finds
0.006 eV. 'The discrepancy of 0.06 to 0.07 eV
between our prediction and his measurement
serves as a measure of the validity of the assump-
tions, such as those spelled out in Sec. II, on

which our model is based, provided that the ex-
perimental estimate is valid.

'There is, interestingly, a qualitatively new

feature which should be considered in redoing the
excitation energy experiment. If the equilibrium
charge state in the boron-, or aluminum-, or
gallium-doped samples ~s V" as we believe, then
the mechanism for generating V' by flooding the

sample with radiation cannot be capture of the
holes produced by ionizing the acceptors. It must
be instead direct optical excitation of an electron
from the top of the valence band to the vacancy.
'This process requires a photon energy Scd & e~,
and so measuring the optical threshold for V' pro-
duction will give a direct measurement of &~, one
of the parameters of our model. In In-doped sili-
con, on the other hand, where p. =0.16, the value
E(0/++) & 0.09 indicated in Table VII predicts that
the ground state of the vacancy is V'. 'This can be
converted to V' by hole capture, so that any illu-
mination capable of creating holes in the valence
band should be effective in generating the V' in an
In-doped sample. In one of the early experiments
on the silicon vacancy, "Watkins mentions that the
V' signal can be regenerated reproducibly in
boron-doped silicon by illuminating with light
passed through an InAs window. This would indi-
cate that &~ ~0.35 eV, which is compatible with
the range of parameters we have deduced in Table
VI by fitting the other two experiments.

In Table VII, we compare the parameters we have
calculated with those we obtain by an a posteriori
fit to experiment. 'The largest discrepancy is in
the value of f~, which we have determined in part
from the Green's-function self-consistent calcu-
lations for an unrelaxed vacancy and in part from
a guess that the atoms near the vacancy might
relax outward (breathing mode) by an amount

comparable to that on the silicon (111) surface.
The comparison with experiment seems to indicate
that our guess of an outward breathing relaxation
and the rise of 0.1 eV in the level position from
0.32 to 0.44 eV is too generous an estimate.

There are two important conclusions to be drawn
here. First, we have obtained a rather convincing
demonstration (by fitting to experiment and by
direct calculation) that the Anderson effective U

for silicon vacancies is indeed negative. Second,
we have obtained a rather convincing limit on

E» of 0.21 eV without relying on estimates of
lattice response.

V. SUMMARY AND CONCLUSIONS

'This study of the silicon vacancy can be divided
conceptually into two complementary parts. First,
in Sec. II, we describe a simple model for the
occupancy levels and activation energies of this
strongly lattice-coupled defect using three under-
lying parameters, i~, E», and U. i~ is a transi-
tion- state eigenvalue, shif ted upwards by the out-
ward breathing distortion. E» is a relaxation
energy. It is composed of two parts: Vx/2k', the
usual symmetry-lowering Jahn-'Teller energy,
and V', /2k„an energy due to that part of the
breathing relaxation which is charge dependent.
U is the electron-electron repulsion energy for
two electrons in the same state. Second, in Sec.
III we described the extensive numerical calcula-
tions required to evaluate the parameters of the
model.

What emerges from this study is a level struc-
ture at variance with the previously accepted one
but not at variance with the experiments on which
that yreviously accepted view is based. 'To sub-
stantiate this last point, we display, in 'Tabl. e
VIII, predictions of the theory based on using the
calculated parameters. Column 2 of that table
gives the equation number (this paper) in which
the quantity in column 1 is defined. Columns 3
and 4 are two sets of theoretically predicted values,
both using the parameters calculated in Sec. III.
'The first, Calc. 1, uses U=0.25 eV, E» =0.19 eV,
and &~ =0.44 eV, an estimate based on the maxi-
mum value of breathing-induced upward level
shift. 'The second, Calc. 2, uses i~ =0.32 eV,
making no allowance for this shift. The next
column gives the experimental value and the last
is the reference which contains the data or state-
ment on which the experimental value is based.
In some cases, the logical connection between
statement and experimental value is contained in
the reference itself. In others, the logical con-
nection is to be found in Sec. IV of the present
work.
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TABLE VIII. Predictions of the theory based on calculated parameters. Calc. 1 allows
for maximum breathing distortion while Calc. 2 is based on zero breathing distortion.

Quantity

(V -Vo)
(V++ V+)

E(0/++ )
V excitation

Formula

Eq. (4.4b)
Eq. (4.4a)
Eq. (2.22)
Eq. (4.5)
Eq. (2.18d)

Calc. 1
eV

0.13
0.25
0.18
0.21
0.44

Calc. 2

eV

0.05
0.13
0.06
0.09
0.32

Expt.
eV

0.057
0.13

&0.065
0.006

&0.35

Refer ence

6
47
47

6
43

Eq. (2.21)
0.13 eV

g &0 implies V'
is always metastable

V' not
stable

6, 43, 47

Agreement between Calc. 1 and experiment is
of the order of 0.1 eV for all of the quantities com-
pared, except for the excitation energy for V' in
boron-doped silicon, which is off by 0.2 eV. The
agreement becomes virtually exact (except for
the V' excitation energy, which is then in error by
0.1 eV) if we lower e~ to the value it would have
without the upward breathing shift as in Calc. 2.
There is no point in trying to use this argument
to improve the fit or determine the breathing shift
because the eigenvalue itself can probably not be
realistically calculated to better than 0.1 eV.
'There is reason to trust the calculation of the other
parameters, however: 'They express how the
eigenvalue changes in response to small varia-
tions in the system coordinates Q» Qb and 1V~.

The 0.1-eV discrepancy remaining between the
predicted and experimental value of V,,
cannot be substantially reduced by a more careful
calculation. We have demonstrated this in Sec.
IV where we treated &~, E», and U as fully ad-
justable parameters and showed, by fitting the
first tmo experimental values in Table VIII, that
there mas at least an error of 0.07 eV in the pre-
dicted V' excitation energy. This discrepancy
points to small energy dependences of parameters
that we have taken as constants in the three-para-
meter theory.

The parameter-fitting exercise of Sec. IV pointed
to an internal inconsistency in the three-para-
meter theory of about 0.07 eV. It also provided
some useful bounds on the other parameters,
establishing limits for them as described in Table
VIL These limits confirm (a) that the unit of
relaxation energy E» cannot appreciably exceed
0.21 eV, which is considerably smaller than had
been inferred' and (b) that the system is an Ander-
son U system for the states V", V, and V', so
that the occupancy level is a two-electron level
E(0I++).

At this stage of development of the theory, it is
reasonable to regard unification of the disparate
experimental attributes of the silicon vacancy into

a simple theoretical framework as a useful ad-
vance, even to within an accuracy of about -0.1
eV. 'The basic ideas here can readily be genera-
lized to discuss other systems, e.g. , the negative
charge states of the vacancy and separately, other
strongly lattice-coupled point defects with near-
degenerate states in the gap. Future work will
undoubtedly seek more accuracy in their descrip-
tion, and we would like to comment on thi8.

Our starting point was neglect of spin-induced
correlations. Even had we included them, it would
still have been possible to formulate a theory
along exactly the same lines as we followed in
setting up Eq. (2.10), namely, that there is a
total energy associated with V" and that there are
energies associated with adding one more and two
more electrons. In such case, we could still de-
fine an e erepulsion -term by

U(Qs&Qs) = &2(QE~ Qb) &i(Qs~ Qa) .
From this point of view, the only approximation
intentionally restricting the flexibility of our
parametrized theory was taking U tobe independent
of distortion. Clearly, a careful study of &, and

q, would allow us to determine the size of the
next most important missing terms, the linear
dependence of U and the quadratic dependence of

Until these are evaluated, it mould be pre-
mature to introduce a many-electron starting
point unless it turned out that the basic symmetry
of the state in the gaP Niere different in a many
electron theory from uhat it is in the local density
theory used here.

It might be useful, to contemplate a serious at-
tempt to evaluate the total energy functional, s3y
for the state V", and thus obtain the constant P
and another independent estimate of k~ and k, .
Most attempts to evaluate the total energy func-
tional find it convenient to express its numerical
value by replacing the kinetic energy by a term
which depends on the eigenvalues, a step which
can be carried out by multiplying (2.4a) by np,*. (r),
integrating over r and summing on i. The result
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n, &,. ny, R„ (5.3)

and where &E„, arises from the nonlinear depen-
dence of exchange correlation on the electronic
density:

&E„,= p r) &„—U„A'.

Several authors, among them Varma and %eber4'
and Chadi, 4' have studied forces and spring con-
stants by calculating the displacement dependence
of E~,d, and parametrizing the displacement de-
pendence of the remaining term (Vz —@+bE„,).
Similar parametrization might be useful in ob-
taining P, the l.inear term in the energy of the V"
breathing distortion. Recent attempts have also
been reported to determine structural distortions,
e.g. , bulk lattice constants and surface relaxa-
tions, by direct evaluation of the displacement de-
pendence of the V,. -4+ &E„, term. ' %hen these
are fully expl. ored, it should prove possible to use
a similar approach for the point defects.

In Sec. IV, we have suggested that study of the
energy h(d necessary to photopopulate the V' state
in boron-doped silicon would measure a useful
parameter of the theory. Clearly, a direct mea-
surement of the number of electrons captured by
each vacancy in a DLTS transition would be a de-
finitive test of the tg.o-electron nature of the

is

E„,((n,j, (R„),p) =E~,~+ V~ —4+ bE„N-rp, ,(5.2)

where

transition V'- V" we predict. %atkins has sug-
gested to us privately that stress coupling experi-
ments, similar to those by which he infers the
presence of V' by studying the anisotropic dis-
tribution of V- generated from V' under stress,
might be applied to V'. In such case, V' generated
from V" under stress would be isotropically dis-
tributed while V" produced from V' wouldbe aniso-
tropically distributed, because unlike V', V" has
no anisotropic stress coupling coefficient. Qn the
basis of the experimental determination 0.065 eV
&E(0/++) &0.16 eV, we would expect V' to reveal
no pre-existing stress alignment in boron-,
aluminum-, or gallium-doped samples but to ex-
hibit it in In-doped samples. Measurements in
samples where the Fermi energy was swept
through this range would be of particular interest.

emote added in proof Watk. ins and Troxell ' have
very recently reported that two electrons per va-
cancy do seem to be involved in the 0.13-eV DLTS
transition. This observation provides the dw'ect
confirmation of our prediction of the Anderson-
negative-U nature of the Si vacancy.
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