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The Peierls instability has been studied for a one-dimensional conductor in which the rotational degree of
freedom of the molecules plays a role. The rotational motion is described in terms of a pseudospin S = 1

Hamiltonian in which the electrostatic quadrupole-quadrupole and dipole-dipole interactions are included.
The Hamiltonian also takes account of the conduction-electron-band motion as well as the coupling of the

conduction band to the rotation of the molecules. The electron Green's function is evaluated in the mean-

field approximation and the libron Green's function in a self-consistent field theory. It is found that the
derived expressions for both the electron and libron Green's functions give a simple recursion formula for
the Peierls transition temperature T, which is driven by the loss of librons from the Peierls condensate

through thermal excitation. The recursion formula is solved numerically for a half-filled tight-binding
conduction band and the dependence of T, on the values of the diA'erent parameters involved in the problem
is studied. An expression for the electrical conductivity is derived which describes the collective contribution

arising from the phase oscillations of the lattice distortion. This expression is compared with the
corresponding one for the Frohlich Hamiltonian which describes the translational degree of freedom of the
molecules but ignores their rotational motion.

I. INTRODUCTION

One-dimensional organic conductors such as the
tetracyanoquinodimethan (TCNQ} salts have re-
ceived considerable attention because of their in-
teresting structural and electronic properties. ' '
One of the structural problems of prime concern
is the periodic modulation of the molecules which

may occur in these crystals and the relation of
these displacements to charge-density waves,
Peierls distortion, and electrical conduction. In

many studies of modulated structures, it has been
assumed that the modulation arises from the ef-
fective coupling of the longitudinal acoustic pho-
nons with the conduction electrons. However,
Morawitz' has suggested that in some molecular
crystals with segregated stacks of molecules the
orientational degree of freedom couples more ef-
fectively to the conduction band, since the charge
density at the ends of the radical ions has the
largest spatial displacement. Following this sug-
gestion, the possibility of an orientational Peierls
distortion due to the coupling of the conduction
electrons with librons (the small torsional oscil-
lations about the equilibrium orientations of the
molecules) has since received much attention. ' "
It has been proposed that the large pressure de-
pendence of tetrathiafulvalene- (TTF) TCNQ is
due to the role of librons" "while the diffuse
x-ray scattering in tetraselenafulvalene- (TSeF)
TCNQ (Ref. 14} and TTF,-I, (Ref. 15) has been at-
tributed to the orientational rather than transla-
tional motion of the molecules, but these conclu-
sions need further investigation.

For simplicity, Morawitz' assumed that at low

temperatures a one-dimensional metal is unstable
against a lattice distortion of wave vector 2kF
(where k~ is the Fermi wave vector) which creates
a gap in the excitation spectrum at the Fermi en-
ergy. The presence of the lattice distortion causes
the electrons to scatter from states k to k ~2kF
and the libron mode of wave vector 2kF goes soft
at the metal-insulator transition temperature.
In a recent article, "we also assumed that the
wave vector of the distortion is equal to twice the
Fermi wave vector and discussed the possibility
of an orientational Peierls metal-insulator tran-
sition in a linear strand. In Ref. 16, the ro-
tational degree of freedom was desex'ibed by spin
S =1 quadrupoles and the translational motion of
their centers of mass was neglected. That cal-
culation" was for a simple model of a quasi-one-
dimensional conductor with intrastack forces only
in a parameter space spanned by electronic band-
width, electron-quadrupole coupling constant, and
quadrupole-quadrupole coupling constant. In this
paper, we use a model Hamiltonian which gener-
alizes the electron-quadrupole Hamiltonian of Ref.
16 so as to include dipolar effects on a one-di-
mensional strand. Also a more systematic de-
rivation of the results is presented. There ap-
pears to be much in common between some of the
quasi- one-dimensional and quasi-two- dimensional
charge-density structures. "" However, we
shall confine our attention to the one-dimensional
problem although the algebraic analysis is for
arbitrary dimensions d.

In general, the interaction energy between two
molecules with nonoverlapping charge distribu-
tions at lattice sites i and j may be written as a
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where V is a generalized interaction between
spins at lattice sites R',. and R'j and is a function
only of the intermolecular distance Ri j. Also, V

is zero if the magnitude of m or m' is bigger than
the smaller of l and l'. U is the interaction be-
tween the 2' pole at the lattice site i and the
charge density p(j), assuming that the molecule
at j has a net charge. The spherical tensor op-
erator" L, (i) of rank l associated with the site i
(t =0, 1, . . . , 2S) transforms under rotations like
a spherical harmonic and, for l = 1, 2, is given by

L', (i) = S;/y f„L',(i) .= S',/~1,
L,'(i ) = [(S;.)' —-', S(S+1))/ 1(T,

L', (i) = (S;, S;),

ling,

, . .

L,'(i) = (S;)'/Hf, , .

(1.2)

sum of terms representing the interaction of the
multipoles at these two sites." The terms of the
expansion are a product of spherical harmonics
whose arguments depend on the orientation of the
molecules and whose coefficients depend on the
details of the charge distributions. Treating the
molecules as rotating about the centers of their
electrical charge distributions with angular mo-
mentum S, we may write the Hamiltonian describ-
ing the spin-spin interaction for a d-dimensional
lattice in the form

K„=--,'Q Q Q V„~(i,j)L, (i)L,,'(j)
ij 1f')0 mm'

where J is the isotropic coupling between nearest
neighbors (ij), N is the number of lattice sites,
and p 0 is the zero wave- vector Fourier transform
of J(i, j). Written as an inner product of spin op-
erators, the EQQ interaction in Eq. (1.4b) is
clearly rotationally invariant in spin space. By
applying an operator inequality of Bogoliubov, "
Thorpe" has shown that for d=1 and d=2, the
biquadratic-spin Hamiltonian in Eq. (1.4) cannot
have rotational ordering. Therefore it is crucial
to use anisotropic EQQ interactions in order to
get the ordered phases of hydrogen molecules on
the surface of graphoil. ""The proof given in
the literature" also applies to the isotropic elec-
tric dipole-dipole (EDD) part of the Hamiltonian
in Eq. (1.1):

1x„,=-,'- g g r(i, j)L;(i)L-, (f)
&ij & m=-1

(l.5a)

(1.5b)

=( ) g g(t 1)L (i)p(j) (1.6a)

2 ~/

gg(i, j}[(S;)'--'f,] (p)j
2 iJ

(1.6b}

where 1 (i, j) is the nearest-neighbor interaction
energy for two dipoles at i and j. The strict ab-
sence of long-range order (spontaneous magneti-
zation) for the two-dimensional Heisenberg Ham-
iltonian (1.5) was first shown by Mermin and Wag-
ner." The charge-quadrupole (CQ) interaction

where (L()'=L, and the normalizing factors f,
and f, are defined to be

fl —S(S+ 1), f2
——S(S+ 1)(2S+3)(2S —1)/15. (1.3)

and charge-dipole (CD} interaction

X =(/2 g X(i, j)L', (i)p(j) (1.7a.)

(1.4b)

We note that these definitions for f, differ by a
factor from those of Barma22 and Fedders and
Myles. "

The interaction V is in general anisotropic (de-
pendent on m and m'). For molecular hydrogen
in which the electric quadrupole-quadrupole (EQQ)
interaction is dominant, it has become clear that
this anisotropy should be included in a realistic
calculation of its thermodynamic properties. "
However, in our model calculation we shall as-
sume, for simplicity, that the quadrupole-quad-
rupole term in Eq. (1.1) is isotropic with nearest-
neighbor interactions and write

g 4(!,((4:( (4; (4( ((.44(
&i j& m=-2

J(i,j)[2(S,. ~ S,)'+ S,. ~ S,.)
2 &ij&

N j"
+ —~g

9 f 0 0

1/2

)S;.p jfl 4j
(1.7b)

break the rotational symmetry of our model and

play important roles in the problem. Here g and
X are the CQ and CD parameters, respectively.

In addition to the electrostatic interaction be-
tween the molecules, there is a term that takes
account of the motion of the electrons on the lat-
tice:

e EQQ EDD CQ CD &

K, = Q t(i,j)n', ,n„.
&i j&ty

Here t(i, j) is the intermolecular electron-trans-
fer integral which takes an electron between a
pair of nearest-neighbor sites (ij) and n, , (n, ,)
creates (destroys) an electron of spin o on the lat-
tice site i. Therefore, our total anisotropic Ham-
iltonian is given by
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where X~Q and KGD may be viewed as describing
the anisotropy of our system. While the use of
isotropic EQQ and EDD interactions is not justi-
fied from first principles, the simple Hamiltonian
in Eq. (1.9) nevertheless gives some interesting
results which might be further studied by more
sophisticated models. It is interesting to note
that in the spin-one case (S,*. =-1,0, 1) the m =0
term of the quadrupolar Hamiltonian XKQQ in Eq.
(1.5) corresponds to the a,. = +I Ising model where
(S,*. ) = —,

' (1+a,.).'0 The classical analog of the total
Hamiltonian X@QQ with the fluctuation m = +1.terms
is the biquadratic Blume-Emery- Griffiths-Rys
model which has been used to study multicritical
phenomena by a variety of methods such as mean-
field theory (MFT), the modern renormalization
group method, Monte Carlo techniques, as well
as high- and low-temperature series expansions. "
In Eq. (1.9), the term X son describing electro-
static quadrupole-dipole interaction has been dis-
carded as a result of symmetry considerations.

We shall assume that the angular momentum dis-
tribution is axially symmetric about the z axis,
parallel to the chain, and therefore the averages
(L2) for m w0 vanish. If (L,') is nonzero, then the
angular momentum distribution is not isotropic
and the molecular axis has a degree of order de-
pending on the value of (L,'). We shall show, with-
in an MFT, that if the molecules are in an ordered
state, the electron-libron interaction may induce
a gap in the energy band of the conduction elec-
trons. Furthermore, it will become clear that
within the MFT and the S =1 manifold the CQ and
not the CD interaction produces the metal-insu-
lator transition. The theory makes use of temper-
ature-dependent Green's functions, and standard
decoupling procedures are used as well. We make
use of these Green's functions to study the effect
of the collective motion of the molecules on the
frequency-dependent electrical conductivity a(&u)

in the Peierls distorted state and we compare this
contribution with that from single-particle exci-
tations.

In this paper, we consider spin-one molecules
only. In Sec. II, we transform the Hamiltonian in
Eq. (1.9) in the S=1 manifold to pseudospin crea-
tion and destruction operators, using a transform-
ation due to the work of Raich and Etters. " The
equations of motion of the electronic Green's func-
tions and explicit expressions for these functions
in the MFT are given in Sec. III. The equations of
motion of the pseudospin Green's functions are de-
rived in Sec. IV. By approximating the self-ener-
gy by its frequency-independent part in Sec. V,
we obtain approximations for the pseudospin
Green's functions. In Sec. VI, we show how the
molecular field results in Ref. 16 are related to

the new results in Sec. V. The electrical conduc-
tivity is calculated in Sec. VII. The results of our
calculation are summarized and discussed in Sec.
VIII.

II. TRANSFORMATION TO PSEUDOSPIN OPERATORS

Raich and Etters" have shown that for molecules
of spin S =1, one may express the operator com-
ponents S', S, and S' in terms of pseudospin op-
erators which cause transitions from the excited
states to the ground state:

a,. = (1/~) [L,'(i) + L,'(i)],

b,. = (I/M) [L,'(i) —L,'(i)] .
(2.1)

(2.2)

L,'(i) = ( —,')"'(n,. + rn,. ——',),
L', (i) = a', b, , .

(2.4)

(2 5)

where the number operators n,. and rn,. are defined
to be

n,, =ata, , m,. =b~b, (2.6)

Since we are assuming that the charge is distribu-
ted with cylindrical symmetry about the z axis,
the averages of the number operators are equal:

Q,.) = (m,.) . (2.7)

The commutation relations for a, , b,. and their
Hermitian conjugates are well known. "" For
completeness, we list them:

[a, , a,'. ] = (1 —2n,. —m,. )6, , ,

[b, , b ~] = (1 —n, —2m,. ) 6. , , ,

[a, , b,'] = b,
'a, 6,, ,-. .

[b, , a~) =-a,'.b,. b, , ,

[a, , b, ]= [a~, b,'.] = .0 .

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

From these relations, we may evaluate the com-
mutators of a, , b,. with L, and L, . We also have

a,.a,. =b,.b,. =a,.b,. =b,.a, =a,.b~ =0 (2.13)

in the S=1 manifold.
Substituting Eqs. (2.1)-(2.5) into Eqs. (1.4) and

(1.5), we have for the isotropic quadrupolar Ham-
iltonian'4

3CKoz = —g J(i,j ) [a~b,b,'a, + —,
'

(n, +m. ,. —. —.,')(n. ,. + m, —-', )
(t j)

+ '- (a,'- b, )(a, —b,')],
and for the isotropic dipolar interaction

(2.14)

The creation operators a', , b,'. are given by the Her-
mitian conjugates of Eqs. (2.1) and (2.2), respec-
tively. In terms of these operators, we have

L, (i) = (I/vY )(n, —m.,. ) = (1/M)S;. , (2.3)
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3C s» = —g I' (i, j)[ (at —b,.) (a,. —b ~)

+ ,'(n—,—. m, )(.n, —.m,.)]. (2.15)

The CQ and CD interactions in Eqs. (1.6) and (1.7)
are given by

show that the CQ and CD interactions induce
changes in the electron operators which, in Four-
ier space, are given by

2
&s&s + ~ gvQa-po(no+ 3 6p, o)

f)'

3C = Q g(i, j)(n,. +m,. ——',)p(j) (2.16) + Q &,a, „(n,—m, ) . (3.1)

and Here 5 is the Kronecker delta, k and p are vectors
in the first Brillouin zone, and

Xcn= Q &(i,j)(n,. —m,&)p(j) (2.17) ~ e-if R.Z e ia... (3.2)
in terms of the pseudospin operators. We shall
make use of these transformations in evaluating
the Green's functions. e, = Qe " t( ,j'), ' (3.3)

III. SINGLE-PARTICLE ELECTRON GREEN'S
FUNCTIONS

~ ~0
n = — e' in. .i'

i
(3.4)

We now form the equations of motion of the sing-
le-particle electron Green's functions. Since ice,,
= [a,.„3C) (we shall set 8=1), the equations of mo-
tion are obtained by commuting a,, with the Hamil-
tonian (1.9) whose terms are given by Eqs. (1.8)
and (2.14)-(2.17). Using the usual Fermi commu-
tation relations for the electron creation and de-
struction operators, and assuming that the elec-
tron and pseudospin operators commute, one can

(3.5)«n„; o'„, )), , = i&Tv„(t-)n', , (t')),

where T is the time-ordering operator, satisfies
the equation

The definition of the Fourier transform of g(i, j)
and X(i,j) is similar to that of t(i, j) in Eq. (3.3).

From Eq. (3.1), we find that the electron Green's
function «n„; o ~~„,)) —= &&n~„nt ~)) defined to be
the Fourier transform of

((u —e,)«a„;at ~))=6„„,6,~+ Qg, &&a, „(n,+m, —
3 6, o);n„'„)) Q+~, &&n„,(n,™,); o"„~)). (3.6)

This equation involves higher-order Green's functions on the right-hand side. These higher-order terms
are decoupled with the following two approximations:

«o. , „(n,+ m ,——', 6, ,); n ',„,))= tn, + m ,——', 6, o)«o. , „;n ,', „)),
«~g,.(n, —m, ); ~',...))= &n, —mP&&u. ..; u~~)) =o,

(3.7)

(3.8)

where use is made of Eq. (2.7) in order to get the result in Eq. (3.8). The approximation in Eq. (3.7) means
that all dynamic effects arising from the interactions of the electrons with the quadrupoles are neglected
and that an electron sees only the average (static) field produced by this interaction. Similarly, Eq. (3.8)
implies that in the static approximation the number densities of the pseudospin operators may be decoupled
from the electron Green's function «a, ~,; n~t, .)) but because of the cylindrical symmetry of the molecules
the average field arising from the charge-dipole interaction is zero. Making use of the relations (3.7) and
(3.8), we rewrite Eq. (3.6) in the form

((u - ~,) && on,'.,))= 6„,6„,+ Q g&n, + m, - -', 6, g &(n, „;a,', ~ )) . (3.9)

The electron Green's functions which we use
form a 2 x2 matrix: (3.11)

8 (b, ~) =
& tX„;x,',))

(« "" "» « "' '"')) ll (3~ 10)
(«og„„'aa.)) «u„„;~,'„,)))

where X„,is a column vector defined by

Only the Green's functions in Eq. (3.10) are
needed, since we assume that only the libron
modes of wave vector k =0, ~ are coupled to the
conduction electrons in a half-filled band. 2q is
a reciprocal-lattice vector so that q and -q are
equivalent. Therefore, in the case considered
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here, we include only the correlation between the
electron states of wave vector k and k +q. As a
result, we obtain the complete Green's function
8 whose inverse is

(») —«»
9 '(k, ~) =!

«»ko j
The poles of 9 are

(3.12)

&»= «1«»+ «»~+ I(«»- «»o} +4& ] }2 (3.13)

a=2g, (n, ) =-2g, T Q ((a„„;a„')), (3.14)

where a, is the Fourier transform of a,. and ~„
=2nvT (n=0, 1, 2, . . . ) are Matsubara frequencies.

From the definition of the gap parameter in Eq.
(3.14), it is clear that in order to determine the
complete temperature dependence of ~ one has
to evaluate the double-time Green's function
((a»„;at)) which is the subject of the next section.

with the sign corresponding to the appropriate su-
perscript. Thus the energy levels of the elec-
trons are split for wave vector k = ~q/2 and the
lattice potential has created a gap of size 2~ in
the conduction band. For the Peierls distortion,
the potential acting on the electrons has a period
)j/k~ and is due to the librons. The energy gap
occurs at the Fermi energy and is given by

IU. SINGLE-PARTICLE LIBRON GREEN'S
FUNCTIONS

id, = v, (k)a»+(v, (k)b «+A»

—ib „=(»},(k)a»+ v, (k)b»+B».

(4.1)

(4.2}

The first two terms in Eqs. (4.1) and (4.2) are
linear in a» and b~» and the coefficients v, (k) and

(d, (k) are defined by

v, (k) = g, —«Il»,

(»)o(k) = «g» &

(4.3)

(4.4)

where 4, is the Fourier transform of the EQQ
interaction J(i,j) The. terms A„B» are nonlinear
in the pseudospin operators. In direct space,
these are given by

A; =AQ+AD

B =B'+BD
S S S 7

where

(4 5)

(4.6)

The equations of motion of the libron Green's
functions are obtained by commuting the operators
a; and b; with the Hamiltonian (1.9). On inspection
of these equations, one finds that a; on lattice site
Ro is coupled to a, , b, and their Hermitian con-
jugates a, , b, for different sites R,'. A descrip-
tion of these results is given by the following two

equations which are written in momentum space:

A. =—Q

A D
S

BQ-
S

BD
S

g J(i,j) «a;(nj+m, ) — (2n, +m;)L, '(j)+b; L, '(j)+ —L, '(i)L,'(j} + g g(i, j)p(j)a;,

E1'(j),I., (&} ——L', () '(j) =L, '(1 —2;- )b&'L(j)) E 1(,j)k(j)b, ,
J

p J(i,j) —,'bt(nj+m, )+ (n;+2m;)L, '(j)+a; L, '(j) — L, '(i)L,'(j) + gg(i, j}p(j}b;,

E I' (I &)(- —bL', (j) — I;(I}I,'(&)—+ —, '(1 —., —2;}L,'(&)) —E & l(, &)2 (&)2;,

(4.7)

(4.8}

(4.9)

(4.10)

are the contributions to A; and B; from the quad-
rupoles (superscript Q) and dipoles (superscript
II)

The libron Green's functions which arise in this
problem from a 4&& 4 matrix. In the notation of
Eq. (3.10), this matrix is conveniently written
as

K, '(k, (u)K(k, ur) =I, +(t}(k, (v), (4.13)

j(K(», )

K, '(k, }
o2

o,

M(k+9, (»}})
' (4.14)

where I, is the unit 4X 4 matrix and K, '(k, (2)) is
given by

K(k, ~) = ((y„y,"}),

where the row vector Y&t is given by

(4.11}
with 0, the null 2x 2 matrix and M(k, ~) defined
to be

1'„=(a», b», a„„,b „,) .t (4.12)

From Eqs. (4.1) and (4.2), it is straightforward
to show that the libron Green's functions in Eq.
(4.11) satisfy the equation

)
1 (u —v, (k) —&u, (k)
q —u), (k) —(u —v, (k)

7] is an order parameter which is given by

(4.15}
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1 ~—j=1—3(n, &
= —~q, , (4.16)

where

(4.17)

and

(n, ) =
~ +&a»"a»& = —Q&b„b»& (4.18}

e(k, ) ==«Z„.y,'»,
71

(4.19)

where Z„ is the column vector

(4.20)

is the average number of librons in the &=0 wave-
vector state. Q(k, &u) in Eq. (4.13) is a 4x 4 ma, —

trix Green's function which is given by

ordering of the molecules and we have assumed
that it is nonzero. Thus our theory is not ap-
plicable to cases in which there is a band gap in
the presence of static disorder.

One may check quite easily from Eq. (4.13) that
if K is approximated by K, the band gap defined
by Eq. (3.14) vanishes since the off-diagonal ma-
trices of K, are equal to the null matrix. There-
fore, in order to obtain a I'eierls transition, fluc-
tuations in the libron motion have to be included.
The procedure we shall follow in order to syste-
matically incorporate the nonlinear effects is to
determine the equation of motion of @(k, z). This
leads to Dyson's equation with a self-energy. A
suitable approximation of the self-energy enables
one to go beyond the linear approximation.

Taking the time derivative of &b(k, t —t') with
respect to the time argument t' and using the com-
mutation relations for the pseudospin operators,
we have the following result for the Fourier
transform P(k, e):

Clearl. y, Ko is the approximation for K if all fluc-
tuation (nonlinear} effects arising from Q are
ignored. We shall refer to K, as the linear aP-
proximation of K. g is a measure of the rotational

I

Q (k, (u)K, '(k, (u) = II (k, (u) .
The quantity II (k, u), defined by

11(k, ) =11(k)+11(k,~),
is the sum of a frequency-independent part

(4.21)

(4.22)

&[A», a»])

&[B., a'J&
( ) —2 ([A i

]&

& [B„.„a,']&

-
& [A », b .]&

([B»,b .]&-

-([„A„b]&»
([B.„,b-.J&

& [A», a»„]&

&[B», a». ,J)

& [A"„a»., ]&

& [B„„,a„'„]&

-&[A», b «.,]&

-&[B„b „„J)
—&[A»„,b „„J)
-&[B"., b ".]&

(4.23)

which involves commutators of the components
of the vectors Z& and Y„and a frequency-depen-
dent part

ll(k, (u) = =, ((Z„;Z, )&,rl'
(4.24)

using the same notation as in Eq. (3.10).
Eliminating g(k, ~) from Eqs. (4.13) and (4.21),

we obtain the following matrix equation for
K(k, &u) in terms of II (k, &u):

K(k, u)) = Ko(k, ur) + Ko(k, (u)II (k, u))KO(k, (ar) .
(4.25)

We now rewrite this equation as Dyson's equation

K(k, (u) = K»(k, u)) + K,(k, u))Z (k, (u) K(k, u)), (4.26)

where Z(k, ~) is the proper self-energy. Sub-
stituting Eq. (4.25) for K(k, ru) into the right-hand
side of Eq. (4.26) and then equating this result
for K(k, u&) to its value in Eq. (4.25), we obtain
the self-energy Z(k, ~) in terms of II and K,:

Z(k, ur) =II(k, w)[I +K (k, ~)II(k, ~)J ', (4.27)

where we have assumed that the determinant of
the matrix in the square brackets on the right-
hand side of Eq. (4.27) is nonzero. Assuming that
we are not in a region of nonanalyticity, we now

proceed to obtain complete expressions for K.

V. K(k, m) IN THE STATIC APPROXIMATION

In this section, we obtain a complete expression
for the single-particle libron Green's functions
K(k, &u) when Z(k, v) is not neglected. Assuming
that the matrix in square brackets on the right-
hand side of Eq. (4.27) has an inverse, we may
take the self-energy to be given by the first factor
II (k, ~). In this approximation, some dynamic
effects arising from the fluctuations in the self-
energy would be ignored. We shall neglect all
dynamic contributions to the self-energy and thus
approximate Z(k, ur) by the first term in Eq.
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(4.22):

Z (k}= 11 (k) . (5.1)

The lowest-order approximation for the self-,
energy (a) modifies the excitation energies of the
libron modes and (b) gives a nontrivial tempera-

ture-dependent value for the band gap.
The calculation of Il(k) in Eq. (4.23) requires the

evaluation of the commutators of Z„with Y&. Us-
ing the commutation relations for the pseudospin
operators in configuration space, we obtain the
following results:

(5' E ('J(l j)[2(' "' ) Jb[l' L (j) 2 L {j)I]—2(l, j)P(j))

—'„(,l)(ba+, 25+5. 2 . —» .
)) (I —2, —» & E J(l j)(5.,

—5. . )L (I)L (j),
J

[5;,a,'] = —
(5„E[-', r {I, j)[(,—,) (2 5'5—(I ) —, 2J',2'L'( j,)] -, 1(ll)P (j )],

J

-', I'(l, l)[, , (I —2,. —,,)))(I —2, —», ) ——,'I'(I, I)L'(I)L'(,I), ,

[Aa 5 ]=(I " 2 )(I E '—J(I j)[ L, (j) bb(—j)l ,J(i l)(bb +2 I' 2" ))sl

——'J(, I)L,(I)L '(i),

lA 5 ]= —(I- —2,)(P, , E r(lj)[aL (l, l P, ,L ', (j)] ~ —,'r(, l)

x [ P, —(I —2,. —»,.)])—-', J(i, l)L (I)L, '{;)',

(5.2)

(5.3)

(5.4}

(5.5)

The commutators of 8; with a, and b, are also obtained by making use of the commutation relations in
Eqs. (2.8)-(2.12). However, we do not need to write the answers down because of the symmetry of the
matrix in Eq. (4.23).

Taking the ensemble average of Eqs. (5.2)-(5.5) and making use of the relation (2.7), we have

&IAP, [])=-n (5; F [J(l j)(2&;& -2& late) -2( [a;)) -2(l, j)&P(l))] ~ lJ(, I&(5{ l;) -2(;))),

({g. ']& = 5 (II., Q {r(1 j)(-,'( ', ,) ~ '
( 5'))+ l(l j)(P(j&)l — r(i I)(& ',

, )+ I —2 5 ))),
J

(5 6)

(5.7}

([Aa, b ]) =5, (II, , EJ(l j)((,',.) —( 5())+ ,—J(i,',l)(5(b)+2(,. ))),,
J

(5.8)

([A,. , 5, ]) = —il, (Il. , Er (I j)(( ., ,'.) + ( 5,.)) ~ I'(I, l)((,.,b ) —I + 2 51,. ))) .
J

(5.9)

Here we have decoupled the factors 1 —n, —2m, and 1 —2n, —m, from the factors in large parentheses in

Eqs. (5.2)-(5.5). We have also ignored the quadratic terms involving the product of L2(i} with L,'(j),
since these terms lead to higher-order Green s functions which are assumed negligible in this approxi-
mation.

If one keeps only the terms involving the average values of the libron number density (bj,.) and the elec-
tron number density (]o(j)) in Eqs. (5.6) and (5.8), then each spin precesses in the uncorrelated field pro-
duced by the interactions. This leads to the results in Ref. 16 where the dipolar effects have been ignored.
However, keeping all the terms in Eqs. (5.6)-(5.9) and Fourier transforming to momentum space, we ob-
tain the following results for the matrix elements of Il(k):

II,o, (k) =-q '{3v,(k) Q, ) -g, (p, ) —3[(R(0)—(('I(0}]+55I(k; 0)),

II, , (k) = &I '{-,y, Q,) ——,I,+ X,Q,)+3[(P(0)+d'(0)] —d (k;0)),
ilo, (k) =-)I '{3(bj (k)(n, )+ 2[(II(0) —6I(0)]+ 56I(k; 0)),

11,', (k) = )I-'{~,(n,}- y, + 2[a (0) + (P(0) ]+ (P(k; 0)],

(5.10)

(5.11}

(5.12)

(5.13)
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and

Ilo3(k) =-q '(6(uo(q)(n ) —3(uo(k+q)(n ) —g (p }—3[(R(0;q) —(R(0; q)]+ 56I (k; q)},
II~,(k) = t} 'j-y...Q,}+-y,In )g '+A. (P }+3[(P(0;q)+5'(0;q)]—P(k;q)],
IIo, (k) = -q '(3~, (k+ q) (n,}+2[8 (0;q) —st(0; q)]+ 5Q (k; q) ),

IID(k) = t) '(2y, , C'n )+ —,y Q, )g '+2[6'(0;q)+ &(0;q)]+5'(k;q}),

(5.14)

(5.15)

(5.16)

(5.17)

where 8 and (R are defined by

6I(k;k') = —Q ~,(P)(a,',„,„a„g, (5.18)

K '(k, v) = Ko-'(k, w) —Z(k), (5,20)

we have an explicit expression for K(k, u} which
ignores the dynamic correlations of the preces-
sions of the spins about their equilibrium pos-
itions. The eigenfrequencies of the libron modes
are renormalized from their values in the linear
approximation and correspond to the poles of
K(k, v) in Eq. (5.20). Since K(k, ~) depends on

$, (R and 6', 6' which in turn involve sums over
the matrix elements of K(k, a), n and g have to
be determined iteratively and self-consistently.
In order to get more insight into our model cal-
culation some numerical results are presented in
the next section.

VI. NUMERICAL RESULTS IN THE MEAN-FIELD
APPROXIMATION

If the correlations between the spins are neglected
so that each spin precesses in the mean field pro-
duced by its neighbors, the numerical calculation
of 4 and g is considerably simplified. In this
MFT, only the terms in Eqs. (5.6)-(5.9) which

6I(k;k') = —Q w, (P)(at„, ~b~,}. (5.19)

a' and 6' are defined in a similar way with ~,(p)
replaced by &y~ where y~ is the Fourier transform
of I'(i, j). For convenience, we have written
(R(0;0) =$(0), (h(0) =4(0;0), and similarly for
6'(0) and 4'(0). The second-row matrix elements
are obtained from those in the first row by mak-
ing use of the symmetry properties: II„(k)=II„(k),
II„(k)=II„(k), II„(k)=II„(k), and II„(k)=II„(k).
The elements in the third row are obtained from
those in the first row, since we have II»(k)
= II„(k+q), II, (k) = II, (k+q), II„(k)= II„(k+q),
and II„(k}= II„(k+q). In a similar way one can
obtain the fourth-row elements from those in the
second row. The self-energy is thus completely
determined in the approximation we have made in

Eq. (5.1).
Substituting these results for Z(k) into Dyson's

equation (4.26) which we rewrite as

l

involve the libron or electron density operators
are included. This means that we ignore the
correl, ation sums (8, S and 6', O'. Therefore in the
MFT the single-particle libron Green's function
is given byte

where

1 ( A(k (u)
t 7

(-fi(k+q) fi(k+ q, u)))

(6.1}

( Q3 —vg —Mg

A(k, cu) =i -~- v~ j
(6.2)

(II, 0,)
fi(k} =i

fI„

The frequencies v„~„Q„and 0, are defined by

v, -=v, (k)+ FIIIM»vr(k)

(6.3)

= r1vo(k)+ (go+ A )(p )+ 2yq(n ),
(u, -=(u, (k) + q 11,",Fr(k) = q~, (k)+ —,

'
y„(n,),

II„—= g II" (k)

(6 4)

(6.5)

=3[v&,(k+q) —2~,(q)+ y„]Q )+(g +X )(p ),
(6.6}

II, =— q TI"'„"(k) = —3[su, (k+ q) ——,'y» „](n,) . (6.7)

The expression for K ' in Eq. (6.1) has the same
form as the libron Green's function in Ref. 16.
The frequencies in Eqs. (6.4)-(6.7), however,
are different from our earlier results, "since they
contain the dipolar coupling parameters ~ and y.

From Eqs. (6.1)-(6.3), the matrix element
((a~„;a„)) is given by

(( a,~; at )) = q z) (k, (u) ' —0,„
-Gk+ —V~k+q

(6.8)

where B(k, &u) is the determinant of the matrix on
the right-hand side of Eq. (6.1). From Eqs. (3.14)
and (6.8), one may determine the half-width 6 of
the conduction-band gap. When the gap is small,
we may expand the determinants in Eq. (6.8) to
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order 6 and we have

&(a„,; a'„)&

X(k, ~) = (&u'-Q»'}((u' —Q»„) (6.10)

where

(,((4I+ V»)((d+ V» ~ )Q»~
k~ (d)

—»d» ~» [Q»+ (1d+ V» ) —Q»+ (d» ]

—Q» ~ id» [(d+ v»+ ]], (6.9)

Q» = (V» —4l» ) (6.11)

is the eigenfrequency of the libron mode in the
absence of a conduction-electron band gap.

Doing the frequency sums analytically and inte-
grating over the wave vector, Eq. (6.9) gives"
the following equation:

—Q (Q,' -Q,'„) ' F(k, Q, )cath ' -F(k, Q„,)coth 2' =1,
C c

(6.12)

which determines the mean-field Peierls transi-
tion temperature T, . Here

F(k g) =8 [(2 + v» v» + (al» (d» ) 8»

where

—("» ~»+»+ ~» "»+» }»+»] (6.13)

~» =-'[~.(k+q) —2~.(a)+ 'y». , 1-

-g, (g, + &, )Q~,) tanh
k'

(6.14)

(6.15)

From Eq. (6.1), one can show that the matrix
element ((a»; a,")) is given by

((a„;a»~ )) = q ~(k, (u) ' —Q„, (o —v„,
~»+q k+q

(6.16)

At T, , b, =0 and (6.16) gives

((a»;a»t)) =q((u+ v»)/(s)'-Q»') . (6.17)

Doing the frequency sums analytically and inte-
grating over k, Eq. (6.17) gives

(6.18)

where we have made use of (n») = (1-q}/3 from
Eq. (4.16}. Thus q in Eq. (6.12) must satisfy Eq.
(6.18). The essential factors which determine T,
are contained in the expressions (6.12) and (6.18).
These are the effective libron-libron interaction,
the electron-libron coupling parameters, the li-
bron energy 0», the band structure of the elec-
trons which determines &k, and the occupation
number of the k = 0 libron modes. One should note

I

that the hyperbolic cotangent rather than tangent
enters into the formulas (6.12) and (6.18) because
of the bosonlike nature of the libron modes. The
coth factors arise from the loss of librons from
the Peierls condensate through thermal excitation.

We have solved Eqs. (6.12) and (6.18) for T, and

We have assumed nearest-neighbor EQQ and

EDD interactions on a strand with 8» =g cos(kc)
and y, =ycos(kc) where c is the lattice spacing.
We have also assumed nearest-neighbor hopping
of the electrons between the molecules, such that
~» = —(W/2)cos(kc) where W is the bandwidth. In
Fig. 1, we have plotted T, as a function of 8, 8',

g, , and g, In these plots, we have set both the
dipole-dipole interaction y and the electron-dipole
interaction ~ equal to zero so as to isolate the
contributions from the quadrupoles. We have done
calculations with finite values of y and ~ and found
that their effect is to reduce the Peierls critical
temperature. In Fig. 2, we have plotted T, and

q as a function of g; in Fig. 2(b), the effect of
increasing ~, is illustrated. Calculation shows
that T, is more sensitive to changes in ~, than it
is to ~, and y.

The Peierls condensate is formed from the
macroscopic occupancy of the states of vectors
~ and k ~q. The gap parameter comes from the
interaction of the electrons with the librons and it
is this interaction which distorts the lattice. At
low temperatures, most of the librons are in the
condensate. As the temperature increases, some
of them are thermally excited from the conden-
sate. The dependence of I, on g, is like the ex-
ponential variation of the Peierls transition tem-
perature with the electron-phonon coupling in
Fr6hlich's Hamiltonian with only two (zone-bound-
ary} phonon modes. Figure 1(c) shows that there
is an upper and a lower cutoff limit in the range of
values of g, for which there is a T, . Comparing
Fig. 1(c) with Fig. 1(d), we find that T, depends
quite differently on the Fourier components g,
and gq ~
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FIG. 1. Mean-field Peierls transition temperature T, as a function of (a) the isotropic quadrupole-quadrupole
coupling 8, (b) the conduction electron bandwidth 8' and the Fourier components, (c) g and (d) go of the coupling of the
conduction band to the quadrupole moments. The dipole-dipole and electron-dipole interaction parameters are equal
to zero.

VII. THE ELECTRICAL CONDUCTIVITY

FOR A STRAND

The results of Secs. III and VI enable us to obtain
the electrical conductivity of a one-dimensional
conductor which we describe by the simple but
nontrivial Hamiltonian in Secs. I and II. The con-
ductivity is obtained from the single-particle
electron and libron Green's functions as we dis-
cuss in this section.

We begin by quoting Kubo's formula for the com-
plex dc-conductivity tensor in the absence of a
magnetic field":

s/r
,„(k, )= f dt '" dk()„().', — L() )(-k, t)).

0 0

trons, and

o...'(k, )-f dt e"""' "&, ,'()', t),
0

with

(7.3)

iir
Dorp(k t) = dX(pq (k t iI(.)pqrg k, 0)) . —

0

(7.4}

In E(I. (7.4), we have defined

AX& t - fagp(„(k, t ) = e e(p „g,e((, „g,e (7.S)

DP~. (k, (()) = It(t~&&i (k, (()) tI» (k, 0)] /i&(—), (7.6)

But, after integrating Eq. (7.3) by parts, we have

(7.1) where

2

g„„(k,u) = — p „p& Dp~ (k, (()),I ppl
(7.2)

where -e and m are the charge and mass of the
electron, p and P' are the momenta of the elec-

Here 4 is the wave vector of the electromagnetic
field, cu its frequency, and p is the current-den-
sity operator. One can show quite easily that Eq.
(7.1) may be rewritten as

(k, )=f dke'"'t) (),' f)

tI», (k, t ) = —8(t ) —DP, , (k, t }

g». (0, 0) is the zero-frequency component of

air
a». (k, (u„) = die'"" a» (k, X),

0

(7.7)

(7.8)

(7.9)
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FIG. 3. Diagrams giving (a) the single-particle and
(b) the collective parts of the conductivity. An electron
Green's function is denoted by a continuous line and a
libron Green's function by a broken line.

Perel' and Eliashberg, "but are rederived here
so as to establish the notation. In the long-wave-
length limit, we have for o(u) =— o(&u, k=0) in the
case of a linear conductor with a half-filled tight-
binding band

g,= O.OI eV, W=0,04eV, g =0.I65ev

1 =y=O. OIev
for ———curves40—

o(u) = . [a (u) —a(0)J,

where

(7.12)

30—
ae( ) Q ae (0 ~)

PPP fyo I
(7.13)

20—

IQ—

00
I I

0.2 0.4
P(evj

0.6

a(0) is obtained from a». (0, 0) by summing over
p, p' and o, o'. In Eq. (7.12), the unperturbed
electron energy near the Fermi level is approxi-
mated by e, =vPI kI —kp) where vp and kp are the
Fermi velocity and wave vector, respectively.

The single-particle contribution to ae(ru) corre-
sponds to the diagram in Fig. 3(a). This contri-
bution, which we denote by a'"(&u), is given by

FIG. 2. (a) The alignment parameter 7) and (b)
Peierls transition temperature T, as a function of the
isotropic quadrupole-quadrupole interaction 8 within
the mean-field approximation. The broken curves in

(b) show the effect of the electron-dipole and dipole-
dipole interactions on the solid curve for which y and
X are equal to zero.

a'e(~) = —g [9»(k, v)9»(k, v+ &u)
1

kv

+9„(k,v)9„(k, v+ u))

+9„(k, v)9„(k, v+(u)], (7.14)

where ~„=2n~T, n = 0, +1, +2, . . . ,

app (k ~) =(T [Pp pk)]x[pp. ( k, 0)].)-, (7.10)

and [p]& =e" pe . One can show that app. (k, t)
in Eq. (7.8) can be expressed as a retarded
Green's function:

a, (k, t ) = t e(t X[p,. (k, —t ), p, (- k, 0)]&,

(7.11)

whose Fourier transform a» ~ (k, u) is the analytic
continuation of a» (k, &u) from the imaginary- to
the real-frequency axis.

We have thus cast the expression for the elec-
trical conductivity in Eq. (7.1} into a form which
is suitable for evaluation using diagrammatic
methods. The Eqs. (7.2)-(7.11) were derived by

where 9„(k, u&) are the matrix elements of the
single-particle electron Green's function in Eq.
(3.10}. Substituting the mean-field results from
Eq. (3.12) into Eq. (7.14} and doing the frequency
sum over v, we obtain

(7.15)

where gp= sgn(& )(e +pn')p'~ . As expected, the sin-
gle-particle contribution to o(v) has the same form
at T = 0 K as that obtained by Lee, Rice, and An-
derson" using Frohlich's Hamiltonian.

Collective contributions to the dc conductivity
are associated with oscillations in the charge and

lattice distortions about their equilibrium values.
They are optically active along the chain direction
since they involve a displacement of condensed
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charge. A diagram which arises from the phase
oscillations is shown in Fig. 3(b). The sum of
these diagrams gives o, ((v), the collective part of
o(~). The electron lines are the elements of the

Green s function matrix obtained by inverting
Eq. (3.12}while the libron lines correspond to the
averages )I and n, . Using the notation 9,, (b, v)

=9,.~(v), we find

8" ((g) =g,q Q(8„(v)[8„(v)8„(v—~}+8„(v)9„(v—(u)]+ g„(v) [g„(v)8„(v—(u)+ g„(v)g, (v (v)])

+g, b. Q (8„(v)[8„(v)9„(v—u))+ 9„(v)9„(v—(v)]

+8„(v)[9„(v)8„(v—(v)+8„(v)9„(v—(u)]] .

Simplifying Eq. (7.16), we obtain the collective
part of 8 ((0) to be

)
1 ~ f((,)f(- 5k)

o((v) = e'vs[('((v) -('(0)] /f(v,

where

(7.is)

) E h'/(, thhh((, lhh') ) ~(( )~( ( ))co+ 2g»

g,q 1 ~ f ( hk )f (—&k )

T N „co+2g»
(7.19)

It would be instructive to supplement this section
with numerical calculations of o((v) for a one-
dimensional conductor which undergoes a Peierls
distortion commensurate with the lattice. More-
so, it would be interesting to see if o((v) is peaked
or has broad maxima in our parameter space. We
feel that because Eq. (7.17) involves a product of
Fermi factors, o, ((()) might be more strongly
temperature dependent for our model than for the
one described by the Fr6hlich Hamiltonian. How-
ever, because of the work involved in evaluating
the gap and alignment parameters numerically,
we shall report the results of this calculation sep-
arately.

VIII. CONCLUDING REMARKS

We have done calculations for a model of one-
dimensional conductors, based on the multipole
expansion of the electrostatic interaction between
a pair of charge distributions. The isotropic EQQ

(7.17)

where f(() is the Fermi-Dirac function. It is
straightforward to show that 8'" vanishes at zero
temperature. But for the Frohlich Hamiltonian
with electron-phonon interactions the collective
contribution to o((()) is not frozen out at T = 0 K."'"
This result illustrates the quantitative difference
between an orientational and translational Peierl. s
instability for a one-dimensional stack of mole-
cules. Substituting the results in Eqs. (7.15) and
(7.17) into Eq. (7.12), we obtain as the total con-
ductivity o((v) = o,((v) + o, ((v):

&(x)z S(z) z

+ &3i + &4)
(d —Q» (d —Q»

(6.1)

where Q»" are the four roots of the equation X)(k,
())) =0. The Green's functions ((b, ; bk~)), ((a„,;
ak„)), and ((b,„;bk„)) may also be written in

and EDD interactions do not give rise to long-
range order in one or two dimensions, as can be
proven from general mathematical theorems. "
However, the coupling of the conduction band of
the electrons to the librational motion of the mole-
cules gives rise to anisotropic effects which pro-
duce an orientational Peierls distortion. The
numerical results of Sec. VI show the dependence
of the Peierls transition temperature on the var-
iables spanning the parameter space. These re-
sults suggest that for a one-dimensional conductor
to have an orientational Peierls transition at fin-
ite temperature it is crucial that certain molecu-
lar features such as the strength of the electron
coupling to the rotations of the molecules have to
be carefully designed.

In our model with spin S= 1 molecules, the
quadrupolar coupling to the conduction band pro-
duces the band gap b, . The dipolar terms just re-
normalize the value of T, . For some solids where
the intrinsic spin of the molecules is not S = 1, the
dipolar coupling to the conduction electrons is the
dominant one and may produce the band gap. This
calculation is being done and the results will be
published later.

The cylindrical symmetry of the charge distri-
bution was assumed for convenience so that there
is only one parameter which describes the rota-
tional ordering of the molecules. This is equiva-
lent to the use of a diagonal density matrix. An

interesting though complicated problem to follow
up would be the use of a nondiagonal density ma-
trix which takes account of the multiplicity of or-
der-disorder phase transition in the conductor.

We may resolve Eq. (6.17) into partial fractions
which we write as

(z&z (x&zt -z "» ~»
((&k ((k)) =)I (»+ ~(.)

(d —Q» co —Q»
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terms of fractions with a set of coefficients
fu«'" v'«'" r'«~", s'~"} where i=2, 3, 4, re-
spectively, replacing those in Eq. (8.1). These
coefficients satisfy the relation

(x) (2)
ko ~ k +ko ~ +k+qo ~

where

(8.4)

We also define a set of operators ck, through the
relation

u""+v""+r' i +s""=].lq .k k (8.2)

We define a set of operators g '," in terms of the
Peierls quadruplet (g&}=-fa«, b, , a, „,b«+, }
through the transformation

g&
—-q(u «" (' '+v «~']'«'+r i $"'i s "$' ') (8 3)

(l)2 k k (2)2 k+I Ek
E+ -E ' E+ -Ek k k k

(8 6)

with E««defined in Eq. (3.13). It is straightforward
to show that $'«" and c„diagonalise the effective
Hamiltonian

eff ~ k ka ka ~ +ka+k+ea
ka ka

+g[v«(a«a«+b«b«)+u«(a «b«+a«b «) +Q «( b» b«„+a «a"«„)+Q«(b«a «„+a «b«„)], (8.6)

provided

[&« i ( «1- b&g ~«« i (8.7)

and the exact commutation relations for a, and hk

are aPProximated by

[a„a,',]= [b„b,',]= qb, „, (8.8)

[a„b',]=0, (8.9}

From the Bogoliubov transformations, we can
calculate the ground-state energy. We may also
use them to include the frequency-dependent con-
tribution to the seU-energy. "

In conclusion, we would like to emphasize the
following. Librons are quantum-mechanical ele-
mentary excitations which should not be confused
with the classical rigid rotations of the molecules
about their centers of mass. Each eigenstate of
the molecules is determined by the two-body
forces arising from the molecule-molecule and
electron-molecule interactions. Basic to our cal-
culation, like several others in the literature, "'""
is that for weakly interacting systems S=1 can
be taken as nearly a good quantum number.

The coupling between the rotations of the mole-
cules and the conduction electrons, the X, term
of the Hamiltonian in Eq. (1.6a), is quadratic in

the pseudospin operators a, , b,. and their Her-
mitian conjugates. The Hamiltonian used by Gut-
freund and Weger" is also quadratic in the dis-
placement operators of the molecules from their
equilibrium positions. However, while our Ham-
iltonian is applicable to systems in which the
molecules can rotate freely about their centers of
mass, the Hamiltonian used in Ref. 10 Taylor ex-
pands about a specific direction of the molecules.
Our theory should apply to materials, like liquid
crystals or some other solids, where free rota-
tions are possible. If the Peierls transition tem-
perature is close to its mean-field value, then the
parameters entering the problem must satisfy the
two equations (6.12) and (6.18}. This is the criter-
ion for the theory to be used in a particular case.
With more calculations being done, we hope to
find that our theory is suitable for some specific
charge-transfer complexes or other related sys-
tems.

We feel that this paper gives interesting results
for the effects of the rotations of the molecules
on the conduction electron spectrum. We hope
that these results will encourage experimental
studies on quasi-one-dimensional conductors so
as to shed some light on our understanding of
these materials.
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