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Heat of solution of hydrogen in atuminum
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The interaction of a proton with ~n aluminum host is treated within the spherical model of ~

solid. Our results give for the heat of solution ~nd activation energy of H in Al 0.593 ~nd 0.5
eV, respectively, compared with the experimental values of 0.66 and 0.52 eV. The previously

untreated nonspherical corrections are also estimated and shown to be sm ~ll.

I. INTRODUCTION

The interaction of hydrogen with its metallic host
has been given wide attention in many recent publi-
cations. Primarily two different regions, with distinct
theoretical emphasis, have been examined. The re-

gion of high concentration of hydrogen has generally
been treated via a band-structure approach' and ap-

plied to nonsimple metals like palladium which can
dissolve large quantities of hydrogen. The region of
low concentration has been largely treated from a

proton-jellium interaction and applied to simple met-
als like aluminum' ' which can dissolve only small
quantities of hydrogen. It is the second problem we

wish to treat in this paper. The small amount of hy-

drogen dissolved in most metals does not make this
problem without practical interest. For example, the
formation of hydrogen gas bubbles upon solidifica-
tion is just one example of the need for a microscopic
treatment of hydrogen-metal interaction. From a

theoretical point of view the simplicity of a proton
embedded in an almost uniform electron gas makes it

potentially a candidate for yet finer understanding of

electron impurity interactions.
In Sec. II we introduce the general form for the

heat of solution of an arbitrary impurity. %e then
evaluate this energy within the spherical solid model
of H in an Al host. In Sec. III we estimate the yet
untreated nonspherical corrections and show them to
be very small.

II. HEAT OF SOLUTION WITHIN THE
SPHERICAL SOLID MODEL

Consider a collection of /V ions (positioned at
points R;) and ZN electrons in which we embed an

impurity of nuclear charge +Z]e (at point r] ) with its
equal number of Z] electrons. The heat of solution
4H is defined as the difference between the energy
of this configuration and the one where the neutral
impurity is removed to infinity. This energy AH can
be readily written as

AH = AHp+ AH] + AH + AH3+ AH + AO + AH„

(1)
with

(la)

EH2 = Z]ezra0

Z

AH3= $ p,
c 1

(lb)

(lc)

, 2

AH4= —— d'r d r'
l [n&( r ') —n„( r ') ][n, ( r ) —np( r ) ] + [n&( r ') —np( r ') ] [np( r ) —np] }/} r —r 'l . ((d)

2

i&&H)=E„,(n&( r )) —E„,(n»( r )) —f d r [»„,(n&( r ))n&.( r ) u„,(n»( r ))»»( r —) ]

1 C8 I' ll p
AHp= Z, Ze' X —Z&e'

-& IY&
—R, l l7& —rl

(le)
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where

V ff( r ) = &] ( r ) + Vp( r )

n~( r.')
+et Jtd r' +u„,(n)(r)) (3)

with u) ( r ) —Z (e '/
~ r —r ) ], Vp( r ) the ionic poten-

tial, and

Z/t(/+Z
]

n (r) = $ (]f "(7)(])'( ) (4)

The density np( r ) is similarly given by

In Eqs. (la) —(lf) E„,(n ( r )) is the exchange and
correlation functional, ""v„, the functional derivative
SE„,/Sn, e, the binding energy of the Z, bound states
(if any), n p the uniform density of the ZN electrons
in volume Ap, and n [( r ) is the electron density of
the ZN + Z] electrons in the presence of the impurity
and N ions. It is given as the solution of the self-
consistent equation'

[ (t'/2—m)'7 + V,ff(r)](]d (r) =e (]) ( r ), (2)

which depend explicitly on the density (i.e., AH4 and
b, H5) can therefore be evaluated within such a finite
volume. The other two terms 4H] and b, H3 are also
a consequence of the change introduced by the local
environment at the impurity. On the other hand

AH2, which is the eigenvalue of Eq. (2) for the
highest occupied state, is clearly not a locally deter-
mined quantity; we will therefore treat this contribu-
tion separately.

Before we proceed to the treatment of hH within

the spherical model it is instructive to reduce Eq. (1)
to the well-known linear response form' where 4H is

calculated only to second order in Vp( r ) + v[( r ).
We write n]( r ) = hi~]( r ) + i~p(7) and np( r )
=d, ( r ) +, treaali Jd' d, ( r ) = Z, aad

Jt d'r d no( r ) =0]. We need to know /) n) ( r ) only

to linear order in Vp( r ) and v[( r ), and in momen-
tum space these are given by the well-known linear-
response forms, ' i.e.,

np(q)..(q)=-' '
V.(q)

~(q)
and

Z/t/

no( r ) = X (]);"(r ) (]) ( r ), (5) np(q)
~ (-.)=- ' ' (-. )

~(q)
(6)

where p; ( r ) and e; satisfy the same Eq. (2) without
o]( r ) and with n]( r ) replaced by np( r ). The term
EHp is the negative of the energy of the neutral im-

purity (or equivalent atom) in its molecular state,
For example, in the case of a proton which combines
to form a hydrogen molecule AHp= 15.86 eV, and
includes the ionization energy of the H atom (1 Ry)
and the additional dissociation energy of the molecule
(2.28 eV per atom). The last term AH6 is the
Madelung energy of the impurity at position r ] which
can be easily calculated for any arbitrary configura-
tion of ions.

We therefore turn next to Eqs. (la) —(le) with a
brief discussion. Let us first assume that Eqs.
(2)—(4) have been solved exactly for np(7), tl](7),
~;, and e and consequently for AH. The density
np( r ) and n ~( r ) differ from each other (to any
relevant extent) in a localized region (of volume O~)
around the impurity and from charge neutrality

d'r [n) ( r ) —no( r ) ] = Z(. The terms in Eq. (l)
]

with mp(q) the noninteracting Lindhard static"
response function and ~(q) the full static dielectric
function

e(q) = l + [(4fre'/q') + G„,(q) ] no(q)

v,„(7)= v+Z v(7),
~here

(8)

I

V = „t d'r V, ( r ) +"Jl", + u..(no)0np
I r —r 'I,

(9)
and

The function G„,(q) is the momentum representation
for the linear expansion of v„,(n ( r )), i.e.,

u„(n ( r )) = u„,(no) + Jtd3r'G„, (n()r —r'), hn ( r ') .

(7)
Return to Eqs. (2) and (3) and expand

2

AV(r ) =u)(r)+ Vo(r)+ Jtd r' +G„,(no, r —r') [dno(r')+dn)(r')]

r

+ —, d r"K„,(np, r —r', r —r", r' —r")[dnp(r')+An&(r'))

x [hnf)( r") +dn(( r")] (1O)
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where in Vp( r ) the uniform part has been separated
and included in Eq. (9).

Using Eqs. (1)—(10), the relation

f s3 rr rw I —o ~l ~ ~rf —or ~rr
)a I K„,(np, r —r, r —r, r —r

and

1
~F

An'(r) = —, rIkk g (2I+1) ', [R'„( r)]2 —I'(kr) }
l 0

G„,(np, r —r ')
BI~ 0

and taking a careful account of the extra electrons in-

troduced by the impurity through A»1( r ) in Eq. (10)
the following expression for AH in linear response
can be derived:

AH] + AH4+ AHs

d q ~p(q )
[[u~(q)]'+2m~(q) &p(q) )(2n-)3 ~(q )

and
1

f2kF2
bH2= Z] + V

2I»

{14)

where R, ( I ) is the radial wave function for the
bound states (if any). Finally the asymptotic form of
Ri k ( i ) outside the volume kl

1 is given by

RI k ( i. ) = cos [ 51 {k ) ]j I ( kI ) —si n [ hi ( k ) ] &~I {kI ), ( 1 5 )

where 51 are the phase shifts and ji and»& the spheri-
cal Bessel and Neuman functions.

For the aluminum host the full ionic potential
~ (I ) is replaced by a pseudopotential of the smooth
Heine-Abarenkov form'"

'I

4~Z&' D sinqR, (qlq() )

iv(q) =- ' + ( 1
—D ) cosqR, ~

q2 qRc

1 1

Z[ 1 d3q Vp(q)
+

Qp 2 {27r)3, e(q)

BG„,(q)7rp(q)
X

Qtl p

9n p(q)
, (12)

Qnp

(16)

with Z = 3. The core R, was chosen equal to
R, = 1.09 (a.u. ), the well depth D was set equal to 0
and the damping parameter is qp = 5.5kF. " The
spherical component of Vp( r ) is given by

and in linear response the potential v]( r ) cannot
support any bound states so b, H3 = 0. Now if the po-
tential of a single ion is ~ ( r ) then Vp( r )
= g'", w(r —R;) and Vp(q) =w(q)S(q) with

S(q) = g, -, e '. Combining Eqs. (11) and (12)
yields the well-known form for AH in linear
response. We again make the observation that, un-
like Eq. (1 1), AH~ depends on the whole collection
of ions and not on the local behavior around the im-

purity.
The lowest-order form of Eqs. (1 1) and (12) would

be adequate for evaluating 4H if the potentials of the
impurity and the ions were weak. Our interest here
is, however, in a proton impurity where such an ap-
proximation is known not to apply. ' We therefore
return to Eqs. (2)—(4) and make the following ap-
proximation. We center our coordinates at the pro-
ton site ( r 1 ) and approximate the ionic potential
Vp(7) around the proton by only 1ts spherical com-
ponent (angular momentum quantum numbers l = 0
and r» = 0) Vp ' ( I'), i.e., the spherical solid
model. " Equation (2) reduces now to a one-
dimensional radial equation for the radial wave func-
tions RI,k ( i ) . In atomic units (a.u. ) it is

1

1 9' 2 9 l(l+ 1) 00+ + + Veff (I ) Rik(i )
2 QI' r Br 2I'

= Kk Rig (i ) (13)

I3 sin I.

(27r)' q,
(17)

[In Eq. (17) we remove the q = 0 component. ] The
exchange and correlation potential v„,, ( r ) is calculat-
ed in the local density approximation"

v„,.( r) =—[»( r )~„,.(»(r ))]
rAI

where 51' ( k ) and hl ( k ) are the phase shifts of Eq.
(15) with and without a proton present, respectively.
Before we turn to the contribution of AH& we list in
Table I the various contributions to AH within the
spherical solid model. Four positions of the proton
in an Al lattice (of density I, = 2.067 a.u. ) are treated.

1 1 1Three interstitials at the octahedral ( r] = —,a, —,a, —,a )

by the Wigner interpolation formula. The spherical
radial functions and corresponding densities »1(I )
and np( I ) are calculated by solving Eq. (13) to self-
consistency"" with and without the proton potential
[ v] ( i ) in Eq. (3)], respectively. With these two den-
sities the contributions of AH4 and AH& are numeri-
cally integrated. The term AH ] is given, in this
spherical model, in terms of the phase shifts. " In
a.u. it is

kF
5H' = —— rIhh $ (2I+1)[g( (k) —gI (I ) ]

7r 0
I 0

(18)
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TABLE I. The different contributions to the heat of solution of a proton in an Al host. For a
3 3 3

proton at ( —a, —a.—a ) the nonspherical contributions were neglected and the heat of solution AIS
8 '8 '8

is that of the spherical solid model only.

Position (r1) b, H1 e~ AH2 eV AH3 e& AH4 eV b, f75 eV AH6 e& hH"' e& AHe&

(0,0,0) —3.991 7.526 0.000 27.780 2.495 —48.999 —0.017 0.654
1 1 1

( —a, —a, —a ) —11.927
4 '4 '4 7.526 -0.134 -5.265 3.361 -8.570 0.024 0.875

3 3 3
( —a, —a, —a ) —10.716

8 '8 '8 7.526 -0.004 -6.024 3.361 —8.912 1.091

1 1 1

( —a, —a, —a)
2 '2 '2 -9.507 7.526 0.000 -4.812 3.156 -11.646 0.016 0.593

and tetrahedral ( r1 =
4 a, 4 a, —,a ) sites and midpoint
1 1 1

between them ( r1=
8

a,
8

a,
8

a ) and one substitu-3 3 3

tional site. The two densities no(I ) and»1(r) for
three of these positions are displayed in Figs. 1 and 2.
For the substitutional site note that hH corresponds
to the energy of a proton within a lattice site already
vacant.

A similar study was recently carried out by Popovic
et al. for both interstitial and substitutional H in Al
and Mg. For the case of an interstitial H one major
improvement in our calculation is the treatment of
the spherical component of the Al host to all orders.
Our results (Table I) show an increase (0.282 eV) in
the heat of solution between the tetrahedral and oc-
tahedral sites. The low-order treatment of the Al po-
tential yields a difference of 0.13 eV, ' while the treat-
ment of Manninen and Nieminen' within the spheri-
cal model yields a much larger number of 0.75 eV.
For a substitutional site the differences are much
greater since Popovic et al. ' use the same screening
density for both interstitial and substitutional sites.
Previous calculations" and the results of Figs, 1 and
2 demonstrate, however, that the depletion charge at

a substitutional site must be taken into account, The
spherical solid model automatically accounts for such
a charge depletion, Our results (Table I) indicate a
preference for an interstitial site by 0.061 eV, con-
trary to a preference of 1.23 eV for a substitutional
site suggested by Ref. 6. Again, a recent treatment"
within a similar spherical model yields a much larger
preference for an interstitial site of 0.57 eV. In Table
I we also report the heat of solution for a proton po-
sitioned midway between the octahedral and
tetrahedral sites from which we estimate the activa-
tion energy as =0.5 eV. This is in agreement with
most recent experimental values of 0.47 (Ref. 21) or
0.52 eV 22

To finally calculate the heat of solution within this
spherical model we must add the contribution of
b, H2. A comparison of no(r) (for the host Al
without the proton) and n1(r) (with the proton)
displayed in Figs. 1 and 2 show that both densities
are in close agreement beyond r = 7 a.u. Therefore,
according to Eqs. (1a), (1d), and (le), to localize the
treatment of AH1, AH4, and 0 H5 within this spheri-
cal model is reasonable. The same treatment cannot
be applied to b H2 where the full crystallographic ef-
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FIG. 1. The density»0(I ) within the spherical solid
model. ———,——, are the plots of »0(I) for the
coordinate system set at the vacancy, octahedral, and
tetrahedral sites, respectively.

FIG. 2. The density»1(I ) within the spherical solid

model. ———,——, are the plots of »1(I) for the pro-
ton placed in a vacancy, octahedral, and tetrahedral sites,
respectively.
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fects must be included. The constant term V contri-
bution to AH& and the kinetic energy t'kr'/2m are
trivial to calculate. Higher-order contributions to e~
can be calculated either by a full band-structure cal-
culation of the Fermi energy of Al [Eq. (2)] or a
second-order perturbation treatment [Eq. (12)]. The
last term in Eq. (12) gives a contribution of —0.049
Ry (—0.667 eV), so that 4H2=0. 553 Ry (7.526
eV)." The heat of solution is given by the value of
b, H for a proton at the octahedral site and from Table
I is 0.593 eV, in good agreement with the experimen-
tal value of 0.66 eV.

Clearly the greatest uncertainty in our results
depends upon the spherical treatment of the Al po-
tential. The nonspherical corrections, however, are
very difficult to calculate and have been totally ig-

nored in all previous calculations of heat of solu-
tion. ' We turn to an estimate of these corrections
for H in Al in the following section.

and

n"'(r)= $n' (r)Y, (l)@)
I, m

I AO

(20)

The treatment of »"'( r ) was first presented in

Refs. 17 and 24 for a vacancy formation energy. For
completeness we present the key relations below. We
write first the ground-state-energy functional as"

E [n] =
Jf d'r V,„,( r ) n ( r )

f 3 3»( r)»( r')
+—

Ji dr dr +G[n]«I (22)

Equation (19) can now be written as

oo I

dH"'= —, $ $ drr' Vo (r)[nI (r) —ii(I (r) ]
I WOm -1

(21)

III. NONSPHERICAL CORRECTIONS TO
THE HEAT OF SOLUTION

In the previous section we treated b H], AH4, and
b, Hq within the spherical model by replacing the crys-
tal potential Vo( r ) by Vo' ()') within some large
volume 0]. In this section we treat the nonspherical
terms' VP ( r ) [in Va( r ) ] as a linear-order correction
to Vo' ()'). Our task is to solve for the nonspherical
addition to the spherical electron densities»o() ) and
»1() ) to linear order in Vons ( r ). From the
Feynman-Hellman theorem the nonspherical contri-
butions to the heat of solution is then given by

SE [» ]/6» = p, (23)

The densites»o() ) and»1() ) are the exact spheri-
cal solutions for Eqs. (22) and (23) for the spherical
component of V,„,( r ). To get »n'( r ) expand Eq.
(23) to linear order, i.e. ,

with V,„,( r ) set equal to Vo( r ) or Vo( r )+v]( r )
and» ( r ) set accordingly to»o( r ) or»1( r ) [v]( r )

is spherically symmetrical]. G [n( r ) ] is a universal
functional representing the kinetic, exchange, and
correlation energies. Finally the density»( r ) is

given by

gHns d3). Vns ( r ) [» ns ( ) ns ( ) ] (19)
»n'( r ') ()2G

Where nO'( r ) and n]n'( r ) are the linear-Order nOn-

spherical additions to )1o(r) and»](). ), respectively.
Expand next Vons ( r ) and n"'( r ) in terms of the
spherical harmonics; i.e. ,

Vo"'( r ) = $ Va~ (r) Yi ((), g)
I, m

I WO

(24)

[Clearly V,"„', ( r ) = VP ( r ).]
To evaluate Eq. (24) we must choose an approximate

form for G [» ( r )] and for the present calculation we

take'

' 1/3

G[n(r)]= —(3rr ) d rn (r)+— d r ——— d rn '( r )
3 2 23 3 53 1 3 l»~(r)l 3 3
10 72 («) 4

then Eq. (24) reduces to'

(25)

ns
'

1/3
2 2

V"'(r)+ d' ' (3~')"'»(~) '"——— n(r) "'— ' + ' ' n"'(r)
l r —r 'l 3 5r 36n'(r) 36n'(r)

( r ) ' 7»()')Q2» ns( «r )
36» () ) 36))2() )

~hs (26)

[Again recall that » (r) is spherical and equal to either»o() ) or»]() ), ]
To solve Eq. (26) we choose to calculate the electrostatic potential v"'( r ) rather than the density )I"'( r );
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i.e. ,

„ns( r'
&ns(r) yns(r)+ (27)

We write the angular momentum components of v"'( r ) in terms of response functions Lr(r, r '), " i.e.,

v' (r) = dr'r '
Lr(r, r'') pp (r'') (28)

where pp( r ) is the density corresponding to the ionic potential yp( r );

yp( r ) = d'r'pp( r') r —r

After a considerable amount of algebra we get the following set of equations for Lr(r, r')
1

4 rr'(r ) „. .. 2/(I + 1) 2rr'(r )
L (, ) L (, ) —— L |., ) T()—

r

n'(r)+ Lr'(r, r') —T(r.)—
»(r)

I(l +1), 2 I(I +1) 2/(/+1)+ L((r., r. ') —rr (r ) + T(r )—
r. 2 I' kr, r. 2 .4

i

where

[/(/+1)]' 2/(/+1) rr'(r)
r4 r' rr (r}

1

( ) = — — + rr' '(r ) — rr' '(r. ) k = 2' 'm '3 ' 'r .
rr (r') r'rr (r') rr (r') 3kr, 3kr,

211/33-11/3~-4/3r ~

r ( 3/4~ rr ) 1/3

(30)

In Eqs. (29) and (30) the density has been scaled by

the bulk density and the length by the Thomas-Fermi
screening length and we note that the sign in the
second term of Eq. (30) is in error in Ref. 24. The
boundary conditions are found by demanding that
Lr(r, r ') and its derivatives are continuous; they are

where Q is the reciprocal-lattice vector, Q a unit vec-
tor along Q, and the sum over Q is performed nu-

merically for a grid of r.
With both pp (r) and Lr (r, r ') tabulated„ the in-

tegrals over r and r. '
in Eq. (32) are performed and

the sum over / and rrr is carried out up to / = 14. Our
results are listed in Table I and surprisingly these
contributions to the heat of solution of H in Al are
very small. In addition, we can conclude with some
confidence that these corrections are likely to be
small in other metal hydrides such as Mg, Na, etc.
For theoretical studies of impurities at low concentra-
tion these are important and useful conclusions.
They imply that further refinements can be achieved
without overdue concern for these very hard-to-treat
nonspherical terms. For example, the replacement of
the crystal pseudopotential by the full ionic potential,
the treatment of lattice relaxation, and the zero-point
energy, all within the spherical solid, are currently
being investigated.

iim Lg'(r'+ e r') —Ll'(i ' —. a r') = —i./r'
a~0

lim L("(r'+ e, r') —L("(r' —er') =+2/r'3,
e p

(31)

lim Lr'"(r '+ ~, r ') —Lr"'(r ' —~, r ')
a~0

= —[(i + i ( I + ) ) 1/~
'

(32)

To write the form of hH"' in Eq. (21) in terms of
Lr(r, r ') is not difficult and we get

/), H"'= —' g X drr Jf r/I'r' pot (s)[po (r')]'
I Cpm -I

x [L, (r, r') —LI (I ,r')['

(33)

The response functions Lr and Lr' are solved numer-
ically for a fine grid of r. and r' by setting n(r) in

Eqs. (29) and (30) equal to np(r) and»1(r), respec-
tively, for the appropriate densities at the tetrahedral,
octahedral, and substitutional sites (Figs. 1 and 2).

The expression for the nonspherical components
ppr™(r)can also be derived and is given as

pa (I') =i'QQ2a'(g)e ')'I' (Q)j~(Qr)
0
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