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Short-range order effects on the electronic properties of a binary linear chain
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A new technique to treat one-dimensional binary alloys, described in tight-binding approximation, capable
of incorporating short-range correlations in a simple way is presented. The method is an extension of work

by Faulkner and Korringa and handles spatial correlations by restricting the number of allowed

configurations in the ensemble over which averages are taken. The density of electron states thus calculated
exhibits rich structure, which is known to exist but is lost in treatments which neglect local correlation
effects. A detailed study of the stoichiometric case with an equal number of atoms of both chemical species
is presented, including up to next-nearest-neighbor correlations.

I. INTRODUCTION

During the last decade the theory of disordered
systems has received a great deal of attention; in
particular, the electronic properties of binary
alloys have been studied in great detail. However,
most of the effort has been devoted to mean-field
or coherent-potential-approximation (CPA) treat-
ments of the fully random (or completely dis-
ordered} case, with the consequent smooth curves
of the density of electron states, in spite of the
facts that (a) detailed peak structures of the vibra-
tional spectra, which are governed by equations
formally analogous to the electronic spectra, are
known to exist and to be related to local environ-
ment effects'; and (b) a good number of experi-
ments indicate that short-range order determines
some relevant electronic and magnetic behavior of
alloys'.

A number of authors have included environmental
disorder with varying degrees of success, as
Falieov and Yndurain have pointed out'; most of
these contributions take the CPA as their starting
point. 4 Schwartz' provided a detailed comparison
of different approaches and obtained expressions
for some of the moments of the density of states,
including short-range correlations. Later on
Peterson gI; a/. " investigated short-range-order
effects in a one-dimensional hard-rod liquid model.

Weissmann and Cohan, ' ' and more recently
Cyrot-Lackmann and Cyrot, ' have tackled the
problem by solving exactly for a small cluster
around an atom and then inserting it into an effec-
tive medium which is treated either in the virtual-
crystalv ' or in the CPA" approximation. Falicov
and Yndurain, ' after diagonalizing the cluster of
atoms, joined a Bethe lattice to each atom on the
"surface" of it, this way enabling the treatment of
both topological and substitutional disorder. Basi-

cally, the results of all these contributions" "
tend to underline the importance of short-range
correlations, with the environment which sur-
rounds the cluster playing only a minor role. In

effect, no matter how this environment is treated
the results that are obtained share the same es-
sential features.

In this paper we use a completely different ap-
proach to study the electronic properties of a
binary alloy; our method is an extension and gen-
eralization of the procedure due to the work of
Faulkner and Korringa. " While restricted to the
treatment of linear chains it has the following
advantages:

(a) itprovides a real-spacetreatment, which in-
corporates short-range order in a very direct way;

(b) it requires only an averaging process over
the ensemble of allowed spatial configurations of the
atoms which constitute the system, without invok-
ing "effective potentials" or "effective media"; and

(c}a whole wealth of spatial correlations such
as nearest-neighbor, next-nearest-neighbor, . . . ,
short-range order parameters is introduced and
handled in a very natural fashion.

We do consider a binary linear chain of A- and
8-type atoms, with concentrations x„and x~, re-
spectively, subject to the normalization x~+ x~ = 1.
In addition, we characterize our results by the
short-range-order parameter x introduced in Ref.
3, which provides a nice tool for switching contin-
uously from the perfectly ordered binary compound
(A = -1), through the completely random configur-
ation (~ = 0), to the fully segregated structure
(A. = 1}. Moreover, we also study effects related to
higher correlations; while in this paper we only
compute and discuss in some detail up to next-
nearest-neighbor correlations, our method as de-
veloped below is well suited to be used beyond
this limitation.
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The rest of this paper is organized as follows:
In Sec. II we analytically formulate our linear-
chain tight-binding model of a binary alloy with no
off-diagonal disorder, write down the Green's
function difference equations, and solve them
formally using the local transfer-matrix approach
for a specific spatial. configuration of atoms. 'The

averaging process over different ensembles of
allowed configurations is discussed next at length,
at which point the crucial short-range-order cor-
relations are introduced as constraints which de-
termine the number of elements allowed in each
specif ic ensemble. Finally, ensemble averages
are evaluated using steepest descent techniques,
which leads to self-consistency equations that have
to be solved numerically. In Sec. III results of the
numerical computation are presented and dis-
cussed, emphasizing and contrasting the role of
nearest-neighbor and next-nearest-neighbor cor-
relations, but limiting our attention at this time
to the stoichiometric case x„=x~ = 0.5. In Sec. IV
the important physical consequences are stressed
and some concluding remarks are made; a slight
modification and adaptation to electron states of
work carried out by Wu et al."originally intended
for treatment of vibrational spectra, is presented
as an appendix, since it is used in Sec. III with
the purpose of comparison with our results.

/T j+1 0j p ~ + z+lp

0. ,Gj-i, p. l Gj p

(2.4)

fOG0= /T+GN 1+G-l (2.5)

where we have chosen the notation Gj p Gj which
we will use from now on for simplicity. At this
point the local transfer matrix Mj is defined as

M =—

1 0. (2.6)

Applying it repeatedly on (~0') we obtain

GN

MN-1 +N —2 ' 'M2'+1
G, t

(2 7)

but knowing from Eq. (2.5) that

t0 -1' G0 i 1/T+G i
7

Gp

(2.8)

we have

where t; -=(E —V;)/T and N~j & 0, with N being the
total number of atoms in the linear chain. Equa-
tion (2.4) can be used iteratively; in order that
this iteration process be closed we impose cyclic
boundary conditions: G, ,= G». Thus Eq. (2.3)
implies that

II ~ MODEL AND FORMAL SOLUTION

A. Single configuration case
p G p

= .'I/I ,1/T+ G„
(2.9)

As our model we choose a one-dimensional alloy
with diagonal disorder as specified by the follow-
ing tight-binding Hamiltonian:

H=glj)Vl&jl+T g(lj)j&+ ll +Ij+ 1)&j )I, (2.1)

where M= ++, .
The latter equation defines the 2x 2 total trans-

fer matrix M and allows us to write the propagator
'G p in terms of the four components of M, which
we denote by m„„ to obtain

where Ij) is a Wannier state associated with the
jth lattice site, Pj = p„, V~ are the energy levels
of atoms A. and B, respectively, and T is the hop-
ping matrix element between nearest neighbors
along the chain. We now define the "Greenian" or
"resolvent" operator G through

Gp=
1

(2.10)
(S 11 ~22™llm22™12~21

Since m„+m, = TrM andm„m, —m„m, = detM=1
[from Eq. (1.6)], our final relation for the Green's
function reads

(E -H)G =1, (2 2)
m~, 1

Tr(1-M) T
(2.11)

EGi, i —Vi G~, i —T (Gi+1„+G -1,') = ~i,l . (2.3)

The usual approach is to solve this difference
equation using continued fractions or closely re-
lated methods ' '" however, in this contribution
a matrix approach is employed, which is possible
since Eq. (2.3) can be set in the form

and take matrix elements between Wannier states
to obtain

Trg(g, n ) = 2 . (2.12)

This relation is satisfied by N eigenvalues E„
and consequently

The transfer-matrix M depends on the specific
atomic configuration, which we denote by o., and
is a function of E; the poles of G, thus imply the
following equation for the energy eigenvalues:
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ETr[1 —M(E, u}]= —LL
jl=l

(2.13)

where the factor T " has been introduced for con-
sistency with Eq. (2.6}. Thus

N

TrG(E, o.') = g (E -E„) ' (2.14)

B. Average over configurations

Up to this point we have considered only one con-
figuration of the many that the two kinds of atoms
which make up our alloy can possess. From now

on we will consider an ensemble of configurations
= with Q elements, each one of them occurring
with the same probability. Thus the average densi-
ty of states per atom is related to

TrG(E) = —g TrG(E, u)
1

n&~

=—ln II [Tr[(f(E, o. ) - 1]j' ",
a=l

(2.17)

which is an exact result. The approximation of
Faulkner and Korringa" is equivalent to taking an
arithmetic average, instead of the geometric one
of Eq. (2.17), which reads

(2.18)

and we obtain for the integrated density of states
N(E) the expression

E -1
N(E) = dE'D(E') =—Imln{Tr[V(E+f0', o. ) -1]),

(2.15)

where D(E) denotes the density of states per atom.
It should be remarked that while the trace in Eq.
(2.13} is taken over a 2x 2 matrix, the trace in
(2.14) is taken over the N x~V matrix of the full
Green's function G(E, o. ) in the Wannier re pre
sentation.

lt is also interesting to note that the real part of
the right-hand side of Eq. (2.15) can be interpreted
as the inverse coherence length of an eigenstate
of energy E, which we will denote by K(E); it rep-
resents the average pseudomomentum uncertainty
of an eigenstate E. On the other hand, we know
that k(E) -=vN(E)/a represents the average pseudo-
momentum associated with the energy eigenstate
E and thus, we can rewrite the right-hand side of
Eq. (2.15) as

Re exp[i' (E) + K(E))iVa = Tr[if(E, o. ) —1], (2.16)

where the reasons for the positive sign of K(E)
have been given by Faulkner and Korringa. "

~&A+ P, —2I.
J A, AA

A

L —P,
~A, AB

(2.20a)

(2.20b)

I A, BA
A

L-Q
~A, BB

A

(2.20c)

(2.20d)

Certainly, the normalization condition P»A+ pA AB

+pA»+pA»=1 is satisfied; moreover, the bin-
ary correlation parameters are readily determined
by summation over the last index.

Having defined our short-range correlation par-
amete-rs we proceed to the averaging process
proper; for convenience we denote as.4fA and (&IB

the transfer matrices associated with sites A and

Faulkner" and Ramirez and Rossler" have already
pointed out that this approximation leads to results
identical to those of the CPA.

The main purpose of the present contribution is
to study effects due to short-range order, i.e. ,
effects related directly to local deviations from
the average of the probability of finding one of the
chemical species. We incorporate these correla-
tions by fixing the number of segments of pure A-
or 8-type atoms of a determined length; this way
the number of allowed configurations in the ensem-
ble = is rather drastically reduced. Analytically

-—:-(Lr'N~r Ner P, r P2). . . r Prr Q|r V2' ' ~ rgb) r

(2.19)
where the ensemble = contains all possible con-
figurations of N„&+ atoms of species A (B}with L
disjoint segments of A atoms separating another
set of I disjoint segments of 8 atoms. Qf these
segments P, are one A atom long, P, are two A

atoms long, and P~ areA atom segments of length

j; the same holds true for B atoms, of which there
are Q,. segments present of length j.

An enormous wealth of correlations in the spatial
distribution is in this way introduced, well beyond
what can be found in the existing literature. In

fact, just by fixing the ratio L/N„ the nearest-
neighbor correlation parameter A. A of Falicov and
Yndurain' becomes fully determined; since the
probability of finding an AB pair is L/N„(i e , ea.ch.
of the L segments ends or starts withAB pair), it
follows that X„=1 —2L/N„.

In this paper we will basically restrict ourselves
to fixing P, and Q, in addition to A. . In this way the
number of binary and ternary segments also be-
comes determined; in effect, the probabilities of
finding a specified ordered pair next (to the right
or left) of an A atom, are given by
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B, respectively, and define the matrix function
P

F(zA, Z„(,1I) = MAzA(+ Q MAz„'
2=2

I
VI~zB g+ VgzB 2.21

g= 2

Then, using an extended version of a method due to
the work of Faulkner, "we obtain the average ojf

the total transfer matrix M over the ensemble =
as a contour integral which encloses the origin
and which has the form

( )
1 1 P dzAdzBd(dq
Q (2zt)4 w NA+ 1ZNB+1 (Pl+ 1 Ql+ 1

A ZB

x&(ZAizBi (~t)) (2.22)

The number of elements in the restricted en-
semble 0 is given by the expression

~L' L N„-L —1 'NB —L —1 '

Pj,Q~. jVA+ Pj —2I +B + Q~ —2L.

(2.23)

Using the relation

(M„' —z„) '= (M„-z„)/[1+z„(z„-t„)],

where t„was defined after Eq. (2.4), we can carry
out the matrix summation in (2.21) to obtain

z2 z2 I
F(z Ayz )Bgy 9) .

~ [1 +z (z t )] ~ [1 +z (z t )] A A 8 (2.24)

where

A" (ZA-tA)ZA((-»+&'

ZB

(zB —tB)ZB(q —1)+ lt
'

Diagonalization of the matrix (~VS —gA)(MB —gB) of Eq. (2.24) yields the eigenvalues A„ they are

A&(lAs 4) 2[tA KA)(4 iB)+ KALB 2] + [4 (tAtB ~AtB tBtA) (~A ~B tA)(~A iB tB)1

and thus

[t~, (~., ~.)]'+ [A (~., ~.)]'
fl (2vt)' (Pl+'qol+' z"A ' +'zg ' +'g f [1.+z (z —t )p [1+z (z —t )]1

(2.25)

(2.26)

If we set q= (=1 in the equation above we recover the case treated by Falicov and Yndurain, who kept only
first-neighbor correlations (i.e. , the parameter AA

= 1 —2L/AA is fixed, but neither P, nor Q, are).
In Eq. (2.26) it is convenient to make the change of variables ($, 1I)-[gA, gBj, to obtain

1 1 dzAdz Bd (Ad &B(T M)= — .)4 zNA+Pl 2I+ lzNB+Ql--2K+1 rz P1+ irk Ql+1[1+ 1-(z t )]Pl+-1[1+g (z t)]Ql+1.
1

[1+ z„(z„-t„)]' '[1+zB(zB tB)]' (2.27)

which in turn can be written as

1 1
(TrM) =-

n (2Nf)'
dzdz dg di (8 + A'B'tA ~ 4B+P A'B'A' B)&A B A B (2.28)

where

4. (zA zB &A &B)-=inA. (&A &B)- L»[ +&A(ZA-tA)1- L»[1+KB(ZB-tB)1—

In B — ' »L&A[1+ ZA(zA —tA)]] — ' In[4[I+ ZB(zB —tB)]) .NB+ Ql 2L L P1 L Q~ (2.28)
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(2.30a)

9$
ez =0

A
(2.30b)

from which g„= g„(z„) and ge = ge(ze) are obtained
analytically. These expressions for &„and (~ next
are substituted in the additional equations for the
extrema of Q„

(2.31a)

(2.31b)

which have to be solved numerically, thus comple-
ting the evaluation of (TrM). Knowing this aver-
age, the density of states and the coherence length
are readily obtained using Eqs. (2.18) and (2.16),
respectively.

When Eqs. (2.16) and (2.28} are compared it is
observed that the real and imaginary parts of the
p, functions are proportional to the inverse coher-
ence length K(E) and the average pseudomomentum
k(E), respectively, when p, are evaluated at the
saddle points. The fact that this can safely be done
is due to the large values that exp(LP, ) does as-
sume. In order to find the extrema of f, we set

III. RESULTS

We now present the results of the implementation
on a computer of the scheme outlined in the pre-
ceding section. In order to display most clearly
the impor tant phys ical consequences of shor t-r ange
correlations we have chosen to limit our interest,
for the time being, to a stoichiometric binary al-
loy with an equal number of A and B atoms, de-
noted by x„=N„/N=Ne/N=x =-, .

For the parameters that. characterize the elec-
tronic structure, which appear in the basic Hamil-
tonian (2.1}, we have chosen the following values:

(i) The energy is scaled in units of the hopping
matrix element, which we make equal to T=-, ; this
way the bandwidth for the electron states of the
pure A and B chains are equal to one.

(ii) For the diagonal matrix elements we make
V&=0.5 and V~=0.15. This way the pure A and B
bands extend from 0 to 1, and from -0.35 to 0.65,
respectively.

In Fig. 1 we display results of the density of el-
ectron states D(E), normalized to one state per
atom, computed with our method when only the
parameter X„of Ref. 3 is fixed; since X„=1 2L/Nz-
we only fix the number of segments L in addition
to the stoichiometry imposed above. In other
words, we are not assigning values to the P&'s and
Q&'s of Eq. (2.19) at this point. As X increases
from -1 to 1 (i.e., from a binary alloy to full seg-
regation) several interesting features can be ob-

yg 0.8

D(E)
16"

12"

10"

Q8 ~ ~

06"
0.4"
0.2"

y=-0.5 1=+0.001

-0.4 0 0.4 08

CPA

-04 0 0.4 0.8

X= 025

16"

14"

1.2"
10"
08"
Q6i ~

0 4is

02"

-04 0 04 0.8

&=0.5

-0.4 0 04 ae

10—

FIG. 1. Density of electron states D(E), normalized to one state per atom, versus energy for values of the nearest-
neighbor correlation parameter varying between -1& X &1. The value X=-1 corresponds to a binary superstructure
and X=1 to full segregation; X= 0 describes an uncorrelated random alloy.
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served:
(a) At first (X= -0.96 and -0.9) the essential

characteristics of the translationally invariant
superstructure ~ ~ ~ ABABAB ~ ~ ~ are dominant, how-
ever, split-off states corresponding to bonding and

antibonding orbitals around AA and BB defects
make their appearance in the gaps of the transla-
tionally invariant electronic structure.

(b) For X= —0.8 the gap between the two main
sub-bands has practically disappeared, while the
bottom and top of the band are still quite far apart
from the "true band edges"" in the Lifshitz sense
which are -0.35 and 1, respectively.

(c) As X= -0.5 the four-peak structure due to
translational invariance has completely disap-
peared to give way to two sharp peaks and a smooth
maximum at the center of the band.

(d) For 1=0 the random configuration is reached
and it is quite apparent that our method retains a
lot more structure" in the electronic density of
states than the CPA does, or equivalently, "" than
the one obtained through Eq. (2.12) and averaging
over all possible configurations. This is due to
the fact that our average is performed over a much
smaller number of configurations, which, while

yielding more detailed structure than the full en-
semble of random configurations, has identically
the same entropy; this point will be discussed in
greater detail below.

(e) As ) continues increasing to 0.25 and 0.5 we
observe the gradual appearance of the four-peak
structure of the fully segregated configuration
A. = 1; the latter simply corresponds to the super-
position of a pure A band, which extends from 0 to
1, and a B band ranging from -0.35 to 0.65.

In Fig. 2 plots of the inverse coherence length
K(E), defined after Eq. (2.15), as a function of the
energy E and for three values of X are displayed,
providing some complementary information on the
nature of the electron states. As expected on the
basis of qualitative arguments, the maximal co-

herence length occurs for XR-1 and A. ~1.
In fact, for X=-0.9 the bulk of the band is made

up of ABAB ~ ~ ~ superstructure eigenstates, while
bonding and antibonding states with small spatial
spread are present at both ends and at the center
of the band. Analogously, for X=0.9 the center of
the band consists of extended states related to long
A- or B-atom segments. Also as expected, elec-
tron states associated to the random X=0 config-
urations exhibit significantly smaller spatial co-
herence. In addition it is interesting to note that
in the forbidden energy regions (gaps) the plot of
K(E) simply seems to be quenched, with no singu-
lar behavior associated with it.

In Fig. 3 we focus on the most relevant qualita-
tive results in this contribution and compare with
related work"; in effect, the density of states
computed through the CPA (upper left) and an ad-
aptation of Wu's method, which is detailed in the
Appendix (lower right), are provided to contrast
our own results.

The difference in approach to obtain the CPA and
X = +0.001 graphs is that in the first case Eq. (2.12)
is solved averaging over

'N N
0=

N„N/2
equally probable configurations (recall that
N~ =Ns throughout), while in the latter we fix also
the number L of pure A (or B) atom segments
Thus, while in the CPA there is a total absence of
correlations between atoms, for X= &.001 we im-
pose the additional requirement of absence of
short-range correlations; analytically, this im-
plies that the probability p„of finding an A atom
next to another A atom is

PQ xg

or in words: The presence of an atom at a given
site does not influence the probability of finding

K(E)

0.6- Xe-09 '% 00 Xi09

0.5- -2

0.4-

03-

0.2-

0.1-

-o.4 o o.4 os
~ I ~ ~ ~ ~ ~ ~

-0.4 0 OA Ok

A~K I)

~ ~ IEa I M ~ ~

-0.4 0 0.4 0$

-10
" 20
- 80

FIG. 2. Inverse coherence length KN) =& ' versus energy for alloys near the superstructure (A, = —0.9), in the rando~
(X= 0), and near the fully segregated (X= 0.9j, configurations.
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1.4-

1.2-

1.0-

O.8-

CPA 'h=o
L= N/4

Pt=+= N/8

which is ironed" out in the conventional approach-
es like the CPA, while the correct thermodynamic
properties are rigorously preserved.

To obtain the A. = 0 plot of the upper right in Fig.
3 we have restricted the ensemble even further by
adding to the absence of first-neighbor correla-
tions the requirement of no next-nearest-neighbor
correlations. Analytically this condition is

0.4-
PROST PRsSPSt T ~ (3.5)

0.2-

1.4-

-0.4 0 0.4 0.8

4= + 0.001

L= N/4

-O.4 O O.4 O.8

where R, S, T =A, B. p„sT was defined in connec-
tion with Eqs. (2.20) and ps z

——p„ if R= S=A and

ps z
= 1 —p„ if R =A e S. Using Eqs. (2.20b) and

(2.20c) in combination with (3.5) yields

1.2-

1.0-
&, = L'/N„,

Q, =L'/N

(3.5)

(3.7)
0.8-

0.6-

0.4-

0.2-

ol

PEG. 3. Density of states D(E) versus energy. The
upper left corresponds to c oherent potential approxima-
tion results. The lower left and upper right are our re-
sults when no nearest-neighbor and no next-nearest-
neighbor spatial correlation requirements are imposed,
respectively. The lower right plot corresponds to a cal-
culation carried out on the basis of a scheme due to thb
work of (Ref. 12).

However, we had L/N= & and thus the requirement
of no next-nearest-neighbor correlations is satis-
fied for

'This way, the ensemble associated with the plot
characterized by A. =O, L = 4N, and Py Qy SN
has

'L L 'N -L —1 N —L —1

Pl Q~
'+ P~ 1 &' Q~ 1

N/4'

~N 8

A or B at the neighboring site. Since in general

1 —p~ L /N~ )—— (3.2)

we obtain L/N =-,' as the condition for no nearest-
neighbor correlations. In this case the number of
elements in the ensemble of configurations is re-
duced to

Ns 'N/2
X

L . .N/4

which is significantly smaller than the value of 0
used in connection with the CPA. However, since

N
ln =Nln2

~/2 n=

and also

'N/2
2 1.n —=N ln2,

Jf/4 s-

(3.3)

(3.4)

the entropy and thus all thermodynamic properties
are identical for both cases. In consequence, tak-
ing averages over smaller" ensembles has the
effect of retaining structure in the density of states

different configurations; again, the limit as N-
yields the same value for the entropy as obtained
in Eqs. (3.3) and (3.4). However, when looking at
the upper right of Fig. 3 important changes are ob-
served in relation to the lower left plot; the four-
peak structure has evolved into a six-peak spec-
trum. These six peaks are in good agreement in
position as well as magnitude with the main peaks
obtained using the method outlined in the Appendix,
which is an extension of work by Wu. "

Finally, in Fig. 4 we display results with next-
nearest-neighbor correlation, but require absence
of correlation to first neighbors; this can be
achieved by choosing L =-,'N, but P, w —,'N. In fact,
the left-hand graph is for P, =0.08N&0. 125N;
thus there is a deficit of single atom segments as
compared with the uncorrelated situation. This
way an excess of AABB ' . -type sequences builds
up. On the other hand, when this four-atom se-
quence is infinitely repeated we are faced with a
problem which can be solved exactly; we have done
so and found that the peaks near the edges and the
center of the band effectively correspond to the
AABB . . superstructure and that the maxima at
E—= 0.76 and -0.11 are related to "defects" in res-
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DK)

1.6-

1.4-

LQ N/4

P1 0.08 N

&0.125 N

LR N/4
P*0.18 N )0.125 N

1.2-

1.0-

0.8-

0.6-

0.4-

0.2-

-0.4 0 0.4 0.8 -0.4 0 0.4 0.8

FIG. 4. Density of states versus energy with no nearest-neighbor correlation, but where next-nearest-neighbor cor-
relation is imposed. P&= p, 08~ corresponds to a deficit and P, =0. 18N to an excess of isolated A atoms, relative to
the uncorrelated P&= 0.125N case.

pect to this sequence.
The right-hand plot of Fig. 4 corresponds to

P, = 0.18N&0.125N and therefore an excess of iso-
lated A and B atoms is present. Since the total
number L of segments is fixed, the remaining
atoms tend to form long A and B chains; conse-
quently the corresponding density of states con-
sists of a superposition of characteristic elements
of both the XZ —1 (binary alloy) and X~ 1 spectra
displayed in Fig. 1.

IV. SUMMARY AND CONCLUSIONS

A technique to treat one-dimensional binary al-
loys including local-order effects has been pre-
sented. Basically, it consists in a generalization
of the method due to Faulkner and Korringa, ""in
order to include short-range-order effects; this
purpose is achieved by restricting the number of
allowed spatial atomic configurations in the en-
semble used to obtain the averages of the quanti-
ties of physical. interest. After some algebraic
manipulation these averages are expressed as
multiple contour integrals in the complex plane and
are evaluated using saddle-point integration, which
in turn leads to a set of self-consistency equations.

If up to next-nearest-neighbor correlations are
kept the compl. ex contour integrals become four-
fold. The resultant self-consistency equations can
be reduced in part analytically, but a final set has
to be handled numerically.

This scheme was carried out for the stoichio-

metric case of equal number of atoms of each of
the two chemical species and it was found that the
stronger the local correlation included in the cal-
culations, the richer the structure of the computed
electronic spectra. On the other hand, our results
for the density of states compare quite well with
those obtained through an adaptation of a procedure
proposed by Wu." Moreover, they are fully con-
sistent with semiquantitative arguments based on
exact evaluations of the spectra of several super-
structures, generated by repeating periodically
particular sequences or clusters of atoms, which
serve to identify the position and origin of the main
peaks in the alloy density of states. While we have
limited our attention, for the time being, to the
case of equal concentration of the two binary spe-
cies it would be of interest to study some addi-
tional stoichiometric situations and also the conse-
quences of deviations from stoichiometry around
the binary compound limit (X= -1) or near the fully
segregated situation (X= 1), which could have inter-
esting physical consequences.
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APPENDIX

A
A

-3

(A6)

In this appendix we slightly modify work by Wu

et al. ,
" in order to adapt it to handle short-range-

order effects on the electronic structure of linear
chains, rather than the vibrational properties for
which it was designed and used up to now. We
start by writing Eq. (2.3) in the form

A -B

Combination of (A2a), (A5), and (A6) yields

A;G;;= (I/T)5;, + G;, j+G;... ,

where A, -=(E —V, )/T. In particular, we have

(A1) TG0=
A 0

A~
2 —2

AaGo(E) =1/T+G, + G, ,

A, Gi( E)= G()+G3,

A„G„(E)= G„,+G„„.

(A2a)

(A2b)

(A2c)

1
A -B' A -B

(A7)

Substituting in the above equation the definition

(n+1 )G

G*n

we obtain

+ 1
A -B'

n n

1B+
1

A, -B+ A 1

3

When this expression is iterated it yields

(A3)

(A4)

(A5)
B =j

Aj, ,
j+ 2

(A8)

If we now assume to know the configuration of the
(2m+ 1) atoms in the domain (-m, m}, then Eq.
(AV) is exact; however, we do not know the values
of B' which are determined by the configuration
the rest of the atoms are in, i.e. , those outside
(-m, m}, about which we lack precise information.
To overcome this difficulty an average over all
possibilities is performed incorporating nearest-
neighbor correlations; more precisely, the exact
equation

1
A -B'

and similarly is approximated by

Ej = +a( j),o( j+ 3) o( j+», a(j+ 2) +a(3j 1)a(3j)-,
a(j+ 1),.. .,a (3j)

Aa( j+x)
Aa( j+2)

a( j+3)

(A9)

1

a(3 j) a(3 j)

where (j(j) =A, B and p, (», („,» gives the probability of finding an atom of species (T(k+ 1) when site k is
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occupied by species {{(k}.
Equation (A9} represents a self-consistent set of two equations [0(j)=A, B] for two unknowns: B„and

Bs; once these equations are solved, we substitute in Eq. (A7} the values of B' =B,{ &
and B =B,{ &

to
obtain an approximate expression for the propagator, valid for the specified configuration of the original
(2m+1) —atom cluster. However, this propagator contains much more information than we really want;
to obtain the density of states an average over the 2 ~'" allowed configurations of the cluster is performed,
to obtain

D(B) g a{a)Pa{a),a{1)' Pa{m —1), {a)Pm{aa), {-a1) Pa{-m+&), a{-m)a(-~), ... , a( )

x D(E;o(-m), . . . , u(0), . . . , &x(m)), (A10)

where x (p) x„xg is the concentration of the chemical species and

1
D(E; &x(-m), . . . , {{(0},. . . , g (m)) =—Im

jr
A~(0) A ~I (&)

(A11)

1

A o (m) +o(m) +A a(-m) fy(-m) s-io
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