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Theory of nonuniform electronic systems. I.Analysis of the gradient approximation and
a generalization that works

David C. Langreth
Rutgers University, New Brunswick, New Jersey 08903

John P. Perdew
Tulane University, New Orleans, Louisiana 70118

(Received 6 November 1979)

A complete wave-vector analysis has been made of the gradient coefficient for the exchange-correlation energy of a
nonuniform electronic system. It is shown that the majority of the contribution comes from a very small but
universal region of k space near the origin. From this it can be concluded that random-phase-approximation-like
calculations, like the present one or that of Rasolt and Geldart, which treat this region correctly, are likely to
provide accurate results for the gradient coefficient and hence for the energy and structure of a system whose density
is truly slowly varying. However, it also shows that the criterion for the validity of the gradient approximation itself
is much more severe than previously supposed, so that the usual type of application, to say a surface or bulk
material, is incorrect. For the surface case this is ver'ified in unequivocal detail. On the other hand, a generalization
of the gradient scheme based on an average slope instead of a local slope is proposed. This gives good agreement with
limiting cases where they exist, and rough agreement with the interpolation scheme proposed previously by the
authors.

I. INTRODUCTION

Several years ago, we developed" a method of
analyzing the exchange-correlation energy (E„)
for a metallic surface according to the "wave
vector" of the dynamic density fluctuations con-
tributing to it. In the process we concluded that
the local-density approximation' (LDA) gave rea-
sonable accuracy for the energy of such a sys-
tem; this conclusion was also reached by others4
at about the same time. We showed that the LDA
became exact at large wave vector, but very poor
at small wave vector. We then used a simple in-
terpolation method to connect the two known re-
gions, and hence to obtain the correction to the
LDA (Fig. l). This scheme has several obvious
disadvantages. First, although it looked reason-
able and agreed with various limiting cases, it
was to a certain extent arbitrary; it would be much
preferable to have a physically based calculational
method for the intermediate wave-vector regime.
Second, it was designed to pick up only the known

long-wavelength error in the LDA; it implicitly
assumed that there was no large error in the LDA
in the intermediate regime; i.e. , k, ,- k 2kF.
Our proof of the correctness of the LDA at large
k only held rigorously for k ~2kF, so the question
of the intermediate region was worrisome. (Here
kiT and kF are the Fermi-Thomas and Fermi wave
vectors, respectively. ) The third disadvantage
was operational; it was difficult to implement the
scheme in practice, and it was not even clear how
to do so for an arbitrary nonuniform system.

It would seem as if there were an obvious method
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FIG. 1. Wave-vector analysis of the RPA exchange-
correlationenergy of the jellium surface (r = 2.07) with aS
realistic density profile (yz ——3.5). The area under each
curve is the exchange-correlation energy in the correspond-
ing approximation. Dash-dotted curve (LDA): the local-
density approximation. Dashed curve (GRAD): LDA
plus second-order gradient correction. Solid curve
(AVG): the new scheme proposed in this paper (LDA
+ Gaussian average-slope correction with p =1.2, as
defined later). Dotted curve (OLD): our old interpola-
tion between the LDA and the exact k —0 limit. In
further figures we plot only the deviation from the LDA;
that is, the difference between the dash-dotted curve
in this figure and the approximation under consideration.
Although this deviation, when integrated, is generally
only a fairly small fraction of the exchange-correlation
contribution, it is often a much larger fraction of the
total energy.
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already existing to calculate the deviation from
the LDA that apparently had none of the above dis-
advantages. This is the gradient expansion" '
which provides a rigorous and systematic method
for calculating the energy and density of a system
whose spatial rate of density variationis sufficient-
ly slow:

Since the LDA [the leading term in Eq. (1.1)] is
reasonably good for a surface, should not the ap-
plication of the first gradient correction to E„,
[the second term in (1.1)] improve things consider-
ably? It is certainly easy to implement in prac-
tice. The only question seemed to be that the
gradient coefficient [B„,(n)] itself was difficult to
calculate and various estimates differed from each
other, although in our mind even this question was
settled by the painstaking calculation of Rasolt and
Geldart' (RG). Nevertheless, because we knew

there were large corrections percentagewise to
the LDA in the long-wavelength regime, we sus-
pected that the gradient expansion would also pro-
duce large corrections there, so that the argument
for the validity of the gradient approximation was
really only specious. In fact, by comparing vari-
ous limiting cases, we were able previously' to
come to some negative conclusions concerning
the validity of the gradient expansion for surfaces.

To investigate more fully the whole question of
the corrections to the LDA, we present here' " a
complete wave-vector analysis of the first gradient
correction for the exchange-correlation energy
E„. We develop a new random-phase approxima-
tion (RPA) form for the gradient coefficient, but
which is nearly the same as that of RG, and which
involves the same physics. We make a wave-vec-
tor analysis of this form and find as we expected
that the predominant contribution comes in the
long-wavelength region, which we show to be uni-
versal. This enables us to conclude that the
present calculation of the gradient coefficient and
that of the RG (which ours was modeled after) are
probably very reliable, because within the context
of the second-order gradient expansion, they both
accurately contain the contribution of the "gradient
mode" which dominates this region, and which is
treated exactly.

On the other hand, we show unambiguously, by
comparison with the exact limiting form at long
wavelength for a surface, "that the second-order
gradient expansion is completely incorrect for a
surface (Fig. 1), unless the profile varies so
slowly as to be completely unphysical. We also

present evidence (not nearly so strong) that the
gradient approximation is also invalid in practice
for other physical systems of interest. (It appears
that the gradient term gives the right correction
to LDA only when Vn/n« —8krT. )

Our wave-vector analysis of the gradient coef-
ficient, however, also allows some important
positive conclusions. The first is that it makes
only a fairly small contribution in the intermedi-
ate wave-vector region where we expect it to be
accurate (Fig. 1). Thus an implicit assumption in
our earlier interpolation scheme is verified. But
now we can make a further improvement, by in-
terpolating between the intermediate- and long-
wavelength deviations from the LDA, that is, be-
tween the gradient approximation at intermediate
wavelength and the exact form at long wavelength.
We develop a generalization of the gradient ap-
proximation, based on a mean slope rather than
the local slope, in order to do this (Figs. 1 and 2).
The scheme is still not an a p~io~i calculation in
the interpolation region, but is physically motiva-
ted and seems only weakly dependent on the exact
way in which it is done. It goes smoothly from the
exact calculations on a rapidly varying surface" to
the gradient approximation for a very slowly vary-
ing one.

The remaining objection is that at present the
method is still not easy to implement in a practical
calculation on a real system. We are now working
on a simplification of the method, which will allow
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FIG. 2. Exchange-correlation energy of a metal
surface (~~ =2.07) in RPA. Dash-dotted curve (LDA):
the local density approximation. Dashed curve (GRAD):
LDA plus second-order gradient correction. Solid
curve (AVG): the new scheme proposed in this paper
(LDA+ Gaussian average-slope correction with p = 1.2,
as defined later). yz is the parameter of the class of
density profiles of the linear potential model: yz= 0
is the infinite-barrier model, yz= 3.25 is a physical
density profile for the jellium surface, and yz= 8 is a
slowly varying profile. For comparison, the total sur-
face energy of jellium (r, = 2.07) with a physical profile
in RPA-LDA is -534 erg/cm2 (Ref. 8).
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for easy application not only to surfaces, but also
to other systems as well, and we will present
these results in the future.

The organization of the paper is as follows: In
Sec. II we review the wave-vector decomposition of
the exchange-correlation energy F„., describe the
density-functional version of the RPA, and apply
the latte r to der ive for mal expr es s ions for the
wave-vector analysis of F.„, in the electronic sys-
tem of nearly uniform density, from which in the
slowly varying limit we obtain the wave-vector
decomposition of the LDA and the gradient correc-
tion. We also discuss the extent to which these
results should persist beyond RPA-like theories.
In Sec. III we present calculable expressions for
the wave-vector-decomposed gradient coefficient.
In Sec. IV we discuss how this tensor coefficient
depends on the magnitude and direction of the
wave vector (and on the electron density), identify
the dominant term in it (corresponding to the
"gradient mode") which peaks up strongly at small
wave vector, and argue for the "universality"
(beyond RPA) of this small wave-vector peak. In
Sec. V we consider the wave-vector analysis of
the gradient correction to the energy of model
metallic surfaces. We give an analytic estimate
of its small wave-vector behavior, which we com-
pare (unfavorably) to the exact small wave-vector
behavior, and we describe how unPhysicaIly slow
the spatial density variation must be before the
gradient term starts to give the right correction
to the LDA. Finally, in Sec. VI we describe the
reasons for the failure of the gradient correction
at small wave vector, argue that at intermediate
and small wave vector the local density gradient
should be replaced by an average slope (averaged
over the spatial extent of the "gradient mode"),
and present the results of this average-slope
scheme for model metallic surfaces.

where

I

x dg —S, r, r')-n r 5 r -r'),
0

(2.1)

—S (r, r') =([n„„Pr)—n(r)][n„p'r') —n(r')])~ (2.2)

is the density-density correlation function, and

n„,(r) is the density operator. The nominal volume
of the system, Q, encloses just the N electrons
we are interested in, with periodic boundary con-
ditions. As usual" we can interpret the result of
the g integration in (2.1) as the product of n(r) with
the density p(r, r') of the exchange-correlation
hole around an electron at r, so that I „.is half
the sum of the electrostatic interaction uf each
electron with its positively charged hole. From
the definition (2.2) and conservation of particle
number we have

was no intermediate wave vector in RG (Ref. 6)
corresponding to this; one cannot just "unsum"
their equations. In addition, their "q process" did
not seem readily amenable to wave-vector decom-
position. The Peuckert calculation, "on the other
hand, although containing the correct wave vector
k, contained approximations at an early stage
whose validity was difficult to judge, and was thus
not useful for our purposes. Thus the complete
reformulation which we sketched in our earler
Letter" was necessary.

We begin with an expression" "for the ex-
change-correlation energy of an electronic sys-
tem, obtained by switching on the electron-elec-
tron interaction adiabatically via a coupling con-
stant g, while holding the electron density profile
n(r) fixed:

2

E„.= —,
' d'r d'r r-r

II. DERIVATION OF THE WAVE-VECTOR
DECOMPOSITION d'r'p(r, r') = —1, (2.2)

Here we show fully the derivation of the wave-
vector decomposition of the gradient correction,
which was sketched in our earlier Letter. " Rele-
vant work has also been done by Rasolt and Geld-
art' (RG} and Peuckert. " As with all this work,
our basic approximation could be described as the
random-phase approximation for the energy within
a density-functional context. We will define what
we mean by this later. Although this approxima-
tion differs in only a slight way from RG (Ref. 6),
a completely different formulation was necessary.
This is because the relevant wave vector, as we
have shown, is the Fourier transform variable of
the density-density correlation function, and there

d'0E„=- Q E„(k)=. , E„.(k). ,
k

where

(2.4)

Physically, this says that dynamic density fluctua-
tions of different size [k~

' contribute separately
to E„. We define S,(k} and many .other quantities

so the electron and its hole together made a neutral
object. Writing e'/~r-r'

~
as a Fourier integral

leads to the wave-vector decomposition defined
earlier":
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by the Fourier-transform conventions

F(kk'), =—fd f'd'F '~"' ~ ' 'F(, ),

(2.6)

correlation energy less negative.
According to density-functional theory' (or

rather a slight extension of it), we may expand
(2.5), when the density n(r) varies slowly in space,
as

F(k) =F(k, k),

G&= d're '" 'Gr .

(2.7)

(2.8)

F,,(kl = f d' Id-", ( ( ))

+ Vn(r} ~ B„(n(r))~ Vn(r) + ~ ~ ].
For some purposes it is convenient to define an

average structure factor

dk
S(k) = dg —S (k),

0

which is easily shown to be

(2.9)

F(k)= —f d' ( ) d F'"' '(p(R) p„„(,F)],

(2.10)

oo 14E„= dk
2

~N[S(k) —1]—
Q 1T

(2.11)

For example, we often write the exchange-correla-
tion contribution to the metallic surface energy as

dk
cr„.=

2
y(k),

0 t:B
(2.12)

where k, „ is the bulk Fermi wave vector and y(k)
is 2e'k, . ~, p times the s ur face contr ibution per unit
area to NS(k). It is y(k) that was displayed in Fig.
1. In earlier work" we derived the exact small-k
limit

y(k) ——'"(&u, ——,'u), )k (2.13)

(taking k =1), where (()~ =(4vne'/m}'" is the bulk
and &u, =a~/)/2 the surface plasmon frequency.
Since the bulk contribution to NS(k) is (x:O', Eq.
(2.13) also gives the complete small-k limit of
NS(k). Whereas in the bulk (and neglecting Friedel
oscillations) the hole p~»(r, R) is exponentially
localized around its electron, with a characteris-
tic size comparable to the Fermi-Thomas screen-
ing length, the hole becomes more diffuse near the
surface. " Indeed by Fourier transformation we
find that the k- 0 limit (2.13) implies that ps»(r, R)
for r in the surface region has a nonoscillatory
long-range (R ') tail from the plasmons. Thus the
effect of the surface is to make the total exchange-

the average over all electrons of the Fourier trans-
form of the instantaneous density of an electron at
r plus its spherically averaged exchange-correla-
tion hole p$ph As Gunnarsson and Lundqvist" have
pointed out in arguments intended to justify the
local-density approximation, it is only this spheri-
cal average which counts in E„Now .(.2.5} becomes

14
A], (n} =2, n[S„(k,n) —1], (2.15)

where S„(k,n) is the average structure factor of a
uniform electron gas of density n (see Fig. 2 of
Ref. 2). The tensor B], (n) is the wave-vector de-
composition of the second-order gradient correc-
tion, which we deal with here. Since (2.14) must
hold true, in particular, for a system of nearly

XC X.C

uniform density, it follows that A-„and B-„are
functions only of the local density, and that the
second term in the integrand can depend on no

angle but that between k and Vn,' i.e. , B& involves
only one longitudinal (kk) and one transverse co-
efficient. What makes it possible for us to cal-
culate B-„ is the fact that the energy to order (vn)'
can be calculated rigorously' in a hypothetical
system, initially of uniform density, in which the
density gradient is induced by a weak perturba-
tion and the energy is carried to second order in
this perturbation.

Before setting up the perturbation theory, we
pause to make two general observations about
(2.11): (1) The region of k space near the origin,
which would be heavily weighted by the 4ve'/k'
from the long-range Coulomb interaction, is
unweightedby the three-dimensional phase-space
volume element 4mk'dk; this is fortunate, since
both the LDA and the gradient expansion for S(k)
are wrong at small k. [For example, in Fig. 1 we
can compare the small-k behavior of the LDA
((k: k') and the gradient correction ((k: k ) with the
exact behavior ((x:k) for a metal surface. ] (2)
Equation (2.2) implies that S(k =0) =0, which also
follows from the sum rule (2.3). We also expect
that the exchange-correlation hole around an
electron will be sufficiently localized so that
lim, ,S(k}=0, with the limit achieved when k be-
comes small compared to the inverse of some
microscopic length such as the Fermi-Thomas
screening length, and not merely when k becomes
small compared to the inverse of the size of the
system. This expectation is satisfied by the

(2.14)
Here the first term is the wave-vector decomposi-
tion of the local-density approximation (LDA) which
was discussed in Ref. 2:
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LDA (Refs. 1, 2, and 14) and also by our exact
limit (2.13) for the metal surface, but not by the
gradient expansion, as we saw in Fig. l; this is
a first indication that the gradient expansion is
even more seriously wrong than the LDA in the

0 llmlt.
In order to evaluate the ground-state exchange-

correlation energy of a real (spin-unpolarized)
electronic system from (2.1), we need to know
the density-density correlation function for a
whole series (0 ~g (I) of hypothetical systems
having the same density profile n(r} but differing
electron-electron interactions:

V(r —r') =ge'/Pr —r' ~. (2.16)

As g decreases from its real value of l, we have
to turn on a "deus ex machina*' potential to hold
the density profile n(r) fixed. At g=0 we have a
system of noninteracting electrons moving in a
potential i" (r) which is the sum of this degs ex
machina potential plus whatever external potential
was present in the real system, so

6n'"(r, t) =6r""(r, (u)e ' 'e~'+c. c. , (2.20)

where g =O'. The contour e in (2. 19) encloses the
positive real axis in the positive sense. We ab-
breviate

(2.21)

as

Xgv ox' (2.22)

« "' ~r, &) = 6t""~r, ~) + d'r' V r —r' 5n r', u)

or
(2.23)

in an obvious matrix notation which can be used
in real or Fourier space.

In order to use (2.19), we need to evaluate the
dynamic susceptibility y of a nonuniform many-
electron system. We can make progress by defin-
ing a screened potential,

n(r) =P f (0.()r~',
a, s

where

(2. 17)
«"' =5m'" + V5n, (2.24)

and a function y(r, r', v) which gives the system's
response to 5v"'

[-V'+t' '{r)]P,(r) =e g„(r) (2.18) 5n =X5v'"' . (2.25)

and f is the zero-temperature Fermi-Dirac func-
tion. (Pur units are such that 2m =g =1; although
we sometimes write e' explicitly, we also take
e' =2 so that distances are measured in Bohrs and
energies in rydberg. ) Equations (2.17) and (2.18)
are just the Kohn-Sham (KS) equations' of density-
functional theory, and can be written down, with
the same v (r), for any g; atg=l, the only con-
tributions to r" (r) are the external potential of
the real system and the self-consistent local elec-
trostatic and exchange-correlation potentials'
from the electrons.

To evaluate the energy from (2.1}, we use the
zero-temperature limit of the fluctuation-dissipa-
tion theorem":

«I
d&u ImX(r, r, a)

7T
Q

Equations (2.22), (2.24), and (2.25) have the solu-
tion

(2.26)

So far, no approximation has been made, except
the assumption of adiabatic connection between the
ground states of the noninteracting (g =0) and fully
interacting (g= 1) systems, and this assumption
is hardly questionable for the system of nearly
uniform density which will be our main interest
here.

To progress further, we must approximate X in

(2.26). We make the RPA; i.e. , we replace X by

)(p which is what X and y reduce to when g = 0 $0
is the dynamic susceptibility of a system of non-
interaeting electrons with density profile n(r}. By
evaluating the standard expression" for X with
Slater-determinant wave functions, or simply by
applying time-dependent perturbation theory to
the independent motion of each electron, we find

l «I&ax(f', r, ~),
7rl

(2.19)
x p*(r)p .(r)g~.(r')P (r'), (2.27)

where the dynamic susceptibility y, which depends
implicitly on g, gives the linear response 5n of the
system (at interaction strength g) to a weak ex-
ternal perturbation 5v"' oscillating with frequency
CtP, x = x.(1 —I'xo) ' (2.28)

where g are the Kohn-Sham one-electron wave
functions of (2.18). The approximation for the
energy based on (2.1), (2.19) and
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is what we mean by "RPA in a density-functional
context. "

Now recall that to evaluate the gradient coef-
ficient B-„(n) of Eq. (2.14), we only need the ex-
change-correlation energy to second order in the
deviation from a system of uniform density [in
which v (r) =0]. We expand (2.27) to second order
in v (r) as

We assume (with no loss in generality) that the
contribution to the energy of (2.1) which is first
order in c&

s vanishes, i.e. , that fdsx~ '(x) =0.
Then, neglecting the first-order piece of X (which

is irrelevant for the energy) we find that (2.33)
becomes

x = x..(1- vx..} '+(1-x..v} 'x.(1- vx..} '

Xo Xof +Xi+X2 ~ (2.29) +(1 —Xo„V) 'X,(1 —VXo ) 'VX, (1 —VX,„) '. (2.34}

where

X.„(r,r', (u) =— e'" &' "X,„(k, (g),0

~}— fK fK+«
+'&+e« —e«+s

(2.30)

is the usual Lindhard susceptibility for a system
of noninteracting electrons of uniform density,
and e~=R'. The first- and second-order terms
in (2.29) are

ds 5xo( r ~) «s - ~

Xl. 1 g, Ks( i ~ (r]j 7

rg) „Ks p

d3 d. 5 Xo(r, r', ~)

(2.31)

«s(r )v«s P ) (2.32)

x = (x..+x, +x.}(1- vx..—vx —vx. } '. (2.33)

Note that the functional derivatives above are to be
taken at constant particle number. We need the
expansion to second order in v" of

Ks
X~(k& k+q, hl) =—A«q((d)v q, (2.35)

X,(k, ~) =—', 7 B~ -, (~)Iv-, I'. (2.36)

[Note that only the diagonal of the transform of

X, is needed in (2.34).] The coefficients A and B
could be found by expanding the expression (2.27)
for X, to second order in v" by ordinary time-
independent one-particle perturbation theory.
Time-reversal symmetry tells us that A„~(&u)
=A «q „(tu), while the inversion symmetry of the
uniform system gives A„„(&u}= A „~(~). Now

(2.34) becomes

Equation (2.34) is simplest in Fourier space,
where V and X,„are diagonal. We follow the
Fourier-transform conventions of (2.6)-(2.8) and

apply translational invariance arguments [i.e. ,

the functional derivatives in (2.31) and (2.32) must
be invariant under an arbitrary equal displace-
ment of all spatial arguments] to find that the
needed quantities take the form

X (k, (u) = X,„(k,u))/e (k, (u) +, - —,Q [B-„-„(~)+ 4Aa -4u) V-„,q/e (k q, (u)] ~v q
~', (2.37)

where

e(kv) =,1 —V„x,„(k, &u)

and

V« =4ve'g/k'.

(2.38)

(2.39)

Note that e depends implicitly on g, since V], does.
KS

To get an expression resembling the gradient expansion (2. 14), we need to eliminate v from (2.37) in

favor of 6pq, the Fourier transform of

N
an(r) =n(r) ——,0 '

where n(r) is given by (2.17). This we can do without approximation, since rigorously An(r) is given by

applying time-independent perturbation theory for P to Eq. (2.18), treating v" as a weak perturbation,
with the result

n.n, =X,„(q, 0)v~q . (2.41)

We find, after substituting (2.41) into (2.37), and the result into the double-equal-wave-vector Fourier
transform of (2.19), and the result of that into (2.5), that
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14&e ~ '~Z d~ X..(k, ~)Vk, g ffk.;(~)Vk
2 k 0 g, 27(i q(k, (()) fl' - e'(k, (d) ' e(k+q, (d) e (k, (d)i

(2.42)

The only coupling-constant dependence in the large square bracket of (2.42) is in V-„which is either ex-
hibited explicitly or occurs implicitly in e [see Eq. (2.38)]. Therefore the g integration is easily per-
formed and one finds for our system of nearly uniform density

E„(k)= E,","'"" (k) +—$ K„(k,fi) (6 q~', (2.43)

where

E "„""""(k) = —2, N —~g . In@(k, (())
unitorm ~ 4me y d(d

C 771
(2.44)

is the wave-vector decomposition in RPA of the exchange-correlation energy of the uniform electron gas
of density N/Q. [Note that e(k, (()) is now and hereafter given by Eqs. (2.38) and (2.39) but with g= 1; it is
not the exact dielectric function of the uniform electron gas. ] What is of more interest, we find in (2.43)
that

If.,(»(()=l f 2,. (~k.,( )u(&, ) ~ &At, (~l'U(&, Alt& ((, )&(y))X;.0(, o),
C

(2.45)

where

'U(k, (d) =4ve'/k e(k, (d)

and

D(y) = 2(1 +y) 1( —-&n((+v))
V

(2.46)

(2.47)

with

y = e(k+Q, (d)/&(k, (u) —1. (2.48}

1 47T8 I d(d
A), (n) = ——,n ——,

'
. Inc(k, (d),, 2@i

(2.49)

as anticipated in (2.15), while the wave-vector de-
composition of the gradient correction is

B), (n) =-,'vqv-, K„„(k,q) (, (2.50)

We also note for completeness that

K (k 0)= qAj(n), (2.51)

Equations (2.45) and (2.50) comprise the basic

Note that K„(k,fi) contains two terms: a "Hartree-
Fock-type" term with one factor of the screened
interaction '0, and a "fluctuation" term with two
factors of 'U.

If the small deviation dn(r) of the density from
uniformity is also slowly varying in space, (2.43)
may be expanded in powers of q. We follow Ma and
Brueckner' by comparing the small q expansion of
(2.43) with the small dn expansion of (2.14}. We
find that the wave-vector decomposition of the
LDA is

equations of this paper.
The factor D(y} appears in (2.45) specifically

because k is defined to be the same k as in Eq.
(2.5), and hence the same wave vector used in our
earlier work, and for which the various limit
theorems derived there apply. D(y) may be re-
placed by unity in the integral 5~-„K„(k,q), which
is the relevant quantity for obtaining the total
gradient coefficient rather than its wave-vector
decomposition. (To see this, simply make the
change of summation variable k- -k —q and apply
the symmetries of the uniform system. ) We would
have missed the factor D(y) entirely if we had
tr ied to guess the wave -vector de

corn

position
from RG (Ref. 6) rather than deriving it from
(2.1}.

Although our expression (2.45) for K„,.(k, q) was
derived from our density-functional version of
RPA, the Kohn-Sham potential v" canceled out
completely, leaving a result that is identical to
what would be found from the simple or lowest-
order RPA diagrams for the energy, or equiva-
lently from the "time-dependent Hartree approxi-
mation" for the density response. In the remainder
of this section, we will discuss the extent to which
this kind of cancellation is a general feature of the
exact K„.(k, q).

To this end, we give a diagrammatic interpre-
tation of our approximation. First note that
'U(k, (d) = Vk/e(k, cu) is the RPA screened interac-
tion, i.e. , the bare Coulomb interaction V&

divided by the RPA dielectric function [see Fig.
3(b)]. B), ~(v) is a second functional derivative of
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I

+

(b) = +

FIG. 3. (a) Density response to an already screened
potential in the HPA. If the solid lines represent the
propagators in the full nonuniform system, then this
represents y p,

. if the solid lines are uniform system
propagators then it represents yp„. (b) The equation
which determines U. Here'U is the wiggly line, V&
—= 47r8 /k is the dashed line, and the bubble represents
X p+ as in the second case above.

+ I i +

the density response function [see Fig. 3(a)j. The
integral of the first term in the square brackets of
(2.45) can thus be represented by diagrams of the

type shown in either Figs. 4(a) or 4(b), depending
where the derivatives are taken. The quantity
h& ~(m) is the lowest-order triangular vertex be-
tween three interactions, so that the integral of
the second term in the square brackets of (2.45) is
the sum of the two (equal) diagrams of Fig. 4(c),
and includes the factor D(y) as discussed earlier.

It might seem on the surface that this result
does not account for the higher-order diagrams

(d)

Ibi

qC

(c)

FIG. 4. {a) and (b) are diagrams for the B]f q {fd) of
Eq. (2.36). The derivatives with respect to v are taken
at the corners. The && means that the sum over inter-
nal momentum k is not performed at this point. (c) The

2
contribution 24& q

'U {k,&)'U(k+q, &). (d) A higher-or-
der diagram that is included approximately in our treat-
ment.

FIG. 5. (a) Typical diagrams for the density res-
ponse 6n q to an already screened potential v~q repre-
sented by the solid dot. The contribution to the right
of the vertical dashed line is the contribution to the total
Coulomb exchange-correlation potential v. Arrows are
omitted from the electron lines for simplicity. (b) Dia-
grams for y —Xp„ /e. Contributions to the left of the
first or to the right of the second vertical dashed line
sum to the nonlocal Coulomb-exchange-corrlation poten-
tial v. (c) Diagram combination occurring in K„,(k, q).
The diagrams in the numerator are the sum of the dia-
grams in (b) above [note that there are two diagrams
each of the type of the first and third in the numerator
in (c), but we have included but one each for brevity].
The quantity which is squared in the numerator is the
sum of the diagrams of the type (a) above. (d) A dia-
gram of the type that occurs in the full shielded poten-
tial approximation. The part to the right of the dashed
line is a many-body interference term between the two
screened potentials. Such terms are not included in the
summation above, but are eliminated in our approxi-
mation by the assumption of the existence of a local ex-
change-correlation potential.
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which would occur, for example, in the Kadanoff
and Baym shielded potential approximation, "and
which make an important contribution to X of Eq.
(2.25}. These are the terms which RG (Ref. 6) try
to account for with their "g process. " For example,
if Fig. 4(c) is large, should not Fig. 4(d) be at
least non-negligible? To see that these higher-
order diagrams have been approximately accounted
for, we go back to (2.37) and (2.41).

KS
Consider first (2.41). Recall that v-, is the ef-

fective or Kohn-Sham potential induced in an in-
itially uniform system by an external static poten-
tial vq [which is not to be confused with the later,
time-dependent perturbation 5~ "'(r, u)]. If we

sL.'I e x I

define a local, static screened potential ~-q =v-q

+ V hn;, where 4n; is the density response to v "',
then Anq is expanded as in Fig. 5(a), where the
solid dot represents &

"'. The sum of the terms
to the right of the dashed line represents a many-
body screened potential, called v in Fig. 5{a). It
naturally comes out of the normal perturbation
expansion as a nonlocal potential, but we know

that, at least with respect to the calculation of a
static density as in (2.41), we may redefine things
so that it may be replaced by a local potential;
i.e. , we simply define

~, =~, X.(q, o}/x,„(q, O), (2.52)

where y„@,0) is the irreducible polarization part
of the susceptibility of the uniform system [a
special case of (2.25)]. Equation (2.41) can there-
fore be made exact, as is weil known from density-

KS scr
functional theory. Note that Uq/ dq differs non-
negligibly from unity, and at small q is equal to
(1 —q) ', i.e. , to the ratio v/e, of the compressibil-
ity of a neutralized interacting uniform electron
gas to that of a noninteracting one, which diverges
when r, gets as large as six or so."

Consider now the diagrammatic expansion of

)((k, &u) —y,„(k, &u)/e(k, &u), although not necessarily
in the approximation (2.37). Typical diagrams
that would occur in the full shielded potential ap-
proximation'' are shown in Fig. 5(b). Again the
solid dot represents the screened external poten-
tial ~ "", while the x denotes the place where there
is a missing factor of V; and where k is not
summed over. The parts of Fig. 5(b) to the right
of the right dashed vertical line and to the left of
the left dashed line can be summed into a (non-
local and time-dependent) many-body screened
potential v. The diagrams contributing to v in Fig.
5(b) are the same as those contributing to v in Fig.
5(a). The quantity K„,(k, q) [see Eq. (2.43)] is then
given by the sum of diagrams 5(b) divided by that
of 5(a) squared; this is shown in Fig. 5(c}.

We see that the effective potential v tends to
cancel. Indeed in the approximation (2.45) it gets

eliminated exactly. This is because we can gen-
erate our approximation (2.45) from the diagram
of Fig. 5(c} if we replace the nonlocal v by the same
local potential in both the numerator and the de-
nominator. Since the local potential then cancels
out, it does not matter what we take it to be; in the
usual derivation of RPA as a "time-dependent
Hartree approximation, " i.e. , in the usual lowest-
order diagrammatic RPA, this local potential turns
out to be g "'. while in our density-functional ver-
sion of RPA it turns out to be vK'. Although in the
full shielded potential theory we can rigorously
have the local potential v in the denominator via
(2.52), there is no way to redefine things in all the

terms of the numerator so that v is the same local
potential as in the denominator. In addition, there
is the somewhat related problem of many-body
interference terms between v's in diagrams
where the v's share the same propagator lines
[see Fig. 5(d)].

It is thus clear that our treatment of the higher-
order terms consists in assuming that themany-
body screened potential v can be replaced by the
same local, static potential (v~ or u"') wherever
it appears. In an exact theory this potential
cancels from the problem only approximately.
We make the approximation that the cancellation
is exact. Note that the corrections to either the
numerator or the denominator of (2.45) are of the

order of (1 —r)) '; it is this principal effect of the

higher -order corrections that cancels. Our treat-
ment of the higher-order terms is thus very simi-
lar to that of RG,' who approximate various sums

of many-body diagrams by their compressibility
or small-q analogs, and who find a similar can-
cellation of the (1 —q) ' terms. In their method

there is a remnant, considerably smaller than

(1 —q) ', which fails to cancel. Whether this extra.
remnant (which makes roughly a. 10@ correction
to the gradient coefficient at r, =2} should be

present is a question which is probably beyond the

state of the art to answer, as one would not be
hard pressed to produce other terms of the same
size. In the absence of convincing evidence, we

tend to prefer our approximation because it follows
clearly from the density-functional version of RPA,
without the need for intricate argumentation.
Nevertheless, the important conclusions of this
paper do not hinge on this question.

Finally we conclude by mentioning that all the
results of this section could have been (and indeed

originally were) derived directly from the rules of
many-body perturbation theory, without any appeal
to the Kohn-Sham' formalism. We have presented
our results in the language of the latter to make
contact with the area where we suspect most of

the applications of our work will be.
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III. EVALUATION

To obtain the wave-vector analysis of the gradi-
ent coefficient B„,we must expand K„,(k, q) in

(2.45) to second order in q according to (2.50).
There are a number of ways to do this, all of
which are long and tedious. We chose the finite-
temperature diagram technique, "and made the
Taylor-series expansion directly in the diagrams.
There are two sources of q' terms in (2.45):
(1) the q' term from the expansion of the square
brackets times Xo'„(0, 0) and (2) the terms in the
square brackets evaluated at q =0, times the q'
term in the expansion of X~~(q, 0). We consider
first terms of type (1). Later we will consider
the (simpler} terms of type (2) which we call the
compressibility terms because they comprise the
wave-vector analysis of the compressibility co-
efficient g.

We define the fluctuation term as
and

1
P+(k &} g fKt»

0 ~ 8 61(i p CIC
Ks

1 ' 'F
dx

ding

27) 1 0 & —2gQg —g
(3.7)

F(2& ~
Into) [2A&0) Ate)W(o) +(A(())2gr(o)

2mi

+2A"'A("W'"+ (A")'W"'].

(3.6)

We evaluate A (and later a number of other quan-
tities) directly from the diagrams in terms of the
frequency-dependent response functions of the
electron gas.

To this end we define

&i((()=J q
A, , ( lu(i. , )'U(& ((, )D(v),

P-(k &) g fK+»
0 - R 6K+k+6

Ks

(3.8)

We note that P'(k, (d) =P (k, -(d). We also define

and the Har tree- Fock—type term as

(3.1)
P(k, (v) = P'(k, u&) + P (k, (d),

P(k, (d ) = P'(k, (v) —P (k, (v) .

(3.9)

(3.10)
d(d

H»(q) = . B» q((v}1)(k, (a).
7rl

(3.2)

$0) g2)
H-„(q) =H„+H„+ ~ (3.3)

Xou(q ~ 0}=
Xou + Xou + '

where the superscript (n} indicates the order in q
2(e.g. , F» - q', etc. ). Therefore

q B- a =-,'(X"')-*[(2F',"H',")

-(2X.".fX.".)(2F-» +H', )I (3.4)

We expand these, as well as X,„(q, 0) in powers of
q'.

(0) (& )
F»(q) =F» +F +"-

P(k, (d) is the frequency-dependent density re-
sponse function of the uniform system (diagram-
matically a single bubble of two bare propagators)
and P(q, (v +id) =X,„(q, (d). It should be clear by
inspection of the diagrams of Fig. 4 that most of
the expansion of A and B in (3.5) can be obtained
by taking various derivatives of P. The places
where this was not possible were then isolated,
and (3.7), (3.8), and (3.10) were then used to ex-
press the latter as derivatives of P.

In this manner we obtain

(3.11)

where g is the chemical potential (in the absence
KS

of v-). Similarly, we find

The first terms in the square brackets are the
lengthiest, and we consider them first.

In an analogous manner to (3.3), we expand
and

(3.12}

A =A" +W" +A"'+ (3.5a) = —m(ft &») +mq a
—)rq +))q a .(2) 1 --28P, 82P 1 2

a2P
1 2a2P

8 p. 8 p, 8$.8(d B(d

and defining

W-»(q} = 1)(k+q, ~)f)(y)

we expand

m = W~" +~~"+W~2).

(3.5b)

(3.5c)

In terms of these quantities the fluctuation term is
then

(3.13)

The expansions for 'U and D, on the other hand,
are obtained directly from their defining expres-
sions (2.46), (2.47), (2.38), and (3.5).

Before writing the results for I', it is convenient
to define some dimensionless quantities, and in
the process split the various tensor quantities into
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their longitudinal and transverse components. We
let x=k/2kF, where kF is the Fermi wave vector,
g=-q/2kF, s' =k'„T/(2kF)'; where k, T is the Fermi-
Thomas wave vector (k', T=2e'kF/w). Our units are
always such that h = 2m = 1. We also let

W =(2w's' jkF)w, ,

W ' =(2w's'/kF)Q ~ kw, ,

W "=(2w's'/k )[(Qxk)'w,'+(Q ~ k)'w' ]

hf ~ =(1/32w kF}XO,

(3.14)

(3.15)

(3.16)

(3.17)

i,'=s' f dy(qq, ',y,' ~ yyyyy, '(,
0

(3.21)

f2 =s dy 2X w A.,'+A', w
0

hl" =(I/32w'k )Q. k~„ (3.18)
h" ' = (I/32w'k, )[(Q x k)'X'+(Q. k)'~'] (3.»)

where k is a unit vector in the k direction. Sim-
ilarly we define a dimensionless form for F:

Ff, = —(s~/64wkF)[(tq}xk}'f, '+(Q k)~f,']. (3.20)

Finally, in anticipation of deforming the contour
c in (3.1}and (3.2} so it runs up the imaginary
axis, we define y =-i(2kF) '(v.

Upon substituting (3.14)-(3.20) into (3.6), we
obtain

H-"„(q)=,B-„-,((d) U(k, (v) +H(, (q),
C

where Bk q
is the same as Bk q except the deriva-

tives with respect to v ' [see (2.31) and (2.32)]
are evaluated at fixed p, instead of fixed N.

First consider H(„and in analogy with (3.3)
let

(3.25)

where B is B as evaluated by the usual diagram
technique, and H is the extra contribution from
shifting the contour.

The second complication is that the diagram
technique fixes the chemical potential p, , rather
than the particle number N. It is thus most con-
venient to evaluate functional derivatives at con-
stant p, , and then add a term to account for the
changes in p. Since fd'r v '~(r) =0, this problem
occurs only in second-order functional derivatives,
as in B. This complication is actually less annoy-
ing here than in the zero-temperature diagram
technique, where it occurs as a nonequivalence of

and p, derivatives of the single-particle Green's
function (see Ref. 5, Appendix A). We define this
extra chemical potential shift term C by replacing
(3.23) by

H-„(q) =H-„(q) +C-„(q), (3.24)

+ 2Xpkywp& y
+ A.pNpw2) . (3.22) (3.26)

The analytic expressions for the X's are a
straightfor ward but tedious consequence of per-
forming the derivatives indicated in (3.11)-(3.13),
using the expressions for the P's given in (3.7)-
(3.10). The w's are obtained directly by expanding
their definition [see (3.5}]in powers of q, using
(2.46) and (2.47). Both above results are lengthy
and are listed in Appendix A.

We now turn to the Hartree-Fock-type term
H„which is the second-order expansion of (3.2).g2)

Here are two slight technical complications that
arise. The first is that the integration contour that
occurs naturally in the finite-temperature pertur-
bation technique is not the contour c, but rather
the one which surrounds the poles of the Bose
function (es —1) '. If the integrand [in our case

„B( q)'U(d(k, (d)] goes to zero sufficiently rapidly
at large i(v i, then the contour may be shifted to
one which becomes equal to c as the zero-tem-
perature limit is taken. However, for the Hartree-
Fock term [g(k, (d) = V~] this sufficiently rapid
vanishing does not occur, and there is an extra
contribution when the contour is shifted. We thus
replace (3.2) by

and

BP 8P+q2 2

Bfl 8(d 8 p. 840

-(2)
H„= -q' V, /(96w'k3F }.

(3.27)

(3.28}

Again we separate the longitudinal and trans-
verse components and introduce dimensionless
quantities:

B„((d)=[1/64w'(2k )'][(Q k)'f(,'+(Qxk)'k, '],
H(, = -(s'/64wk'F )[Q ~ k)'k"' + (Q x k}'k,"' (3.29)

Then one finds

h2 = d&Wpb2+h» (3.30a)

(0) (2)
H =H +P )k k k y

where, as usual, the numerical superscript indi-
cates the order in q. Then using the same kinds
of manipulations that lead to (3.11)-(3.13}, we find
from the diagrams of Fig. 4 that

(2)Pyg~28P28P((d)=k w. (q &a)' .-q' 3
Bp. Bp,

yyi((((= f q
. (y„,„( (u(q, ( y(j(q(, (3.23) h2' = dy Wpb2 +h2 .

0
(3.30b)
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Evaluating the derivatives in (3.27) results in

lengthy analytic expressions for b,' and b,', and
these are listed in Appendix A, along with the
expression for h, .

We now turn to the chemical potential shift term
C&(q) in (3.24). In order to keep the particle num-

ber constant when the effective potential v~' is
applied, the chemical potential must shift by an
amount 5p, given by the average over the unper-
turbed Fermi sphere of the second-order correc-
tion 5e-„ to the Kohn-Sham eigenvalue:

(3.39)

where

-(0)& 1 8'P
fair (fd) =2 82 Bp.

and

(3.40)

where Af'~ is given by (3.11) and 'U(k, uf) by (2.46).
For the Hartree-Fock-type term we expand (3.25)
[see (3.26)], and then

5P, =—
2 Jq vq

Hj = -(I /8 ff' k F ) V, . (3.41)

Jg
flu ~ [ ( 0)]n I &q~ (3.31)

where

a
&, =k,—„X..(q o)

kF Bp.
(3.32)

(3.33)

Then, following the conventions of Eqs. (2.45)
and (3.2), C&(q) is given by

s E uniform (k)
Q~ ap,

(3.42)

Again we use reduced dimensionless quantities:
(0)F-„=(-2/64vk', )f, ,

P„=(-s'/64wknF)h"

Ci, =(-s'/64ffk'F)co.

(3.43)

Because all the q dependence of the chemical po-
tential shift term [Ci, (q) of (3.33)] is in Jq, it is

g2)clear that C& and C~o are related by Q' times a
numerical factor, and we find

(0)C-„=3C-„ /q' .

where E„"„"'" (k} is t.he wave-vector decomposition
of the uniform electron gas [see Eq. (2.44)],

Then

f() g dy M) 0/0 (3.44a)

(0) (~)
C-„(q) =C„+C-„+~ ~ (3.35}

BE""'" (k) 1 1=Qz-' — +— dymoko . 3.34
Bp, 2x 4p

Note that all the q dependence of (3.33) occurs in
Z-„and all the k dependence occurs in (sE/elf),
Let

h, = dy mobo+ho,
0

Co = 3C2 = 3C2,

(3.44b)

(3.44c)

where I, is given in Appendix A by (Alla}, Xn is
given by (Al), c,' by (3.37), and

where as before the superscript indicates the
order in q, and define

Ci, = (s'/64ffkF)[c, '(Q ~ k)' +c,'(Q x k)']. (3.36)
and

b, = 16x(1 —x)/a —16x(1 + x)/b

h, = 16ff/x',

(3.45)

(3.46}
The derivative in (3.32) is readily evaluated. In
analogy to (3.30) we write (noting that c,' is triv-
ally equal to c,', and performing the Hartree-Fock
part of the x integral analytically)

cg = c2 = dy I pb2 + c2 ~ (3.37}

. h(k, ~)A"'1',dc@

C
(3.38)

For uniformity, the quantities b, and c, are listed
in Appendix A, Eqs. (A14) and (A15).

We now turn to the "compressibility" terms, that
is, the last terms in the square brackets in (3.4).
These are considerably simpler than the preceding
second-order terms, but may be calculated in

go)much the same way. The fluctuation term F& is
given by

4ffx (2kF)' —~

(3.4'I)

where x=k/2kF as usual, and kF = kF(r) is the
local Fermi wave vector. The normalization is
now such that

where a and b are given in Appendix A.
Since Xf'„l and -2X,"„'/)z,'„' are easily evaluated as

(in our units) —k~/2x and 2Q'/3, respectively,
we are now ready to put the pieces together into
(3.4). We note first that the original decomposition
(2.5} is normalized such that the total exchange
correlation energy is given by (2.4). Therefore
«XC8-„of Eq. (2.14) has similar normalization. We

«XC
would rather define a Bl, that has the same dimen-
sions as B„,of Eq. (1.1) (when dimensions are
restored). We therefore let
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B,, 1 = dx Pxc (3.48)

where the angular brackets indiqate an average
over the direction of k, and 1 is the unit tensor.
%e now separate p" into its tensor components
and introduce dimensionless quantities:

XX xxP"'(x) =a Z, (x) ~ +Z, (x} 1 —~ (3.49)

where

2 Xp".
' »' 2kF

jr e2 e2

() ((,)
&,) „,—2 . ( 4 x (0

and where x = k/2kF. Note that

P"(x)1=-&P"(x))=aZ(x)1,

where

Z(x) =3 Z, (x) +-,' Z, (x).

(3.50)

(3.52)

and

Z, (x) = (-x'/4(()[(2f, ' +h)'( + c,'

+2(2f, +h,"+c,)/3]

Z, (x) = (-x'/4w)[(2f2'+h2)" + c,')

(3.53a)

We find from (3.4) plus the various definitions of
reduced quantities" that

a„(n) =eC„()/n".n',

where

(3.56)

(3.57)

familiar is the distribution ((f/d))(sgn) ln
~ $ ~}.

This, like the principal-value integral 1/$, has a
precursor on both sides of $ =0 proportional in
magnitude to ~1/$ ~. Unlike the principal-value
integral, however, these precursors are even
functions of $; nevertheless, the integral over $
is well defined because of an infinite negative con-
tribution in the infinitesimal region around ( -0
(x- 1).

For completeness we note that the expressions
(3.53), for the "Hartree-Fock-type term" when
evaluated to the lowest order in e', constitute the
wave-vector analysis of the gradient expansion for
the exchange energy:

(Z, (x)), = —4x8(1 —x) +6(x —1) + —', 5'(x —1), (3.55a)

JZ, (x)]„=-4xe(1 —x) + ~ 6(x —1) (3.55b)

[where all the frequency integrals have been per-
formed analytically in the complex plane by re-
storing the contour c of Eq. (2.19)]. jz(x}},has a
very different structure from Z(x); in fact, the
former vanishes at small x where the latter has
a strong peak, as discussed in Sec. IV.

Finally, we can summarize the results of this
section by writing the gradient coefficient of Eq.
(1.1) as

+ 2(2fo +ho + co)/3] . (3.53b)

4
Z,(x)- (,/2)

6(x —1).
(3.54a)

(3.54b}

The Dirac 5 function and its derivative 5 are
familiar; so is (d/d$) ln~ $ ~

which is just the
principal-value integral of 1/(. Perhaps less

The expressions listed in Appendix A are in a
form suitable to numerical evaluation of the y in-
tegrals, (3.21), (3.22), (3.30), (3.37), and (3.44),
which determine Z, and Z, according to (3.53).
Near x=1 (& =2k(;) further analytic work had to
be done, as Z(x) has singularities at x= 1 which
can be represented only by distributions and not
by ordinary functions. Fortunately the coefficients
of these distributions canbe expressed analytically,
and we find that for x-1 the leading terms are

Z,(x)-, [36(x-1)+5'(x-1)]3(1+s' 2)

S g(d

and Z(x) is given by Eq. (3.52). For exchange
alone, one has' t."„=-1.667&10, while for ex-
change and correlation C„. is +2.568x10 ' in the
high-density limit' and does not deviate far from
this at metallic densities"" (see Appendix 8).

IV. RESULTS AND DISCUSSION

The y integrals determining Z, (x) and Z, (x}were
evaluated numerically using the expression listed
in Appendix A. This was straightforward (but
tedious) except for small x and x-1 where special
care had to be taken. The results are shown in
Fig. 6 for a given electronic density corresponding
to r, =2 (&mr', @g =—1). The gradient coefficient it-
self is proportional to the weighted [see (3.52)]
sum of the areas under the two curves, plus the
extra contributions of the distributions near x = 1.
The gradient coefficient B„.thus obtained was
plotted vs r, in Fig. 2 of Ref. 10. There we saw
that the coefficient was very close to that of RG
(Ref. 6); the only difference is the slightly different
treatment of the higher-order terms in the two ap-
proaches. Note that the variation with density,
once the leading n ' ' dependence is factored out,
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is rather slow, so that a major error would not
be made if the high-density limit (for Z) were to
be used at all densities. If more accurate results
are needed, we give an analytic fit to these re-
sults in Appendix B. Two words of warning are
in order, however. The first is that although we

believe our result (or that of RG) is an excellent
estimate of the true gradient coefficient, we do
not know of any examples of physically interesting
systems where the density variation is slow
enough for the gradient expansion to apply. As
we saw from our previous account of the present
work, it certainly does not apply to a metallic
surface. Second, note the behavior of the Z co-
efficient at high density according to Fig. 2 of
Ref. 10. The sharp depression as r, -0 is real;
the gradient coefficient is very rapidly varying in

a small region around r, -0. This means that,
even though the value of Z at physical r, values
(2 ~ r, ~ 6) is not much different from the Ma and

Brueckner' high -density results, a ser ies ex-
pansion ' of the gradient coefficient around r, =0
is bound to fail to give accurate results in the
physically interesting range of densities.

Returning now to the curves of Fig. 6, we see
that most of the structure occurs at x-1 in Z,
and «-0 in Z, . The sharp increase in 1ZI 1

at
x-1 looks like a major contribution at first, but
actually it is just the precursor of the distribution
(d/dx)[sgn(x —1) lnlx —11]. Its weight is essentially
canceled by the singular contributions right at
&=1. The extent to which this cancellation occurs,
however, is not evident until the wave-vector de-
compos ition is integrated over .a varying dens ity;
we will see this later.

The only important structure then is at x-0 in

Z, . This corresponds to a long-wavelength ex-
citation traveling perpendicular to the density
gradient. We will term this excitation a "gradient
mode. " We will find that this long-wavelength
region in Z, (note that Z, is weighted twice as

FIG. 6. Longitudinal (dashed line) and transverse
(solid line) coxnponents of Z versus wave vector ~=k/2kF.

much as Z, in the energy) makes the predominant
contribution to the gradient term in the exchange-
correlation energy of a surface.

It is instructive to find out which of the many
contributions gives this long-wavelength peak, and

to evaluate this region analytically. Inspection of
the k (or x) dependence of (3.21), (3.30), (3.37),
and (3.44) along with the corresponding expres-
sions in Appendix A convinces one that the leading
contributions at small 0 all come from the fluc-
tuation term f. This is not inconsistent with the
earlier finding of RG that the fluctuation term
makes the largest total contribution in the high-
density limit. Inspection of Fig. 4(c) makes it
clear that this term is the energy of a bosonlike
excitation (clearly becoming a plasmon as k-0)
which scatters twice off the potential from the
density gradient.

We now evaluate f,' analytically as k-0. Refer-
ring to (3.21), (Al)-(AS), (A8), and (All), we see
that the leading contribution to f,' comes from

f2 ~ S dg A,0'M)(P)2 .
0

Referring to (Alld), one sees further that the
leading contribution to m,' is

(4 I)

(4.2)

This is a key point, because it means that the
only q dependence relevant for f,' originally came
from the bare potential V„,q; therefore in obtain-
ing the transverse contribution we need only A, &,

and D at zero q [see Eq. (3.1)].
At zero k, we have '

and

e = 1 —Ivp2/Id2 = 1 + s'/Sy'

).,- 4x'/y'.

(4.3)

(4.4)

Substitution in (4.1}gives

f,'- -(12IIv 3/s)(1/x )

and

Z, (0)—6WS /s .

(4.5)

(4.6)

Z, (0) =0. (4.7)

For r, =2, we find that (4. 6) gives Z, (0) = 18.04,
which clearly agrees with the numerical evaluation
shown in Fig. 6.

The results (4.6) and (4.7) are quite general
(beyond RPA). It is clear that there will always
be a "triangular" vertex [call it A„„(!d}]which is
analogous to (v,"s/I!,'")AI, -„(&v) of the RPA and which

Although it appears that several terms in the ex-
pansion (3.22) for f,' would contribute to this order,
one finds that they cancel each other, so that
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connects at each corner to a screened potential
line. Then there is always a fluctuation diagram
representing the modified energy of the long-
wavelength fluctuation, and which is given by
[cf. (2.42)]

dP flue{ (k)
{ g 4A ( )XC 2 2 Q, q

e = 1 —g{d{{/{d (4.15)

so that the integral over g, which is now contained
only in e and V„may be performed and one ob-
tains for this contribution to K„.(k, q) [see (2.43)]

Vj, {{V{,

[Y(k+q, {d)e'(k, {d)]&

x X '(q, 0)Idn-, I', (4.8)

where now 7 is the exact dielectric function

e(k, {d) = 1 —Vz X(q, {d) (4.9)

and X(q, {d) is the exact irreducible polarization
part (for the uniform system). We want to evalu-
ate (4.8) when k and q are both small. Rotational
symmetry requires that" A& „({d){x:k~ (k+q), so
that

k ~ k+q)
A-„q({d) = A-„,({d) (4.10)

Furthermore, since e(k, {d) goes to a constant at
small k, the leading contribution at small k and

q comes from setting & and q =0 in e(k, {d) and
e(k+Q, {d). Similarly we may let q- 0 in X(q, 0).
Therefore

'd
4[A--( )/-(0 0)]'{i .0 X i —s(0

x ), IAn-, I' (4 11)[k (k+q)]'
k' k+q)'

Note that in X(0, 0) the {d-0 limit is taken first
and that we have the rigorous equality

X(0, 0) = (»/», )X,„(0,0), (4.12)

»/», = 1/(1 —g }= lim (v,"'/v, "') . (4.13)

where the compressibility enhancement factor»/»,
may also be written

(4.16)

All the q dependence occurs explicitly in the final
term in large parentheses, whose expansion to
second order in q is 1 —(qxk/k2)'. Thus (4.16)
contributes only to Z, as expected, and involves
only the quantities which led to (4.6) and (4.7)
[(4.16 with the final term in large parentheses ex-
panded is the same as (4.1) and (4.2) substituted
into (3.53), except for the dimensionless notation
used in the latter case]. Thus (4.6) and (4.7) are
exact results.

The fact that such a large fraction of the total
contribution to Z comes from this universal region
at small k gives us confidence in approximations
such as that of this paper or that of RG, where
the fluctuation process that contributes to this re-
gion is treated correctly. Other approximations
to the gradient coefficient, which either ignore
this process or fail to treat it carefully, must be
regarded with suspicion.

We conclude this section by mentioning that the
width of the peak at small k is of the order {d~/vF
or s/v 3 in units of x=k/2kF. Integrating, we find

Z- Z 0 dx= =4.

This estimate gives the correct density depen-
dence for Z (which according to our calculations is
roughly constant), although it over estimates the
magnitude by a factor of 3 or 4, principally be-
cause the true value of Z(x) falls off sharply with
increasing x, rather than remaining constant up
to a cutoff.

The "triangular" vertex A is not "corner symmet-
ric" in the limit &-0, because a finite frequency
e goes into or out of two of the corners, but not
the third. The former receive no many-body
enhancement, but the third receives the com-
pressibility enhancement, so that

limA& 0({d)/Aj 0({d) =»/»o.
k~o

(4.14}

Thus the many-body corrections cancel numerator
and denominator in the square brackets in (4.11}.
Finally in the k- 0 finite {d limit, the exact e(k, {d)
is still given by (4.3), whose coupling-constant de-
pendence is given by

V. APPLICATION TO MODEL METALLIC SURFACES

We have previously" discussed the wave-vec-
tor decomposition of the exchange-correlation
energy of a metallic surface. Using the same no-
tation (except that in the present work we use k
where K was used before) we define this wave-
vector decomposition 7 (k) such that the exchange-
correlation energy per unit area is given by Eq.
(2.12). Here we will generally express y as a func-
tion of the dimensionless variable xs =k/2k~,
where k„~ is the bulk Fermi wave vector deep in
the metal. We define 5y by the relation y—=y~+5y,
where y~ is the local-density approximation to y.
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For large k we showed that y —y~ or 5y —0, while
for small k we derived the exact form (5.6)

(5 1)

where k„and k„are the components of k parallel
to the surface. Upon averaging over the direction
of k, (5.1) becomes just Eq. (2. 13). We also
showed that y~ ~k' at small k, so that the form
(2.13) is contained in 5y, with yz becoming neg-
ligible. In dimensionless units of wave vector,
and cgs units (erg/cm') for y, we find that (2. 13)
becomes

5y(xs) = (3.27 x 10~/r, (2)xs, (5.2)

where r, corresponds to a point deep in the bulk.
The wave-vector decomposition of the gradient co-
efficient provides another expression (5„,y) which

can be compared with (5.2) at small xs, and with

our interpolation scheme at intermediate x~.
When averaged over the direction of k, Eq.

(2.14) gives

5„y=, '" d'r B,"'(n(r)}[Un(r)]', (5.3)
4v k'(2 k, . „)

2v 'A

where

B,"'(n(r)l = —', trB(, (n(r)} (5.4}

and where P is the area of the surface. We will
evaluate (5.3) for model surfaces whose density
n(r) varies only in one direction (call it the z di-
rection). Then we have

5 „,y =, dz B"''(n(z}}-k'(2k, „)
"

„., an '
W oo az

(5.5}

5„,y(x ) =(2.46x10'/r', )I(x ),
where

(5.6)

(5.7)

Note that Z(x) is implicitly a function of the local
density and hence of z. It also depends on z
through its explicit x dependence: x=xs/kF and

kF =kF(z). Upon change of integration variables,
(5.7} becomes

Now introduce dimensionless variables z =k,:„z
and kF = kF/k, „=[n(z)/n(~)]'" where kF is the local
Fermi wave vector (a function of z) and k, .„is the
bulk Fermi wave vector k „",=kF ~, . We let
x=k/2kF and xs=k/2k, „. The decomposition 5 y
then becomes a function of x~ such that the total.
gradient contribution to the surface energy is

dxs5„,y(xs). We let the parameter F, refer to
the bulk particle spacing parameter (47)gr', /3) '

=n(~) =k'(:()/3v'. Then according to (3.47)-(3.51),
Eq. (5.5) becomes

where

p()S+dkF(z)
dz g g.

(5.S)

where z, are all the 2 values where the function
kF(z) is equal to the given value kF. For a typical
surface profile, there is generally only one z,. un-
less a kF is sufficiently close to unity to be within

range of Friedel oscillations; hF" is the maximum
local Fermi wave vector (in our dimensionless
units) and is normally slightly greater than unity.

We expect (5.7) to have a large peak at xs-0.
This can be inferred analytically. Consider the

xs =0 limit of (5.7). This involves Z(0), which

according to (4.6) and (4.7) is given by

Z(0) = (4v 3 /s )kP, (5.10)

where s~ is the bulk value of the screening param-
eter. Therefore

(5.11)

Equation (5.11) is an exact result which holds for
any density profile varying in one direction only.
To see what it means, consider

I x~ x~= dk~ dxZ x) P kp

(5.12)

We know from our previous calculations that

f dx Z(x) does not vary very much with density
0

and for estimates can be approximated by its high
density limit of -1.2. We are left with two inte-
grals (5.11) and (5.12) whose integrands differ only

by a factor of kz". Remembering that kF ~n' ',
we have kz" -n' ' whose density variation is
hardly worth considering, and we set k'„"=—1 which
is obviously a slight overestimate. We therefore
have

5F,y(0) I(0) 4~3 15

f "dxs5FF, (xs) f "I(xs)dxs 1.2ss r,'~'

Thus the gradient approximation wave-vector de-
composition 5„y(xz) has a value at small xs which
is many times larger than the integrated value.
In other words, one might say that to zeroth ap-
proximation the wave-vector decomposition of the
gradient approximation consists of a sharp peak
at zero wave vector, whose width is r,'~'/15 (in
units of 2k~). This conclusion holds for all rea-
sonable density profiles, although the peak width
shouldbe slightly profile dependent. These results
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P(k, }=3ek, (1 —k', ), (5.15)

which allows the integral (5.8) to be done easily,
even with the distributional singularities in g,
which now occur at kF =x~. The results are shown
in Fig. 7. Note first the large peak at xs = k/2k „8
= 0. Clearly the overwhelming majority of the
contribution comes from this peak, as expected
from our approximate analysis. Note also that our
expectation concerning the effective "weakness" of
the apparently extremely singular structure at
k=2kF (x=1) is also fulfilled: The only remnant
of this structure is a simple discontinuity of very
small magnitude. Furthermore, it is clear that
the contribution is small everywhere, except for
small k, as we assumed earlier in our interpola-
tion scheme.

The curve shown is for 9 =1, which corresponds
to a slower density variation than that in a typical
metal. For comparison we show the exact small-k
asymptote. '~ As the wave vector is decreased, it
is clear that the correct wave-vector decomposi-
tion must bend downward and join this asymptote;
instead the gradient approximation crosses it,
curves further upward, finally reaching the large
constant 5~,y(0) calculated earlier [Eqs. (5.6) and

(5.11)]. The contribution of the cross-hatched re-
gion in Fig. 7 is undoubtedly spurious. Of course
the exact boundaries of the spurious region cannot
be obtained by this simple analysis. Nevertheless,

Eu 3
CP." 2
O

I

0 0.2
I I I I I I I I

0.4 O.C 0.8 1.0 1.2
k /2kFe

FIG. 7. Wave-vector decomposition of the gradient
component of the surface energy 6~y for the "Fermi-
function" density profile. The bulk density corres-
ponds to r~ = 2.07. The broken line is the exact asymp-
tote.

should be contrasted with the exact decomposition
for a surface (2.13) which vanishes linearly at
small wave vector.

To make more quantitative statements the inte-
gral in (5.8) must be evaluated. For a first trial
we chose a Fermi function density profile

n(z) =n(~)(1+e ') ', (5.14)

where 9 is a dimensionless parameter. This pro-
file has nothing to recommend it except simplicity:
It leads to

such a large fraction of the total contribution comes
from the cross-hatched region, even for a very
slowly varying density, that it is difficult indeed
to give any credence to the validity of the gradient
approximation for surfaces, or other systems
whose densities vary at comparable rates.

The parameter 8 in (5.14} is proportional to a
typical density gradient. For this simple model
profile, the results of using other values (and
hence other typical density gradients) can be
gleaned without further calculation. This is be-
cause the only 9 dependence in the calculation
occurs in (5.15}as a factor which multiplies the
final result. Thus the wave vector decomposition
for an arbitrary 9 is just 9 times that shown.
This gives us a clear indication of how the gradient
approximation becomes exact in the slowly varying
limit. It is clear from examination of the figure,
however, that the density gradient must be very
small indeed before the contribution from the
cross -hatched region becomes negligible.

Two points are in order. First, the failure of the
gradient decomposition to vanish as k-0 might be
restated as the failure of an electron plus its
"exchange-correlation hole" to attain electrical
neutrality within a finite radius. This in itself,
however, is not an indictment of the gradient ex-
pansion, because the numerical importance of this
failure becomes, as we have seen, less and less
important as the gradient in density becomes
smaller. The gradient expansion is a rigorous one,
which must become valid if the density variation
is sufficiently slow. What seems to doom the
approximation to failure in practice is that such
an unexpectedly large fraction of the total contribu-
tion comes from the small-k region, so that the
density gradient must be very small indeed for the
approximation to be valid. The second point is that
for a surface, the exact small-k form (2.13) is
larger than it would be for other systems where
the density gradients are localized. The nonanaly-
tic term (k', +k', )'~' in (5.1) arises from the in-
finiteness of a planar surface plus the long range
of the Coulomb interaction. For a localized den-
sity gradient, the exact small-k form must vanish
as an analytic function of the components of k, and
hence at least quadratieally. For such a system
then the exact small-4 form is even smaller than
for a surface. Nevertheless the gradient coefficient
still has a peak at small k which presumably still
translates into a peak at small k in 5 y. The
above suggests that the surface case is actually a
(relatively) favorable one for the gradient approxi-
mation and that for systems with localized density
gradients it is even worse. We note that the result
(5.13) is easily generalized to an arbitrary density
distribution and may be used to derive a criterion
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for the validity of the gradient approximation.
This is shown in Appendix C.

Return now to the surface case. So far our
ermi- unction" den-conclusions are based on a "Fermi-f t

sity profile, which is very unphysical. For ex-
am le hp e, t e profile is symmetric about its mid-
p in, i has no Friedel oscillations, and the P(kv)poin~ itha
function associated with it scales with e (a
property which one would expect only in the slowl
var in limit)y' g

' i ). In short, since the model profile
y in e slowly

cannot be reasonably fitted to ha p ysical profile,
one could never be sure what value of 9 corres-

fear th
ponded to a real system. We al h d h
ear that the oscillations about the bulk density in

real materials would beat against the distribution-
al singularities near 2k& so as to produce a sub-
stantial contribution in the intermediate-kia e- range.

Therefore we have evaluated (5.8) fo
which h

or a model
as previously been found to give good fits

to realistic profiles. This is the linea t t'inear potential
model, whose profile has been evaluated b S h

e a. s wave functions are the eigenfunctions
of -V'+u(z) where u(z) =-k',:,z/y~ for z& 0 and
zero otherwisrw se, where yF is a dimensionless
parameter which determines how fast the density
varies. We found previously that yF -3.5 cor-
responds roughly to the correct density variation
for high density metals (r, -2). Large vz implies
a slow density variation while small yF a fast
variation; yF =0 is the infinite barrier model,
whose exact RPA solution is known. ''"

Therefore 5 y(xz} was calculated for this
model from (5.6), (5.8), and (5.9). As before the
function P(k, ) [Eq. (5.9)] was a smooth uninterest-
ing function, except that now it has a sharp (but
weak) peak near kv =1 due to the Friedel oscilla-
tions. When x - 1 , the highly singular structure
of Z coincides with this in the integral (5.8). This
meant that considerable care had to be taken in
performing the integral (5.8).

The term which caused the wildest variations
was the 6' function term in (3.54a):

[8(1+s'/2)]-'5'(x —1) . (5.16)

Since this term integrates to zero wh th
' tw en e integral

over xs is done (that is, when the total gradient
contribution rather than the wave-vector decom-
position is to be calculated), we omitted it in the
Fig. 4 shown in our previous Letter. " It is shown
in more detail in Fig. 8 here (the broken line)
The very sharp, but also weak peak near k™2k,, ,
is a reflection of the corresponding peak in P(kr)
due to the Friedel oscillations. There is, as in

a simple discon-the Fermi-function case, a small
tinuity which occurs at a k corresponding to the
largest local kv value (slightly greater than k, z).
The solid curve shows what happens when the 5'

35
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FIG. 8. Wave-ave-vector decomposition 6~,y for the lin-
ear potential model, with r =2.07 ulk
me r) and yF=3.5. The solid curve is the full decom-
position with the ri the rapidly varying piece near k = 2k
omitted . The). e broken curve shows the same (even in
the vicinity of k=2k, ,-B), but with the 6' function

detail n
everywhere substracted out of Z Th e inset shows the

etail near k = 2 kz~. The straight dashed curve is as
before the exact asymptote.

—10
0

term (5.16} is included. Near kr ——1 this term is
roughly shaped like the convolution of a 5' function
and the small narrow peak in the broken curve

of reasonable scale, although the negative drop of
the solid curve n

is thu
ve near 2k, ~ is its precursor. Th

s a rapid variation in the gap of the solid
ve n r. ere

curve. The magnitude of the area under it must

the
be equal to the difference between the ar de areas under

e part of the solid curve shown and the broken
curve; this is small by inspection. Therefore
the contribution of the unplottable section of the
curve is small.
b dir

This conclusion was also ve f dri ie
y irect integration of the unplottable section of

the curve. Therefore after m hmuc agony we are
able firmly to conclude that the anomalies at 2kF

numerical sig-do not contribute any structure of
nificance, The remaining curves in this

s own with the 5 term included, and with a
slight gap around k =2k, ~; it should be understood
that this gap contains the weak b tu rapidly varying
structure mentioned above.

We have evaluated the wave-vector decomposi-
tion 5y in the gradient approximation in the linear
potential model for yF =0.5, 3.5, and 8 for r,
=2.07 and 4. The results are shown in the lower
portions of Figs. 9 and 10 (a portion of the r S
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on the same graph. The conclusion is again un-
mistakable. For- the physical case y~ =3.5 well
over half the area is in the "spurious" region.
Earlier' we made the inituitive remark: "[the
value of 0.1 for ( Vn (/2kFn in the yz =8 case] is
small enough that the accuracy of the gradient
correction cannot be doubted. " Clearly we were
wrong; the density gradient must be much smaller
for the approximation to work. It is thus difficult
to imagine a physical situation where the gradient
approximation can be accurately applied.

VI. GENERALIZATION OF THE GRADIENT
APPROXIMATION: A METHOD THAT WORKS

-10
0 0.5 0.6 09

k/2kFe

FIG. 9. Lower section: By in the gradient approxi-
mation for the linear potential model for r =2.07;
solid curve —yz= 0.5, dot-dash curve —yz= 3.5, long
dashed curve —yz= S, short dashed line —exact asymp-
tote. Upper section: 6 y in the average slope approx-
imation with p =1.2 and Gaussian averaging for the
linear potential model r~= 2,07. Key to curves as above.

=2.07 curves were shown in our earlier Letter" ).
There seem to be no vast differences between
these results and those for the Fermi-function
profile. Although we no longer have the scaling
property of the latter profile, the curves clearly.
increase in magnitude in rough proportion to some
sort of average density gradient. But now we have
a clear idea of what each curve means. For ex-
ample, at r, -2, y~=3.5 corresponds to roughly a
real metal; @~=0.5 is a very rapidly varying pro-
file, which almost corresponds to the infinite bar-
rier model; y~ =8 is a very slowly varying profile,
which corresponds to (Vn (/2kpn -0.1 at the jellium
edge.

Again we have plotted the exact asymptotic form

The basic physics behind the gradient approxi-
mation is correct. It fails in most practical situa-
tions because of the magnitude of the small-k
peak. However, the peak itself is also a real phys-
ical effect. As we have seen it is produced by
long-wavelength excitations (becoming plasmons
as k-0) which travel parallel to the surface (or
more generally, perpendicular to the density
gradient) and repeatedly scatter off of it; the long
range of the Coulomb interaction causes this pro-
cess to make an unusually large relative contribu-
tion, which increases rapidly as the wave vector
is reduced.

We can estimate the dependence on slope (density
gradient) of the contribution to the energy of the
above process as follows: Consider a surface
whose density gradient has a mean slope S, and
which has a characteristic width d. Let there be
an excitation of spatial extent l located somewhere
in the region of the surface (see Fig. 11), and

assume that l&d. In the local-density approxi-
mation this excitation propagates as in the bulk,

t I I I

2.5—

1.0 (b)

-I.O

E 7

Re = 4.0

y~
= 0.5

y =35

yF
= 8.0
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0'
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I I I I I I I

Q3 Q6
k /2kFe
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FIG. 10. Same as Fig. 9 but with ~~ =4.0.

FIG. 11. Schematic illustration of average slope
scheme. The quantity l represents the physical extent
of an excitation. (a) Average slope= local slope; Q)
Average slope & local slope; gradient approximation
fails; (c) Region where exact asymptotic form valid.
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going from one density region to another adiaba-
tically. It may scatter in a nonlocal theory and to
lowest order in S (second-order perturbation
theory), it makes a contribution -S to the ex-
change-correlation energy. The fraction of the
total modes subject to this extra scattering is
proportional to the width d of the surface region,
so that the nonlocal part of the surface energy due
to excitation of this physical size is 5'd. Since d
ix 1/S for a given bulk density and reasonable sur-
face profile, it follows that this nonlocal surface
energy is proportional to S, This is consistent
with Eq. (5.9) which contains one derivative of the
density. We shall let such modes within the surface
region be called "gradient modes. "

Now consider a gradient mode of spatial extent
I a little greater than d, as pictured in Fig. 11(b).
It is unreasonable to suppose that its contribution
to the energy is still proportional to the local
slope $ at its center, but seems physically rea-
sonable to suppose still that its energy should
rather be proportional to spme sort of average
slope (S) where the average extends over the extent
of the excitation. Finally, consider an excitation
whose spatial extent is much greater than d, as
pictured in Fig. 11(c). In this limit the excitation
becomes an ordinary long-wavelength surface
mode, which becomes entirely a surface plasmon
at very long wavelength. In this region the non-
local component of the surface exchange-correla-
tion energy is not related in any simple way to a
local slope or average slope. This is the region
where the exact small-k form is applicable (I - 1/k).

If the profile were infinitely slowly varying, then
as k decreased (I increased) we would remain in
the region of Fig. 11(a) essentially forever; the
nonlocal component of the wave-vector decompo-
sition of the surface exchange-correlation energy
[call it 5„,E„(k)]would remain dominated by the
gradient mode, and would continue to rapidly in-
crease as k was lowered. However, for a typical
surface profile of a real material, one reaches
the crossover between the regions at a finite k.
In the long-wavelength region [Fig. 11(c)]5„,E,,(k)
still rises but only as ~k~ ', and thus less rapidly
than in the region of Fig. 11(a). (Since the number
of modes per unit k drops as k', this gives a drop
in 5y, which is proportional to k' ~k ~

' =
~k~ in

this region [see Eq. (2.13)].)
To improve the gradient approximation we are

again faced with an interpolation as in Refs. 1 and
2. There we had little more to guide us than an
educated eyeball and a knowledge of the Fermi-
Thomas length. Now we know the deviation from
the local approximation both above and below the
region of interpolation [the region of Fig. 11(b)].
In addition the average slope (S) concept discussed

where F(h) is a weighting function which satisfies

i'(hMh = i, f hF(h'idll =i—= 2k.,.i.
0 0

(6 2)

We have tried two completely different forms for
F which satisfy (6.2) with little difference in
results. The forms tried were

F(h) = 5(h —I ),
where 5(h —I) is the Dirac 5 function, and

F(h) = (32/v'l')h' exp( —4h'/vl') .

(6.3a)

(6.3b)

One also has the problem of how to relate l to
the wave vector xs (in reduced units). Since we

are dealing with surface plasmons in the small-k
limit, we expect that I = I/xs, because we know

that the fields of a surface plasmon fall off as
e '~'~ =e "&~'~. We have set 7=p/xs where p is an
adjustable parameter expected to be of order unity.
The fina' value adopted for most of our curves
is P =1.2, although the results did not seem very
sensitive to physically reasonable choices of P. .

One notes that as k gets large, the generalized
derivative becomes automatically the ordinary
derivative. Therefore the use of (6.1) in (5.9) be-
comes exactly the normal gradient expansion at
large k. Hence we do not have to change from one
analytic form to another as k moves from the re-
gion of Fig. 11(a) to the region of Fig. 11(b). Be-
fore actually carrying out the numerical calcula-
tions, we thought it would be necessary to match
two different forms in going from the region of
Fig. 11(b) to the exact asymptotic region of Fig.
11(c). However, we found after the fact that the
average slope concept gave results in the region
of Fig. 11(c)that were sufficiently close to the
exact asymptote (2.13) that trying to make a better
fit was not worth the effort.

No particular attempt was made to get a "best
fit" and we are not even sure what criterion should
be used for this. The only values of the constant
tried were P =1.0, 1.2, and 1.4 for each of the
weighting functions (6.3). The curves for P =1.2
and the Gaussian weighting function are shown in

detail in Figs. 12-14, where we show the r, =2.07

earlier provides us with a physical (albeit non-
rigorous) method for effecting the interpolation.

For simplicity [see Eq. (5.9)] we use the local
Fermi level k~ as the fundamental variable instead
of density. What we will do is to replace the slope
dk~/dz in (5.9) by some sort of average slope where
the average extends over the size I-1/k of the ex-
citation. We define an average derivative:
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FIG. 12. Wave-vector decomposition I5 y for the lin-
ear potential model with r~ = 2.07 in several approxima-
tions. Solid curve —gradient approximation; dot-dash
curve —average slope approximation (Gaussian with p
= 1.2); long-dashed curve —circular interpolation of
Refs. 1 and 2; short-dashed line,—exact asymptote.
Here yz= 0.5 (a rapidly varying density).

case for y~=0. 5, 3.5, and 8.0. Note that at large
k the average slope approximation agrees with
the gradient approximation, while at small k it
approaches zero linearly, as the exact form doeS,
but with a different slope. For comparison we
also plot the results of our older circular inter-
polation, which agrees remarkably well except
in the rapidly varying y& =0.5 case. It is certainly
clear in any case that the older interpolation has
picked up the major correction to the local approxi-

I I I I I I

0 0.I 02 0.3 0.4 0.5 0.6 0.7
k/2kFe

FIG. 14. Same as Fig. 12, except yz= 8.0 (a slowly
varying density).

m ation.
In Fig. 15 we illustrate the insensitivity of the

results to the exact definition of average slope.
We show the results of using both the 5 function E
[Eq. (6.3a)] and the Gaussian [Eq. (6.3b)] for the
various values of P which we tried. We thought

P =1.3 with Eq. (6.3b) looked best (after looking at
computer plots like Figs. 12-14 for all the
different possibilities, and checking the integrated
area under the y& =0.5 cases with the exact in-
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FIG. 13. Same as Fig. 12, except ye=3.5 (a density
variation typical of real surfaces).

FIG. 15. Comparison of different methods for cal-
culating the average slope. All curves are the linear
potential model with r, = 2.07, y+= 3.5. Solid curve—
Gaussian, p =1.0; medium dashed curve —delta func-
tion, p =1.0; dot-dash curve —Gaussian, p =1.2; long-
dashed curve —delta function, p = 1.2; alternating long
and short dashes —Gaussian, p =1.4; short dashed line—
exact asymptote.
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FIG. 16. Nonlocal contribution to the surface ex-
change correlation energy in various approximations
for a linear potential profile with r~ = 2.07 as a function
of the slope parameter yz. Long dash —gradient ap-
proximation of present paper; long dot-dash —gradient
approximation of Ref. 6; short-dash —circular inter-
polation of Refs. 1 and 2; short dot-dash —Gaussian
average slope approximation, p =1.0; solid —Gaussian
average slope, p =1.2. A physical profile corresponds
to yz-3.5. The solid dot aty~=0 is the exact calcula-
tion of Ref. 12.
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FIG. 17. Nonlocal contribution to the surface ex-
change-correlation energy in various approximations
for a linear potential profile with r, = 4.0 as a func-
tion of y&. Long dashes —the gradient approximation
of the present paper; short dashes —the circular inter-
polation of Refs. I and 2; solid —Gaussian average-
slope approximation, p =1.2. A physical profile corres-
ponds to y&- 2. The solid dot at yz= 0 is the exact
calculation of Ref. 12.

finite barrier model results, ""but we do not have
any strong reason for preferring it to the others.

%e also made calculations for r, =4. These
are shown only for the Gaussian I and p =1.2 in
the top half of Fig. 10 for easy comparison with
the gradient approximation curves; similar results
for r =2.07 are shown in the top part of Fig. 9.S

ln Fig. 16 (which is a more complete version of
the inset in Fig. 4 of Ref. 10) and in Fig. 17 we
show the integrated area under the wave-vector de-
composition 57(xs) in the average slope scheme,
that is, the total nonlocal contribution to the sur-
face energy in this approximation, and compare it
with other approximations. Note that results for
different values of p are in reasonable agreement
with each other, and also with the circular inter-
polation scheme. They also are very consistent
with the exact results as y+-0. They differ sub-
stantially, however, from two versions of the
gradient appr oximation.

The Gaussian average slope scheme we have
been discussing is a nonlocal-density functional
for the exchange-correlation energy, which could
be generalized to arbitrary three-dimensional den-
sity variation. The exact form of it is tractable,
but probably too complex for widespread practical
application.

There is another approach to correcting the
local-density approximation which may have
promise (at least for systems of nearly uniform
density). Note that if we define

d3"
( ') 7 &I q'(r r') R (-k q)2m' '

where K,„.(k, q) is given by (2.45), then K~&(r -r')
is the wave-vector composition of the K"' coef-
ficient defined by Kohn and Sham' in their Eq.
(A22). Numerical evaluation of our expression
for K„, and then finding an analytic approximant
to it does not seem out of the question.

APPENDIX A: ANALYTIC EXPRESSIONS

1. Analytic expressions for the X's

The various quantities X as defined by (3.17)—(3.19), combined with (3.11)-(3.13), were evaluated by sub-
stitution of (3.7)-(3.10). One finds

~, = -(1/x) ln(a/b),

where a=y'+(1 —x)'x' and b =y'+(1+x)'x'. Similarly

X, = —', x 'ln(a/b) —(1 —2x)(1 —x)/a+(1+2x)(1+x)/b,
A' = (2x/3)[(l —x)/a —(1+x)/b j,

(A2)

(A3)
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and

Xz = —(3x) 'f[(1 -x) (2x —3) —x(1 —x)]/a+ [(1 + x}'(2x+3) —x(1+x)]/5

-(1 —2x)'(a —2y')/a +(1+2 x)'(b —2y')/b +(3/2x ) ln(a/5)}. (A4)

2. Analytic expressions for the ~'s

The quantities w are defined by (3.14)-(3.16) in
conjunction with (3.5} in terms of u and D. 'U is
given by (2.46) and (2.38), where again yo„of (2.38)
is given by (3.7)-(3.9). (Note that P-=l(,„.) Simi-
'larly D is given in terms of the same quantities
by (2.47). Expanding all quantities to second
order in q yields expressions for se in terms of
the quantities defined below. First let O'=- VP
=- VX,„, so that e =1 —6'. Carrying out the integrals
in (3.7) gives

d', = -s'(-x '+8:,),
d'„= —s'(3/x'+ 8:„),
9„=-SS/x+9,

y,„=59/2 —5 S„/x- 59/x+7L,

where

9 = ——,'x 4[4yS;+(1 —2x')ln(a/b} —2x]

and

3('=--,' x '[4y9;+(1 —6x') ln(a/5) +4x

(A8a)

(A8b)

(A8c)

(Agd)

(A9)

d = -(s'/x'}(-,'+Br),
where

(As) + 2x (1 —x)(1 —2x)2/a

—2x'(1 +x)(1 + 2x)'/5] . (A 10)
x'6: =(-[y' + x'(1 —x' }]/(8x') in(a/5) —( y /2x) 9,),

(A6)

and where

9', =tan '[x(1 —x)/y]+tan '[x(1+x)/y]. (A7)

Defining 6'„f„,6'„,5'„ to be the respective first
and second derivatives (with respect to x) of the
indicated-quantities we obtain

One then obtains

wo =(x s)

w, = (-2/x'+2d', /3ex'}/s,

w,' = [3/x' —(4/3ex')d'x+ (1/3ex')d', „
+ (1/2 s x )d „]/e,

w,'=[-x '+(3ex') 'd', ]/s.

(A11a)

(A11b)

(A11c)

(A11d)

3. Expression for the b's (and h )

The quantities 5,' and 52( as defined by (3.24), (3.25), and (3.29) were evaluated by substitution of (3.7)-
(3.10) into (3.27). One obtains

b2( =+[(1—2x) x(1 —x}(a—4y )/(2a }—(1+2x)2x(1+x)(b —4y2)/(2b3) +(1+4x )(a —2y )/(4xa )

—(1 + 4x )(b —2y'}/(4xb') + x(1 —x)/a —x (1 + x)/b] (A 12a)

and

bz =+[x(a —2y')/a —x(b —2y')/5'

I

tives indicated, and comparing with (3.35). We
find

+x(1-x)/a- x(1+x)/5]. (A12b)

Because of the change in contours between (3.30)
and (3.25), the quantity i(, is not simply a rescaled
version of H ", but is nevertheless easily evalua-
ted and we find

and

b, = -~[(1—e)/2x] ln(a/b)

c, = —", v[(1-x)/x']e(1 -x},
where e(g) is the unit step function.

(A 14)

(A 15)

h2 = 16((/3x'.

4. Chemical potential shift term

(A 13}
APPENDIX B' POLYNOMIAL FIT

TO GRADIENT COEFFICIENT

Here we list f(, and c, as defined by (3.35)-(3.3'7),
which are easily worked out by expanding J-„of
Eq. (3.32) in powers of q, performing the i( deriva-

Here we give an analytic polynomial fit to our
expression for the gradient coefficient B„,which
was plotted in Ref. 10. Let y =(n"'/s')B„. .(10') and
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x be the local value of r,. For x=0 our results
agree exactly with the exact high-density results. '
(y =2.568. ) The analytic expression below fits
our calculation for 1& x& 12. We find

1.00—

0.80 I-

y =y 1 —— 1 —— 1 ——+y

where y, =0.155, y, =2.50, x, =-4.4, x, =8.2, and

x3 =21.5.

Q40—

0.20—

6,, I'. „.= 2 3 d'r(8 («n(r)))IVn(r}]'. (Cl)

We wish to normalize its wave-vector decomposi-
tion 6 E„(k) so that fo dk 6 E„,(k)=6 E„,. Then
according to (3.47) and (3.51)

(Vn)' eZ(k/2k, )
n

(C2)

where a =we'/16(3w')"'. For k =0, (4.6) and (4.7)
imply that

Z(0) =(4v 3/k, T)2k~, (C3)

where k, -,- is the local Fermi-Thomas wave vector.
Therefore

(Vn)' n4&3

4v 3 „, Vn)'
(C4)

where, since k, T(r) varies only as the sixth root
of n, we have pulled it out of the integral and
replaced it by a "typical" value k, T. We may also
estimate the integral over wave vector of (C2)

APPENDIX C: AN ESTIMATE OF THE VALIDITY
OF THE GRADIENT APPROXIMATION

IN THE GENERAL CASE

In Sec. V we gave an argument based on an exact
limit that the contributions to the gradient approxi-
mation for the energy all arise from a small-
wave-vector region about the origin. Here we
make this argument general for any type of density
variation.

According to (2.14) the gradient contribution to
the exchange-correlation energy for an arbitrary
density variation is

2 4 C 8 IO I2 14
DISTANCE (~butts of It,e, afb often)

FIG. 18. Density profiles of linear-potential model.
Solid curve, y z= 0.5; dot-dashed curve, yz= 3.5;
dashed curve, yz= 8.0.

6 g, E,,(0) 4&3 6

6g, E„,. (1.2)k, :T k,:T
(C6)

Vn/n«k~ T/6. (C7)

It is the fact that k, is the relevant wave vector
rather than 2kF, plus the conspiracy of numerical
factors to produce a 6 instead of unity, that cause
the above (correct) criterion to be a whole order
of magnitude more severe for typical materials
than the more naive (but incorrect) criterion

Vn/n« 2k, . (Cs)

For a typical material this is numerically equal
to 10 or so, and it suggests, independently of the
density variation, that roughly the totality of the
gradient contribution comes from a narrow region
k ~ k, .T,/6.

Since we know that rigorously 6E„,(k} goes to
zero either linearly or quadratically with k, the
criterion for the gradient approximation's
validity is that the cross over between the latter
exact behavior and the behavior predicted by the
gradient approximation occur at a wave vector k,
such that k, «k, .T/6. Examination of (4.11)suggests
that the crossover occurs at k, =q where q is
identifiable with Vrg/n. Therefore our criterion
for the validity of the gradient approximation is
that

5„E„.= d, d Z

(C5)

We note in conclusion that (C7) is also consistent
with the detailed calculations for surfaces that we
have made in this paper.

Now, we have found (see previous Appendix of
Ref. 10) that the quantity in square brackets is
only weakly dependent on density and may be ap-
proximately replaced by its high-density limit of
-1.2. 'Therefore we have

APPENDIX D: LINEAR POTENTIAL MODEL

The linear potential model is discussed in
Refs. 1o and 21. We present here in Fig. 18 the
profiles for the actual y„values used in this
paper.
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