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A thermodynamic theory of dislocations is developed to provide a unified account of adiabatic shear and
melting observed in metals and minerals under shock-wave compression. The theory contains two significant
features. The first is the differentiation of irreversible energy changes from those of equilibrium energy
functions. The second is the inclusion of dislocation dilatation. When applied to shock compression, it
reveals a thermodynamic condition of instability based upon a principle of positive-entropy production for
irreversible processes. This instability may be identified as adiabatic shearing or heterogeneous melting in
the plane of maximum shear. The numerical results for selected materials from metals and minerals are in
agreement with experimental observations, and show that the shear yielding becomes critical at about half
the melting temperature and the dislocation density of about 10'S/m?>.

I. INTRODUCTION

The view presented in this paper is the result of
our effort to synthesize three concepts into an ar-
ticulated unity. They are (1) homogeneous and
heterogeneous melting of solids under shock com-
pression, (2) the dislocation theory of melting,
and (3) thermodynamics of dislocations.

There is now a substantial amount of evidence
that solids can melt during strong shock-wave
loadings.' According to this review,' the homo-
geneous melting can be described by models based
upon a nonequilibrium mixture of a solid and its
melt in extended equilibrium states. Exceptions
are found in quartz and other minerals, and their
behavior is explained as heterogeneous melting
caused by the localized loss of shear strength.
Experimentally the latter is often identified by the
appearance of intergrown diaplectic glass in re-
covered specimen®® and observations of loss of
shear strength under shock loading.®*” A similar
catastrophic loss of shear strength is also known
to occur in metals and polymers, and is discussed
under the name of adiabatic shearing.®’®

The dislocation theory of melting considers a
liquid as a solid densely packed with dislocations.
Melting occurs spontaneously when the free energy
of dislocations vanishes at a critical temper-
ature.'®"!? The recent refinement!! yields results
which are comparable with those of computer sim-
ulation of melting.’® A pleasing feature of the the-
ory is that the basic element is the same disloca-
tion that is often used for describing the mechan-
ics of plastic deformation under shock loadings.
However, no immediate merging of the two the-
ories has yet been accomplished.

There are many theories'®?° that attempt to in-
tegrate dislocations into a thermodynamic form-
alism, but they are mostly concerned with their
mechanical behaviors.? For instance, no attempt
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has been made yet to clarify why the detailed cal-
culations of thermodynamic parameters showed
that such a theory might contain an incompatible
anomaly.?® There exists a need for the thermo-
dynamic theory that accommodates both the ther-
mal and mechanical properties of dislocations in
dynamic irreversible flow, while providing a
framework for melting at high temperatures. In
addition, none of the above theories discusses
dislocation dilatation®¥'** which plays an essential
role in the dislocation theory of melting.’' This
may be attributed to the fact that the dislocation
dilatation is considered to be a second-order ef-
fect at the density of, say, 10'®* m™ which is suf-
ficiently large for plastic flow.'® But locally the
density can easily reach the magnitude of 10'* m™2
which induces not insignificant dilatation at high
pressures.

Therefore, we have attempted to develop the
thermodynamics of materials containing disloca-
tions that can be extended for investigation of
melting under shock loadings. Section II describes
the theory, which is essentially a synthesis of
work in Refs. 11 and 22. Section III discusses
some thermodynamic features of the theory when
applied to shock loadings. It contains a new ther-
modynamic criterion of instability which may be
associated with heterogeneous melting or adia-
batic shearing. Also it sheds some light on the
phenomena of melting and shear instability.*® Sec-
tion IV illustrates some specific examples from
minerals and metals.

[I. THERMODYNAMICS OF SOLIDS CONTAINING
DISLOCATIONS

For simplicity we shall deal only with closed
systems and assume that solids can be sufficiently
represented by underlying elastic lattice strain
€,, temperature T, and dislocation density n.
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Then the thermodynamics of the solids can be
built on two basic postulates. The first concerns
the internal energy and the conservation of energy,
and the second the definition of entropy. The ex-
tension of the theory for open systems and other
defects may be handled as that for classical chem-
ical systems.

First, we assume that there exists a function
for the equilibrium internal energy of a solid E*
consisting of lattice and dislocation energies:

E*=EL(€e9T)+nEd(Ee7T)y (1)

where E* is the internal energy per unit mass,
E, the lattice energy, n the fixed total length of
dislocation per unit mass, and E,; the dislocation
energy per unit length. We can consider a more
complex expression for the dislocation energy than
the above, but there is no experimental data that
justifies such a complication at the moment.

The first law of thermodynamics for closed sys-
tems is

dE=dQ +dW , (2)

where dQ and dW are the heat and work input,
respectively, and dE the internal-energy change.
But, since the dislocation-density change is most-
ly caused by irreversible plastic flow, the inter-
nal-energy change dE cannot be the exact differ-
ential of E*, Hence, we shall assume that dE in-
volving irreversible flow is given by a new rela-
tion,

dE =dE; + ndE ,+ E%dn, (3)

where E is a function of €,, T, n, etc., and is

the irreversible internal energy associated with
the change of dislocation density. Following Glans-
dorff and Prigogine,?® Eq. (3) may be referred to
as the excess internal-energy relation. The as-
sumption emphasizes the difference between the
change of an equilibrium energy function and that
of an irreversible process involving nonequilibri-
um internal defects.

Second, we shall introduce another postulate to
define local entropy. Here we find the assumption
advanced by Duvall and Dandekar®® most useful:
“The elastically strained state imbedded in every
deformed state is inherently reversible.” To this,
we add that elastic deformation does not change
the dislocation density. Then following standard
arguments in classical thermodynamics,?” we can
define local entropy S* as follows,

dQ =dE* -dW ,=T dS*, 4)

where dW, is the reversible elastic work incre-
ment. Choosing matching measures of stress ¢
and strain €,, we can define the work increment

as
aw,=V,§-dz, , (5)

where V,, is a reference specific volume. Then,
one finds from Egs. (4) and (5)

E:po(aE*/aze)s*y (6)

T=(E*/aS%);,, )

where p,=1/V,. Now on combining Egs. (2) and
(4), we obtain the entropy change for general
deformation including plastic flow:

TdS*=dW, - Efdn+dQ, (8)

where dW,=dW - dW, and the first and second
terms on the right-hand side are the expressions
for the irreversible entropy production due to
plastic flow.

Once the entropy is established, we can intro-
duce other thermodynamic functions. For in-
stance, Helmholtz free energy F* is given by

F*=E* _TS*=E, + nE, - TS*, (9)

where 7z is again a constant. We can now define
the excess free-energy relation analogous to Eq.

(3).

dF =dE - d(TS*) (10)
=Efdn+dW,-S*dT
=E%dn+V,§-d%, -S*dT. (11)

Equation (11) yields a useful relation for deter-
mining E%, i.e.,

E%=(aF/on) (12)

€e,T°
This suggests that the energy associated with a
dislocation-density change can be calculated by
the proper identification of a partition function.
One choice proposed by Ookawa?® is the following:

F(per atom) = 2T In(z, /z,), (13)

where z, is the atomic partition function based on
the ensemble containing 7 dislocations, and z, the
partition function for the ideal lattice. It is inter-
esting to note that in this formalism the dislocation
partition function need not be in equilibrium with
that of the ideal lattice. This is consistent with
the fact that dislocations are not equilibrium de-
fects.23-2°

Static Gibbs free energy G* may be defined by

G*=F*_V,G-¢ (14)
=E, +nE;-TS*-V, G- ¢, (15)

where 7 is a constant, Then, it can be shown that

dG*=-V,€-dG -S*dT, (16)
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where we use d€=d¥¢, for constant n. However
for the definition of the excess Gibbs energy re-
lation that corresponds to Eqgs. (3) and (10), one
can choose either

dG =dG* +Edn, 1
or
dG =dF -d(V,5-?). (18)

Equation (17) maintains a symmetry with Eqs. (3)
and (10) and yields

dG=E%dn -V,€-dd -S*dT. (19)

Then, at constant stress and temperature Eq. (19)
becomes

Ef=(aG/on)3, 1.

According to Kovics and Zsoldes,*® a similar ex-
pression for the static Gibbs free energy is first
realized by Holder and Granato.?! In contrast,
Eq. (18) yields

dG =dG*+E%dn -V, +d(€ -T,),

where because of dn, de is not necessarily equal
to d€,. In this paper we shall adopt Eq. (17) be-
cause of its symmetry with Eqgs. (3) and (10).

Now, the entire range of thermodynamic rela-
tions may be developed for solids containing dis-
location, but we shall limit our applications to
those that are useful for shock loadings.

First, from the identity relation,

V=(G*/8P);,,=(0G/8P)zr,, ,

where V is the thermodynamic specific volume
and P the hydrostatic pressure, one finds that

V=V,+V,, (20)

where the subscripts e and d signify lattice and
dislocation, respectively. V, is the specific vol-
ume of the underlying elastic lattice strain.

Second, from the same identity and Eq. (14), one
finds

V=3aG*/aP=8F*/aP +V,
=(0F*/oV)(dV/dP)+V.

But since dV/dP is not zero in general, the above
equation requires that

aF*/aV=0. (21)

This means that the free energy F* is at an ex-
tremum with respect to the specific volume given
by Eq. (20). In fact, it is not difficult to show that
F* is at a minimum with respect to V. The physi-
cal meaning of Eq. (21) is that although disloca-
tions are nonequilibrium defects, the crystal as a
whole is in a state of minimum free energy. It al-

so implies because of Eq. (20), that when dis-
locations are present, the crystal dilates to lower
the total free energy to a minimum. This then
must be the reason why dislocations, though they
are nonequilibrium defects, are so stable in crys-
tals. Since crystals dilate trying to accommodate
any number of dislocations until they reach satur-
ation, there is no single equilibrium value of dis-
location density., As shown in Ref, 22, an assump-
tion of equilibrium dislocation density leads to an
irreconcilable result. A similar difficulty will re-
sult if we identify E, with Ef,

Third, let F*(z=0)=F*° and G*(n =0)=G*°,
Then, it may be found that

F* —-F*°=nE,; - T(S* - S*°),
G*=G*®=nE, - T(S* -$*°) = V\(§ - §°)- ¢,

where the superscript “0” on S* denotes the val-
ues when #=0. But for a given state of stress, ¢
is §° regardless of the dislocation density. There-
fore at constant temperature and stress,

G* -G*°=F* - F*¥°=nE , - T(S* -~ $*°). (22)

If the free-energy difference (G* - G*°) is con-
sidered as a barrier to the production of disloca-
tions, homogeneous melting may be defined as the
spontaneous saturation of dislocations due to the
vanishing free-energy difference at high temper-
atures and high pressures.'®'!' That is, melting
occurs when

G*-G*°=0, (23)

Then, on combining Eqs. (22) and (23), one finds
the entropy of melting,

T(S* - §*°) = nE,. (24)

This result is identical to that used in Ninomiya."
We shall come back to this equation in the discus-
sion of instability under shock loadings.

IIl. THERMODYNAMICS OF SHOCK COMPRESSION

In order to apply the formalism developed in Sec.
II to shock compression of solids, we need to eval-
uate the plastic work increment dW,. We shall
assume for simplicity that a plane shock is prop-
agating in an isotropic solid described by a La-
grangian coordinate x. Then the total work in-
crement dW is given by

dW =-P,dV=V,P,de, , (25)

where P, is the compressive stress in the x direc-
tion and de, the increment of the Lagrangian
strain. For plane shock loadings, it is convenient
to introduce deviatoric components as follows?*:
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Hi=—Pj+P: .
j=x,9,2. (26)
e;=€;-6/3,

Then Eq. (25) becomes
AW =-V,Pdo+V, 911, de;, (27)
7

where df=dge, for plane compression.
On combining Eqs. (4) and (27), one finds

P=(aE*/aVe)s*,e§,=po(aE*/aee)s*.e§ , (28)
I =p,(8 E*/0€5)s v, (29)

where e stands for elastic deformation. Now from
the assumed isotropy and Eq. (7), one obtains the
incremental relations for the stress components P
and II;,

dP =-Kdb6,+(dP/3S*) dS*, (30)
dll;=2pdeS +(a11; /3 S¥) dS*, (31)

where u and K are the isentropic shear and bulk
moduli of the material. Since the entropy change
under shock loadings is the order of (dV)3, the
second terms in the above equations are often ig-
nored. However, we note that the moduli are func-
tions of €,, S*, and n.

In dealing with plane shock loadings, it is further
convenient to introduce the maximum resolved
shear stress 7 and the plastic shear strain vy, that
are defined by

r=(1, -1,)/2=(1, -11,)/2,
dy,=dlef-el)/2=d(ef -e?)/2,
de;j=dei+def. (33)

(32)

The last expression, Eq. (33), is really a new,
but standard, assumption about the decomposition
of the deviatoric strains into a sum of elastic and
plastic increments. Then the substitution of Eqs.
(32), (33), and (20) into Eq. (27) yields a new ex-
pression for the work increment.

AW =-P(dV,+dV,)
+V, 2 1;ded + Vy(87/3)dy, (34)
J

where dW, can be identified by inspection. Now,
gathering up Egs. (2), (4), (5), (30), (31), and
(34), one obtains

T dS*=(87V,/3)dy, ~Efdn -PV,d6,+ dQ,

(35)
dr=p(de, -2dy,), (36)
dP =-K(de, - db,), (37)

where the higher-order terms in 7 and P are ig-
nored for simplicity.

A comment is in order about the relation be-
tween the thermodynamic specific volume V, and
the average strain 6. It is customary to introduce
plastic incompressibility as we relate 6 to V.
However, in our formulation the relation is auto-
matically established because of the kinematic
constraint for plane compressions [see Eq. (25)].
Then from the thermodynamic identity, Eq. (19),
one finds

Vod0=V,de,=dV=d(V,+V,).

In other geometries, we will not be so fortunate,
and we must establish a postulate that relates 6
to V, including the average plastic strain, Birk-
hoff once stressed®? that the difference between the
average strain and the thermodynamic specific
volume is not a trivial matter. The difference
may play an important role in strongly nonequi-
librium processes involving volume changes.

To complete the thermodynamic relations, we
need the expressions for the increments of dis-
location dilatation and the energy EZ. Here, in
view of its success in describing melting, we
shall use those found in the Ninomiya model.
Then, it is found that

)= @B B on_ 2y, =
dé= an o, K(ZT— £)dC,=BdC,, (38)
a (bl
E;dn = [H (ﬁ) }LN’UO - )\NkT]dCd =0 dCd ,
(39)

where ¢ is a constant related to the crystal struc-
ture of the solid, b, the length of Burger’s vector,
v, the atomic volume, T' is the Griineisen constant,
C, (b, NC, = n) the reduced dislocation density in
atomic unit, N the number of atoms per unit mass,
k is the Boltzmann constant, and A is a constant
related to phonon softening due to dislocations. We
note, however, that the above expressions contain
only dominant terms in the Ninomiya model.

Although the thermodynamic relations, Egs.
(35)=(39), are our prime concern, they are not
sufficient to provide a complete description of
dynamic problems. We must include the equa-
tions for the conservation of mass and linear mo-
mentum and other mechanical constitutive rela-
tions for 7, y,, and n. The equation for the con-
servation of mass is

9€, /ot=pyoV/ot=0u/ox,

where u is the material particle velocity. The
equation for the conservation of linear momentum
is

o (pou)/ot=0P, /ot=-0 (P —41/3)at.
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The equation for heat conduction is
9Q/ot=H(BT/ox,~++),

and for dislocation mechanics and plastic flow,
an/at=g(dy,/at, -+ +),
8y, /3t=f(T,7,,P,*+).

We see in the above equations an interesting in-
teraction between shear and hydrostatic pressure
through dislocation dynamics whose features are
similarto pressure-sensitive dilatancy in rocks,3% 3¢
But in this paper we shall restrict our attention to
the thermodynamic relations, in particular, the
entropy relation that is usually ignored in shock-
wave mechanics.' It contains a stability condition
for dissipative plastic flow similar to those dis-
cussed by Glansdorff and Prigogine.?®

Following usual conventions we shall ignore
thermal conduction. Then, Eq. (35) yields the
irreversible internal entropy production,

T dS*=(87V,/3)dy, - (PV,B+b6)dC, , (40)

where B and 6 are given by Eqgs. (38) and (39),
respectively. Since the irreversible entropy pro-
duction cannot be negative, there exists a critical
condition given by

(87V,/3)dy,=(PV,B+6)dC, . (41)

This condition seems to have escaped our attention
so far because of the usual approximation that the
dislocation dilatation is small for normal disloca-
tion density in mechanical flow. But the product
PV,B is not necessarily negligible for strong
shocks.

Explicit evaluation of the critical condition re-
quires knowledge about the relation between v,
and C, which is, according to Gilman,'® not avail-
able for the entire range of our interest. But use-
ful information may be obtained by a polynomial
relation,'®

n=b,NC,=Mv, +constant, (42)

where 7 and M are constant. Then, Eq. (40) be-
comes

T dS*=[87V,/3 - (PV,B+8) IMy} */b,Nldv,.
(43)
Now, the critical condition becomes
87V,/3=(PV,B+08)IMvy} '/b,N. (44)

Equation (43) shows that if dS* remains positive
finite for nonvanishing plastic flow dy,, then the
condition (44) can be interpreted as that for the
onset of unconfined flow (adiabatic shearing) in
which dy, increases to infinity. Finally, it is re-
minded that y, is the plastic strain in the plane of

maximum shear.

As noted above, not all the data are available
for evaluation of Eqs. (41) or (44). Hence we shall
look at the features of Eqs. (41) and (44) using the
smallest number of assumptions. One way of do-
ing this is to introduce a parameter a which ex-
presses the fraction of plastic work that trans-
forms into the creation of dislocations. In nor-
mal plastic flow this fraction is known to vary
from 5 to 15%.3° But locally this fraction could
be greater than that observed in normal plastic
flow.

In terms of the above fraction, Eq. (44) becomes

a(87V,/3)=6IMy}" /b, N, (45)
PV,8=(1-a)6/a, (46)

where a is the fraction of plastic work that trans-
forms into the dislocation energy. Equation (45)
is really the definition of a and Eq. (46) expresses
the reduced critical condition in terms of a. Then
substituting Eqs. (38) and (39) into Eq. (46), one
finds the critical pressure P, in terms of temper-
ature T.

(1 -a)/al{K/@T - %) - (47/a)
X[ poNEX/(2T = )] (v, /B(K /1) T} .
(47)

P,

We note that this equation can be derived without
the polynomial relation, Eq. (42).

An important feature of Eq. (47) is that the
critical pressure decreases from its value at
the absolute zero temperature to the value at
some melting temperature, If, however, the
shear modulus p vanishes at the melting temper-
ature as mechanical theories of melting suggest,®®
the critical pressure reaches zero before the melt-
ing temperature. Then, the adiabatic shear in-
stability always precedes the thermodynamic
melting prescribed by Eq. (23). Hence, as some
mechanical theories hypothesize that melting
would occur in the form of a large shearing dis-
placement,*® % it is possible that the above in-
stability serves as a dynamic intermediary be-
tween temperature-dependent shear moduli and
the thermodynamic melting defined by the equality
G*=G*°. Furthermore, in terms of the entropy
difference (S* - S*°), there appear to be three
paths for reaching a saturation dislocation density
as shown in Fig. 1. The figure shows that although
the final state may be the same disordered state,
the thermodynamic melting (G* =G*°) and the me-
chanical instability are not necessarily the same
phenomenon,
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FIG. 1. According to Eq. (24), a spontaneous satura-
tion of dislocations occurs when the static entropy dif-
ference (S* —S*0) intersects the line defined by the
equality relation G*=G*°? at the melting temperture
Tmelt - However, under dynamic conditions the satura-
tion can occur as a result of violation of the condition
that dS*> 0 for irreversible processes. The critical
state is given by the relation dS*=0.

IV. EXAMPLES

We shall now examine the critical conditions for
adiabatic shearing for selected materials from
oxides and metals. The former are well suited for
assuming the adiabatic condition (d@ =0) and are
known to melt under shock loadings.S*® Although
metals are good thermal conductors, they are in-
cluded because of their observed adiabatic shear-
ing® and extensive information on dislocation dyn-
amics.'*!®

A simple, but informative representation of the
critical conditions, Eq. (47), is the drawing of
the critical curves in the pressure-temperature
space in terms of the important parameters as-
sociated with dislocations; a and A, The former
is the fraction of plastic work that is converted in-
to dislocation energy and the latter is the phonon
mode softening due to dislocations. In our ex-
amples we shall assume for simplicity (1) that
shear moduli vanish at the melting temperature
following a parabolic function,?®+38

“zp'o(l_T/Tm)z!

where [, is the shear modulus at T=0 and T,, is
the melting temperature, and (2) that other vari-
ables are constants. This assumption should not
alter the qualitative features of the critical curves
defined by Eq. (47). As is discussed in Ref. 22,
accurate determination of elastic moduli is a task
by itself and should be done in conjunction with the
reevaluation of Eqs. (38) and (39). It is hoped that
such an analysis will also remove the singularity

TABLE 1. Material constants.?

Si0, Mgod Fe()
po(10° kg/m?) 2.65 3.57 7.87
K, (GPa) 37.6 165 168.3
4o (GPa) 44.7 117.2 81.5
Nk (J/K) 0.138 0.207 0.149
r 1 1.4 1.7
b3/v, V2 ) 3V3/4
T, (K) 1986 3223 1808
a 0.9 0.9 0.9

3The data are assembled from (1) R. G. McQueen,
J. N. Fritz, and S. P. Marsh, J. Geophys. Res. 69,
2947 (1964); (2) S. P. Clark, Jr., Handbook of Physical
Constants, edited by S. P. Clark, Jr. (Yale University
Press, New Haven, 1966); (3) E. Domany ef al., J. Geo-
phys. Res. 80, 4851 (1975); (4) K. A. Gschneider, Jr.,
Solid State Phys. 16 (Academic, New York, 1964), p.
276; (5) T. Ninomiya, J. Phys. Soc. Jpn. 44, 263(1978).

in Eq. (47) that occurs when the Griineisen con-
stant is 3. The material constants used are sum-
marized in Table I.

Figures 2—-4 show representative examples of
the critical curves for SiO,, MgO, and Fe(a).
The fraction a is set arbitrarily at 10%, 30%,
and 50%. The values of X are taken from Ninomi-

Sifer}

Pc (GPa)

0 L ! s L
[+ 200 400 600 800 1000
T(K)

FIG. 2. Calculated critical lines for SiO, in terms of
the two important dislocation parameters: a and A.
The curves indicate the state of critical pressure P,
and temperature at which the principle of positive-en-
tropy production for plastic flow is violated. For in-
stance, if a=0.3 and A=2, then the critical state is
given by curve S.
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FIG. 3. Calculated critical lines for MgO in terms of
the two important dislocation parameters: a and A. The
curves indicate the state of critical pressure P, and
temperature at which the principle of positive-entropy
production for plastic flow is violated. For instance, if
a=0.3 and A=2, then the critical state is given by
curve S.

ya'! and Nabarro® and seem to vary from 2 to 5
depending upon the model used. In these figures
the intersections with the abscisa are controlled
by a, the fraction of plastic work that is trans-
formed into dislocation energy, and the ones with
the ordinate by A, the phonon mode softening.
One can easily discern general features of the
critical curves: (1) If the pressures are high
enough, adiabatic shearing can occur at very low
temperatures. Such examples are speculated in
a tungsten alloy, aluminum alloys, and pure ti-
tanium.® (2) If the parameter @ remains about
10%, the instability is practically temperature
controled regardless of material and occurs at
about half the melting temperature. (3) As is ex-
pected from Eq. (47), the critical pressure de-
creases as the temperature increases. This fea-
ture is particularly strong in iron.

For iron we find that the theoretical results are
not inconsistent with experimental observation®:
“Shear bands are generally considered to result
from the local temperature exceeding the normal
a to vy transformation temperature although the
effect of pressure is thought by many to lower the
transformation temperature.” But there is not yet
an accurate measurement of temperature in such
bands.

Fe
a:=03
a=01 0:0)
s
°
a
e
O
a
o 1 1 L x =5 1 X=2 A
[ 200 400 600 800 1000

T (K)

FIG. 4. Calculated critical lines for Fe(x) in terms of
the two important dislocation parameters: a and A.
The curves indicate the state of critical pressure P, and
temperature at which the principle of entropy production
for plastic flow is violated. For instance, if a=0.3 and
A=2, then the critical state is given by curve S.

In the case of quartz, the theoretical curves are
again consistent with both experimental observa-
tions3:%+% and an alternative theoretical model of
instability.® In view of Fig. 1, we may suggest that
the dynamic melting can proceed within a submic-
rosecond because of shear yielding under dynamic
loadings, and that as Teller suggested,>*° rather
than direct shear activation, dissipative energy
accumulation aids the transition.

Klein* observed shock lamellae in single-crystal
MgO at shock stresses near 8 GPa, and the
lamellae are usually attributed to unstable shear
yielding. But at the moment it is not certain
whether they reached the state described by Eq.
(47). Furthermore, we need the critical condi-
tions similar to Eq. (47) that are applicable for
single crystals under shock loadings. Neverthe-
less, the conditions shown in Fig. 3 are not in-
consistent with those speculated for minerals.®*?

As mentioned earlier, Eq. (46) is necessary for
the instability resulting from the violation of pos-
itive-entropy production but in our approximation
not sufficient. An additional condition given by Eq.
(45) must be satisfied for the onset of the instabil-
ity. When I=1, the latter equation becomes in-
dependent of the plastic strain and yields

a(87V,/3)=6M /b,N, (48)
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TABLE II. Dislocation multiplication coefficients.?

Al Cu Fe W
(fee) (fee) (bce) (bce)

M (dynamic) 2,060 3,200 3,270 1, 700
(10'3/m?) (5,450)*

M (after Gilman) 80 2~100 33~250
(10'%/m?)

Py (10° kg/md) 2.7 8.96 7.87 31.4

iy (GPa) 26.6  45.1 81.5 153

b3/v, V2 V3 3V3/a  3V3/4

T (GPa) 0.045 0.298 0.552 3.14
(from HEL) (0.92)*

by (A) 2.93  2.55 2.53 1.38

1022 (N) 2.232  0.948 1.078 0.3277

2The data are assembled from the sources listed in
Table I and Ref. 14.

where n=My, +constant. Hence, if the shear
stress 7 (which is really the shear strength) is
known, Eq. (48) provides the dislocation multi-
plication coefficient M discussed in Gilman.'®
However, the evaluation of 7 over a wide range

of temperature, pressure, and dislocation density
is not a simple matter and not available at the mo-
ment., But in shock compression M may be esti-
mated on the basis of 7 calculated from the Hugon-
iot elastic limit.

Table II lists the results with the material coef-
ficients used in the calculation of the critical
curves in Figs, 2-4. However, we did not de-
termine M for the oxides because of the lack of
comparable experimental values. Nevertheless,
we expect them to be comparable with those for the

metals in Table II. As anticipated, the dynamic
M are much greater than the quasistatic values
quoted in Gilman,'® and are of the order of 10'°
per square meter. According to Eq. (42), they
yield the dislocation density of the same order (if
not slightly higher) for the plastic strain of, say,
10-20%. But these magnitudes are precisely what
were observed in the slipped regions of shock-
loaded crystals*"'** or in the region of tangled
dislocation dipoles at large plastic strains.*® Fur-
thermore, the same order of density is found for
the shock-loaded aluminum to 10 GPa from an al-
ternative thermodynamic calculation.?® Hence we
may imply from the above numerical results that
the condition imposed on the dislocation density at
the onset of adiabatic shearing (or heterogeneous
melting) are again not inconsistent with those ob-
served or speculated from other analyses., We
may then suggest that the instability resulting from
a violation of positive-entropy production can oc-
cur under shock compression and that depending
upon available times under the loading, it can lead
to saturation of dislocations. In the case of iso-
tropic solids the instability occurs in the plane of
maximum shear. Hence, we speculate that shear
bands such as those seen in a microphotograph of
the anorthite? shocked to 30 GPa are caused by
this instability.
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