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Prediction of Fermi-surface pressure dependence in Rb and Cs
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The linear muffin-tin orbitals method of band-structure calculation, combined with a Gaussian

integration technique using special directions in the Brillouin zone, has been used to calculate

Fermi radii and extremal cross-sectional areas of the Fermi surface in rubidium and cesium.
Band shifts were used to achieve optimum agreement with experimental results. Volume

derivatives were then obtained by varying the lattice parameter with the band shifts held con-
stant. The significance of this procedure has been discussed in the light of recent theoretical
work. The results obtained for the Fermi-surface pressure dependence agree with the limited

experimental data available.

I. INTRODUCTION

The unusual behavior of Cs under compression has
attracted theoretical attention to this system. ' Both
the first-order isostructural transition at 42.2 kbar '
and the unusual softness of the pressure-volume iso-
therm' at low pressures have been attributed to a

shift of the valence electrons from 6s orbitals to more
localized Sd orbitals. 5 [All theoretical treatments
have been based on the assumption that the single-
particle (band theory) model provides a good descrip-
tion of these metals ]In th.is article we report a
band-theory calculation of the differential changes of
the Fermi surface of Cs, and the closely related metal
Rb, with small applied pressures. Since the calcula-

tions can be performed very accurately and the corre-
sponding experimental quantity should also be sus-
ceptible to accurate measurement, the comparison of
our results with experiment is a good test of the abili-

ty of single-particle theory to account for the pressure
dependence of the electronic structure of Cs and Rb
in particular, and to a lesser extent of metals in gen-
eral.

II. COMMENT ON THE BAND-THEORY APPROACH

The Fermi surface of a metal is the locus of points
in reciprocal space satisfying E„-„=p, where E„-„,the

quasiparticle energy, is determined by solving the Dy-
son equation

t —rr + (rj + „(nip„-,( )+Jdr M( . r;E -, )g„-„() =E. —,„g„-,(r)

and p„the chemical potential, satisfies'0

(2)

d r M ( r, r;E)y„k( r ) = v ( r ) y„k( r ), (3)

with a number of different but similar approxima-

2 $0(y. —Re(E„-))k=N
n, k

where 0 is a step function and % the total number of
electrons in the system. (We use atomic units with

Ry for energy. ) In Eq. (I) M( r, r;E), the mass
operator, is a complicated quantity whose perturba-
tive expansion is given by many-body theory. It is

usually approximated by an exchange-correlation po-
tential as follows:

tions for v« in common use. " " Equation (3) is the
essential approximation of the band theory for elec-
tronic structure.

In this work we have adopted the muffin-tin ap-
proximation and, for the most part, used the
Mattheiss'5 prescription for generating the crystal po-
tential. The resulting single-particle equations were
solved using the accurate, but approximate, linear
muffin-tin orbitals (LMTO) method due to Ander-
sen. ' With these approximations, the zero pressure
Fermi surface of Cs was determined for the two ex-

2
treme v„,, Xa potentials with a=1 and 3. Compar-

ison of these Fermi surfaces with the accurately
known experimental Fermi surfaces determined by
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Gaertner and Templeton" showed that neither choice
of e could yield accurate theoretical Fermi surfaces.
Since the Fermi surface will be a smooth function of
n it was clear that none of the commonly used ap-
proximations for v„,would yield accurate Fermi sur-
faces. Moreover, as will be discussed later, self-
consistency worsened the agreement between theory
and experiment and non-muffin-tin corrections have
no significant effect on the Fermi surface of Rb, ' or
presumably Cs. It is clear that Eq. (3) is responsible
for the discrepancy. Therefore, the zero pressure
crystal potential was modified by a small phenomeno-
logical nonlocal correction b U(r, r ), the form of
which is discussed in the next section. Essentially,
we have adjusted the crystal potential so that it pro-
duces phase shifts which yield agreement with the ex-
perimental Fermi surface. Similar approaches have
been taken previously by others' " but the validity
of phase-shift Fermi-surface fits has recently been

questioned by Wang and Rasolt. " We therefore at-
tempt to clarify the significance of our approach to
this calculation in the following paragraph.

It is usually claimed that phase-shift adjustments
I

account for the nonlocality of M( r, r;p, ). Howev-
er, it can be shown that only nonlocal forms which

I

satisfy the requirement that M( r, r;p, ) =0 for r

and r in different atomic spheres can be incorporated
exactly into the LMTO method by a simple modifica-
tion of the phase shifts, A similar comment applies
to phase-shift adjustments within (augmented plane
wave) (APW), Korringa-Kohn-Rostoker (KKR), and
other similar methods. Wang and Rasolt have
pointed out that, at least for simple metals, no form
satisfying this restriction can adequately approximate
M(r, r';p, ). Nevertheless our success in fitting the
observed Fermi surfaces, and previous experi-
ence, ' " demonstrates that we can find forms such
that

dr b U(r, r )p„-„(r) = dr [M r, r;p, ) -8(r-r )v„,(r) III„-„ r ) (4)

for electrons on the Fermi surface. This is all that is
required for a Fermi-surface calculation but it should
be remembered that the phenomenologically deter-
mined 5 U( r, r ) gives no information about the
nonlocality of M(r, r;p, ).

To calculate the pressure dependence of the Fermi
surfaces we have selected from reasonable choices for
u„,( r ), that which requires the smallest hU( r, r )
in order to bring the zero pressure Fermi surface into

agreement with experiment. The pressure depen-
dence of d U( r, r ') is then assumed to be negligible
compared to that of U( r, r ) as a whole and the
kinetic energy of the metal in calculating the changes
of the Fermi surfaces with lattice constant. We be-
lieve that the procedure described above is a reason-
able one for approximating the pressure dependence
of the Fermi surfaces of metals by band theory.
Since there is no practical alternative to band theory
for predicting the pressure dependence of the Fermi
surfaces of metals, we believe that the comparison of
these calculations with appropriate experiment pro-
vides an accurate measure of the ability of present
theory to explain this aspect of the electronic struc-
ture of metals.

III. METHOD OF CALCULATION

As mentioned in the previous section the single-
particle equations in this work were solved by the
LMTO method. In this method, the logarithmic
derivatives DI(E), of the radial wave functions at the
atomic sphere radius S are parametrized by the fol-

lowing equation:

[D,(E) —D, ] ' = —[mIS (E —E&)]

+a, + b,S'(E —E,), (s)

EU(r, r ) = XEE)O(S —r) p,
I

(6)

IL

where P~ is the partial-wave projection operator inside
I

an atomic sphere containing r and r and r is the
distance from the center of that muffin-tin sphere.

I
The parameters of lU( r, r ), the I-dependent ener-
gy shifts AEI, are very convenient to use in conjunc-
tion with the LMTO method since they merely result
in the replacement of the reference energy EI which
appears in Eq. (6) by EI'=El+hEI. Since the
theoretical Fermi surface was found to depend
smoothly on the shift parameters [AEI] calculations
for several trial cases made it possible to choose shift
values which yielded close fits to the experimental
Fermi surface.

where EI is a reference energy for the truncated
Laurent expansion and DI =DI(EI), ml, aI, and bI

are the four potential parameters for each partial
wave. The calculated DI(E) included the relativistic
mass-velocity and Darwin corrections since they were
obtained by solving the radial Dirac equation and fol-
lowing the prescription suggested by Andersen' rath-
er than by solving the Schrodinger equation. Furth-
ermore, the calculation goes beyond the atomic
sphere approximation in that the combined correction
terms are employed. ' The phenomenological poten-
tial correction is chosen to take the form
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We now discuss the method used to determine the
Fermi surface. For the case of the simply connected
Fermi surfaces Eq. (2) can be written in the simpli-
fied form

where k~ is the Fermi wave vector for the free-
electron system with the same valence electron densi-

ty, and k~( 0) is the Fermi wave vector in direction
O. The integral over solid angle in Eq. (7) was

evaluated using the powerful Gaussian direction in-

tegration formulas derived by Fehlner et ai. "and by

Fehlner and Vosko; their 21-direction formula was

used in this work. Thus given a guess for p, . A'(p, )
was evaluated from Eq. (7) and then p. was varied
until }N(F)L—I } (10 '. With p, fixed kF(Q) was

given by

~F ( I) ) (~ ) F$ yLdKLd( fI ), ,

L,d

where KLd(0) are the Kubic harmonics in the nota-
tion of Fehlner and Vosko' and the expansion coef-
ficients, }yLd} were determined from the Gaussian
direction integration formulas as follows":

trernal cross-sectional area of the Fermi surface in

planes perpendicular to 0, 3 (0), the quantity most
directly measured in a de Haas-van Alphen experi-
ment, is also given in terms of yLd by

'

A(I1) =A /PL(0)yLdKLd(11)
L,d

(10)

IV. RESULTS AND DISCUSSION

A. Zero pressure results

where A = m(kI-)' is the cross-sectional area of the
free-electron Fermi sphere. For Rb we retained all

Kubic harmonics with L & 14 while for Cs those with
I & 16 were retained. The error in determining
A (0) and k~(0) in a given direction from the
eigenvalues along the Gaussian directions was es-
timated to be several parts in 10 . On the other hand
the Fermi-surface distortions from sphericity ob-
tained when the free-electron test was applied to the
LMTO method were as much as one part in 10'.
Thus the accuracy of the eigenvalue determination,
although partially corrected for by the adjustment of
the zero pressure potential, was the limiting factor in

the accuracy of this calculation.

yLd $ ~iKLd(+i)}~F(+l)I~F}

In Eq. (9) }I);}are the Gaussian directions and } II';}
are the corresponding weights. Furthermore, the ex-

The Fermi radius and extrernal area distortions for
high-symmetry directions as calculated from several
potentials are compared with experiment in Table 1.

2For the n= —, and 1 calculations the potentials were

TABLE I. Comparison of starting potentials.

Local dens.

se If-cons.
2

0' =
3

2

3

shifted E x per1 men t"

Rubidium

( 1 o4) a~ /~,
(100)
(I 1 o)
(111)

45
—25

47

48
—26

51

42
—27

59

(1o4) ai;/I, ,
(100~
(11o)
(111)

—14
96

—47

—14
103
—51

—12
99

—56

Cesium

( 1 o4) aw /w,
(Ioo)
(11o)

313
-152

613

254
-142

518

250
—136

426

147
—94
242

131
—90
253

( IO4) al, /I;,
(loo)
(11o)
(111&

-261
1033
-349

—235
861

-302

-168
730

-284

-101
413

-183

—89
418

—184

'Reference 17.
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TABLE II. Crystal potential data for Rb and Cs (Bohr radius = 0.52917706 A).

Rb

0
"dHvA" lattice parameter (A) (Ref. 17)

Muffin-tin zero EM~z (Ry)
M uffin-tin radius SM& (a.u. )

Potential discontinuity at SM~, 4M~ (Ry)
Free-electron area Ao (a.u. )

Free-electron Fermi radius ko (a.u. )
Fraction of volume occupied by muffin-tin spheres

5.588
—0.384

4.4817
0.025
0.42803
0.36912

64.0%

6.041
—0.369

4.7115
0.030
0.36624
0.34144

58.9%

generated by the Mattheiss" prescription with the
neutral-atom charge densities calculated by the
Dirac-Slater method using the same value of o. . As
is clear from Table I the higher a value gives a more
distorted Fermi surface; this is expected since a

higher e value will lower the more localized d orbitals
relative to the s-p orbitals. Also shown in Table I is
the Fermi surface implied by a self-consistent calcula-
tion on Cs using the Hedin-Lundqvist" exchange-
correlation potential. At the valence electron density
of Cs this potential corresponds roughly to
e(r, ) -0.9 and, as is clear from the table, the usual
increase of the effective value of e with self-
consistency is evidenced. For Cs, the e= —, Fermi
surface was best but still more than twice as distorted
as the experimental Fermi surface while for Rb the

=2A
3 potential gave excellent results so that no other

potentials were tried. The energy shifts IAEij were
determined by varying them systematically until we

minimized the sum of the squares of the differences
between the calculated and observed values of the
following six quantities: hA/Ao and hk/ko in the
three principal crystallographic directions,
(100), (110), and (111) . ( hA = A —A and

Ak =—k —k(;. ) Results for this shifted potential also
appear in Table I. Note that the absolute discrepan-
cies between our best fit and experiment are compar-
able in Rb and Cs, but the relative discrepancies are
much larger in Rb because its Fermi surface is con-
siderably less distorted than that of Cs. A compari-
son between best fit and experiment for the II00I
and (110I planes is shown in Figs. 5 —g.

It should be noted that in Ref. 17, hereafter re-
ferred to as GT, A and k(.- are based on Barrett' s
values of the lattice spacing at 5 K; they are used as
convenient reference values but do not rigorously
correspond to a one-electron sphere. We have pre-
ferred to use the slightly different de Haas-van Al-

phen parameters given by GT (their Table VI) which
are based on their calculation of the Fermi-surface
volume. In Table I the values of hA and b k listed by
GT have been modified for the resulting change of
A and k(.-.

In the LMTO method the crystal potential is con-
veniently summarized by the potential parameters de-
fined by Eq. (5); these parameters are listed in Table
III for Rb and Cs. (Table II lists some data related to
the construction of the crystal potential. ) In each

2
TABLE III. Central potential parameters for rubidium and cesium at normal pressure (a = —).

3

Rubidium Cesium

Atomic sphere radius S (a.u. )

C((Ry above EMTz unshifted)
Shift AC((Ry)

p, ( = 2 Ill( ( C( )
a(

100b(

(( (mRy)
~((O() (Ry)

S'(C, —C, ) unshirted
S2(C( —C, ) free el.

Ss
0.1055
0.0
0.811
0.1571
0.263

5.1994
Sp

0.4258
—0.0007

0.853
0.1307
0.175
8.7

-1.613
8.66
7.4

4d 6s
0.4584 0.1070

—0.0025 0.0
2.267 0.772
0.1805 0.1503
0.481 0.235
0.9

—0.431
9.54

17.7

5.6208
6p

0.4047
0.0062
0.802
0.1241
0.156

19.8
—1,737

9.41
7.4

Sf/

.0.3597
0.0239
2.378
0.1751
0.423
2.3

—0.419
3.38

17.7
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TABLE IV. Miscellaneous band and density-of-states data.

Rb

Fermi level E~ above EMTz (Ry)
Gap at N, E(A'~) —E(,'V&') (Ry)

Density of states X(Ez) (electron cell ' Ry ')
Electronic specific-heat coefficient y (mJ mol ' K )

Free electron y = y0
Band thermal mass y/y0

Experimental thermal mass (Ref. 27)
Experimental cyclotron mass

0.1554
—0.0436
11.62

2.012
1.907
1.06
1.37+ 0.01
1.260+ 0.001'

0.1544
—0.0642
15.05
2.608
2.229
1.17

1.80+ 0.04
1.4—1.5b

'Reference 29. "Reference I '7.

case we have chosen the reference energy for each
partial wave to be the center of the corresponding
band Ci, defined by Di(C~) = —I —1. The band
shifts are also shown in this table. In practice we

have not shifted the s band since a uniform shift of
all three bands merely redefines the zero of energy.
The major band shift is a raising of the d band in Cs
by about 24 mRy. This reduces the excessive
Fermi-surface distortion occurring with the unshifted
bands. In Rb the shifts are almost negligible. Table
III also lists the two parameters (I and col which
describe respectively the spin-orbit splitting at the
center of the band and its energy dependence (see
Andersen). ' Spin-orbit corrections were included in

Cs but were found to have a negligible effect on the
Fermi surface; the smaller spin-orbit effects in Rb
were dropped.

Miscellaneous band data for thee zero pressure po-

tentials are listed in Table I&. A quantity of interest
in pseudopotential calculations is the s-p gap between
states lent and %t' and this is larger in Cs as expected.
Also interesting is the Fermi-level density of states.
As was pointed out by GT there exists a discrepancy
between the quasiparticle effective masses in Rb and
Cs inferred from de Haas-van Alphen and specific-
heat ' experiments. Our Fermi-level density of states
mass, when multiplied by a reasonable estimate of
the electron-phonon mass enhancement of —1.15
+.05 (Ref. 28) appears to favor the de Haas van Al-

phen values. '
The actual bands for Rb and Cs are shown in Figs.

1 and 2 and the densities of states, including the par-
tial s, p, and d contributions are presented in Figs. 3
and 4. Spin-orbit splitting has not been included in

the calculations for these four figures.

25

0.2
X
4J

r ~ H
G

N z r P
F H

0
G Z h D F

FIG. 1. LMTO bands for rubidium (without spin-orbit

splitting) .

FIG. 2. LMTO bands for cesium (without spin-orbit split-

ting).
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where K is the compressibility.
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take us out-the finite difference chosen already a
side the linear range. For instance,

( )
' ', (A/A )/d ina is 0.056 from the110 direction, d ln

a and 0.048 from the +1% change in—1% change in a an
ra e betweenF' . 5—8 we have plotted the average ea. In Figs. — w

ed and ob-the two resu s,lt together with the calculate

50

Q.lo—
(ioo}

40—
I

I

0)
30-

ED

o 0
C

O

C
~ -O.IO—

80

40

n 20—
ta
D

V)z lo—
IJJ
C)

O. I

It\ It II

t~ II t y pI' r
yl

SEF

0.2 0.3
ENERGY (Ry)

. 4. Total (solid line) and decomposed (dashed lines)
densities of states for cesium. is

to the bands of Fig. 2.

-0.20— —-40

O

o
o

90
(llo)

Rb

60
(III)

l

30 0
(IOO}

30
(IIO)

'vatives for rubidium (solid line)FIG. 6. Fermi-radius derivatives o
sure: 10 u icFermi-radius distortion at normal press

a
' '

shed line), experimental resultsharmonic calculation das e ine,
from Ref. 17 (dotted line).



J.-P. JAN, A. H. MACDONALD AND H.. L. SKRIVER 21

0.2

O. I (I I 0)

0.2—

O

O -O. I

C
ID /

—0.2—
/

/
/

-0.3 —.'i

—300

—200

0
-ioo +

CI

0 0

. . ."~ ——
I 00

O
C

'D

& -0.2—

-0.4—

-0.6—

(I I 0) (ioo)

/
/

t
/

4'

400
/

/
I

—200

-200

0

a

-0.4
90

())o)
Cs

60
(nI)

30 0
(ioo)

30
())o)

90
())o&

Cs

60
() u)

30 0
()oo)

30
(iso)

FIG. 7. Area dederivatives for cesium (solid lin

t I It ofR f 27'e . (X); area di

u ic harmonic calculation (dashed li

perimental results fromom e . 17 idotted line).

FIG. 8. Ferm'-mi-radius derivatives for c .
'

'- a ius istortion at normal res.
h I Ia ion ashed line) ex . spe a s t,

otted line).

served GT area and rad d' ons a

, fo h (100}
a ius istortions a

r e and (110) planes. An ins e.f h. -..l-d.,-d h

Fermi-surface distorti
epen ence shows that the sisize of the
is ortion is predicted to incr

th 1 tt e er is decreased, while the sha
t

'
great y altered (i.e.,the distortion is not gr tl 1

ln(A/Ap)/d lna ~ AH/A ). 8
d "n' 'h h

Both thes
e e p ysical meehan

s e istortions at zero pressure (i.e., the prox-

importance by applied pressure (see

These reesults can be interpreted in

e parameters 81, CI, and Al with a-

n / /
= —~ these parameters

represent, respectivel th b
of the bands corres d

y, e ottom, rniddle , and top
respon ing to the /th

As indicated in T bl V,
partial wave.

of the s band I

a e, at zero rpressure the middle
an ies slightly below the F

the bottom of th
e ermi level while

e pand d bands ar

Figs. 3 and 4
e partial densitiesties of states shown in

are qualitatively in acco
servation. Th

e y in accord with this ob-
n. e closer proximity of the

'bl f hi e or t e larger Fermi-
in that case. A

i-surface distortion

le t o -like and
se. s pressure is a li

n- i e s and p bands broaden much
idly than the mor 1

1'
uc more rap-

As a result the b

ore oca ized d band
u e ottom of the d band m

d (see Table V).

the Fermi level. This is
an moves closer to

distortion with applied re
is is the cause of the inincrease in

app ie pressure in both Rb and Cs.
e only existing experiment 1a results we are

TABLE V. Position of shifted unhybridiz1 ted unhybrid|zed bands relative to the Fo t e ermi level and their deriva-

Rb s Rb p Rb d Cs .s Cs (l

Bottom BI
Center CI
Top AI

-0.1572
—0.0499

0.3962

0.0408
0.2697
0.7905

0.1122
0.3006
0.4591

-0.1431
—0.0474

0.3706

0.0513
0.2565
0.7524

0.0773
0.2292
0.3645

dBI/O Ina

dCI/O In a
dpi/O In a

0.33
0.03

—1.50

—0.16
—0.70
—2.24

0.14
—0.25
—0.65

0.26
—0.02
—1.52

—0.25
—0.75
—2.27

0.18
—0.22
—0.64



21 PREDICTION OF FERMI-SURFACE PRESSURE DEPENDENCE . . 5591

TABLE Vl. Comparison of calculated and observed pressure derivatives in cesium.

Direction
fi lnA /dp'

(%kbar ')
d In(A /Ao)/d lna

observed ca lcula ted

(loo)
(1 lo)
(111)

11 from (110) in (100)

2.90+ 0.05
2.75+ 0.05
3.30+ 0.07
2.67+ 0.05

—0.02+ 0.03
0.08+ 0.03

—0.30+ 0.05
0.14+0.03

—0.21

0.10
—0.34

0.16

'Observed by Beardsley and Schirber (Ref. 30). From Eq. (18) using K =0.043 kbar

aware of which allow a direct comparison with our
calculation are those of Beardsley and Schirber' on
Cs. These results are shown in Table VI. The
compressibility we used to calculate d ln(A /Ao)/d lna
from Eq. (11), K =0.043 kbar ', will be discussed
later. The uncertainties quoted on the observed area
derivatives do not include any uncertainty on K.
[Use of a different K in Eq. (11) would shift the four
observed values uniformly up or down. ] The agree-
ment is excellent at (110),11' from (110) and at

(111) but very poor at (100) where the observations
give no change in distortion within experimental er-
ror. We note that this observation is also at odds
with the expected proportionality of d ln(A /Ao)/d lna
and EA/Ao hile further experiments are neces-
sary to provide a more definitive test of our calcula-
tions, the agreement between theory and experiment
at the other three orientations would tend to indicate
that the observation at this orientation is in error.

We have estimated how much compression is re-
quired for the Cs Fermi surface to contact the zone
boundary at N. A band calculation was done at a lat-
tice spacing decreased by 4%. The four results, at
lattice changes of +1%, 0%, —1%, and —4% were
extrapolated with a cubic, predicting contact at —6.7%
lattice change. We did not calculate bands for this
sort of distortion, because below —4.8% our muffin-
tin spheres, which have a constant radius, would
overlap. Contact would then occur at a lattice spacing

0
of 5.636 A. If we accept a room-temperature lattice

0
spacing of 6.175 A (quoted by Ham'), a volume
reduction V/V0=0. 76 is required at that temperature
to give contact. Bridgman ' found a minimum in the
electrical resistivity of cesium at V/ Vo =0.83. This
minirnurn has been associated with contact or ap-
proach to contact, and this makes our result look
quite reasonable.

They calculated an "area compressibility" K& from the
formula

K& = —,d lnA/dp

Since the true compressibility K is given gy

K = —d inAo/dp

(13)

(14)

the two quantities K and K& are related by the for-
mula

K = K„/[1—
—,d ln(A /Ao)/d Ina] (15}

TABLE VII. Compressibility of cesium (in % kbar ') ob-
tained by interpreting the results of Ref. 30 in the light of
the present calculation.

Direction Ref. 30
K

Eq. (22)

Glinski and Templeton assumed that they could
neglect the change in Fermi-surface distortion with

pressure; this assumption leads to K = K&, which
they found to yield systematically lower values than
were obtained by other methods (pVT, ultrasonic).
Beardsley and Schirber' pointed out that the pres-
sure distortion could not be neglected, and supported
this statement by measurements on four oriented sin-
gle crystals of cesium. They used an averaging for-
rnula to obtain a compressibility of 0.044 +0.002
kbar '.

If we accept our theoretical prediction for
r/ ln(A /Aa)/d Ina, we can reinterpret the data of
Beardsley and Schirber as follows. Equation (15) can
be used to calculate K from the observed K&, and the
resulting K should be independent of orientation.
The results are shown in Table VII. Three values of

C. Compressibility measurements from
de Haas-van Alphen data

Some years ago, Glinski and Templeton" deter-
mined the change in de Haas-van Atphen area in

samples of K, Rb, and Cs under hydrostatic pressure.

(loo)
(11O)
(111)

11' from (110) in '100I

4.35
4.13
4.95
4.01

3.93
4.34
4.24
4.35
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TABLE VIII. Interpretation of the results of Ret. 32 on
the compressibility of Rb and Cs (in 0/I) kbar ').

TABLE IX. Summary of compressibilities f'or Rb and Cs
(in 0/t) kbar ').

Sample

K
from Eq. (22)

Rb

Rb-P2
Cs-P 1

Cs-P2

3.165
4.037
4.002

3.21+ 0.02
4.16+0.04
4.18+0.04

pVT q uo ted by Re f'. 32'
Ultrasonic quoted by Ref. 32'

dHvA Ref. 32"
dHvA Ref. 30

dHvA Ref. 30 present interpretation

3.45 4.65+ 0.22

3.27 4.33+ 0.33
3.21+0.02 4.17+ 0.04

4.4 +0.2
4.3 +0. 1

K are quite compatible, but the value at (100) is out-

side the error margin (uncertainties on the pressure
derivatives are about 2%). If we reject this point, we

find an average of 0.043 +0.001 kbar ', which was

used in the preceding section. We have, in a sense,
treated the compressibility as an adjustable parame-

ter, and the value chosen is the one that fits our
theoretical predictions best.

We shall now try to reinterpret the results of Glin-
ski and Templeton. Unfortunately, the crystallo-
graphic orientation of their samples is no longer
available. Their paper, however, lists the values of
hA /Ao for each sample. This leads us to examine
the previously mentioned correlation between
d in(A /Ao)/d Ina and AA /Ao more closely. If we

plot the former quantity as a function of the latter for
the (100) and (110( planes, all points fall roughly on
a straight line of negative slope going through the
origin. Assuming that this correlation holds for any
orientation, we can obtain d ln(A /Ao)/d Ina from
AA/Ao and then K from Eq. {15). The results ot'

this analysis are listed in Table VIII. The two values
of K for Cs are quite compatible. The error margin
takes into account uncertainties on the correlation
discussed above.

Finally, in Table IX, we summarize the available
data on the compressibilities. This shows that the
pVT results tend to be systematically high but all oth-
er results are quite compatible.

'Vncertainties for Cs estimated in Ref. 30.
~Corrected for orientation (see text).

Coleridge using the recent data of Ref. 17. This is

expected since, as mentioned previously, our ap-
proach at zero pressure is equivalent to a phase-shift
fit.

V. CONCLUSIONS

We have shown that the LMTO method of band-
structure calculation can accurately describe the ob-
served Fermi surfaces of rubidium and cesium. The
nonlocality of the potential was simulated by a suit-
able shift of the p and d bands; an attempt was made
to clarify the significance of this procedure. We have
made detailed predictions concerning the volume
derivatives of the extremal Fermi-surface areas and
of the Fermi radii. They are compatible with the lim-

ited data available indicating that present theory can
accurately account for the pressure dependence of the
electronic strdcture of these metals. We hope that
this calculation will stimulate detailed measurements
of the pressure derivatives as a function of orienta-
tion, which are technically feasible with sufficient ac-
curacy at the present time.

D. Phase shifts

Starting from the potential parameters, it is possi-
ble to calculate the phase shifts for the three partial
waves at the Fermi level. The results are in excellent
agreement with the phase shifts calculated by
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