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Measurements of the diffusion coefficient of '"Sn, '"Sb, "
Ag, and ' 'Au in liquid Sn have been made

using a shear cell assembly which provides accurate data. The experimental diffusion coefficient is given by

D,- = CD, , where D; is obtained using Enskog's theory and C is a correction factor accounting for
dynamical effects. C is strongly dependent on the density of the fluid and on the relative mass and size of
the solute with respect to the solvent. The data show that (i) the density effects in self-diffusion are
qualitatively in good agreement with molecular-dynamics calculations (ii) for impurity diffusion, C
decreases with the mass of the solute, whatever the density, as predicted by molecular-dynamics (MD)
calculations; (iii) size effects on C are in agreement with MD calculations for impurities larger than the

solvent; and (iv) Ag and Au solutes exhibit anomalously large values of C which may be due to valence

effects.

I. INTRODUCTION

As we recalled in a previous paper' self-diffusion
and impurity diffusion in liquid metals are qualita-
tively well understood. Enskog's theory of dense
fluids' provides a diffusion coefficient D, of the test
particle which is of the right order of magnitude.
Alder et al."have corrected this theory to ac-
count for dynamical corrections. Hence the dif-
fusion coefficient D,. of a species i in a liquid is
usually written

As shown by Alder et al. , the correlation factor
C, depends on the fluid density and on the relative
mass and size of the solute with respect to the
solvent.

In our previous paper we investigated the diffu-
sion propertit, s of some solute atoms in liquid
copper and we compared the experimental results
to molecular dynamics calculations on hard-sphere
systems. According to the mass and size of the
solute, two correlation regimes can be observed:
(i) for particles larger and heavier than the sol-
vent (e.g. , Sn, Sb, Ag, and Au in liquid Cu), C,. in-
creases as the mass and/or size of the solute
atoms increases and (ii) for solute atoms smaller
and of smaller mass than the solvent, C,. increases
as the mass of the diffusing particle increases and
as its hard-sphere diameter is reduced.

In order to test this behavior, we have mea-
sured the diffusion coefficient of "'Sn, '"

Ag,
Sb, ' Au in liquid Sn in a larger density range

(1.56 & V/Vo &2.6) than was technically possible in
liquid copper (1.56 & V/Vo & 1.75). V is the molar
volume of the liquid at the temperature of the ex-
periment and Vo is its close-packed value. In
Sec. II we describe the experimental technique and
we give the experimental data. Section III is de-

voted to the analysis of the dependence of the cor-
relation factor on the fluid density and on the
hard-sphere parameters of the solute atoms.

II. EXPERIMENTAL METHOD AND RESULTS

In order to avoid most of the drawbacks pre-
sented by the capillary reservoir technique which
is usually employed to measure diffusion coeffi-
cients, a shear cell has been constructed and is
described with some details in Ref. 1. At the be-
ginning of the run, a thin layer of a radioisotope
of the solute is put in contact with a capillary of
the solvent metal. When the diffusion run is com-
pleted, each disk of the shear cell is rotated with
respect to its neighbors. This operation, which

takes place at the diffusion temperature, accur-
ately determines the end of the diffusion experi-
ment, and prevents any redistribution of solute
when the capillary is cooled down to room temp-
erature. The sections of the sample are subse-
quently extracted from the disks and their radio-
activity is measured using a standard Nal-Tl
analyzer. The diffusion coefficient is obtained
by a least-squares fitting of the experimental con-
centration profile to the solution of the appropriate
Fick equation.

Using this technique, we have measured the
diffusion coefficient of the radioisotopes "' Ag,"Sn, "Sb, and ' Au in liquid tin in a tempera-
ture range of about 1300 K above the melting
point, which corresponds to the density range
1.56 & V/Vo &2.60. The experimental data are
recorded in Table I and compared with the results
given by different authors in Figs. 1 and 2.

In order to make a comparison between the
diffusion coefficients of the four isotopes investi-
gated in the present work, and for reasons given
in Sec. III of our previous paper, ' we consider
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TABLE I. Diffusion coefficients of Ag, Sn, Sb, and Au in liquid tin.

113Sn 124Sb '"Au110mAg
D D D D

T(K) (10 cm s ) T(K) (10 cm s ) T(K) (10 Scm s ) T(K) (10 5cm s )

621
693
826
943

1108
1428
1538
1683
1853

3.8 + 0.2
5.6 + 0.3
7.1+0.4

10.2 + 0.5
11.8 + 0.6
17.2*0.9
21.0 + 1.0
22.0 + 1.1
25.2 ~1.3

628
700
825
973

1050
1100
1300
1450
1520
1600
1925

3.4+ 0.2
4.2 + 0.2
5.5 + 0.3
7.4 + 0.4
8.4+ 0.4
8.9+ 0.5

11.3 ~ 0.6
13.2+ 0.7
13.9*0.7
14.9 + 0.8
19.0 + 1.0

589
624
630
743
841
891

1100
1400
1705

2.6 + 0.1
2.9+0.2
3.0 + 0.2
4.4 + 0.2
6.4 + 0.3
6.7 2 0.3
7.6 ~0.4

11.8 + 0.6
15.0 + 0.8

693
826

1108
1323
1428
1538
1683
1853

5.2 + 0.3
6.7 + 0.3

10.8 + 0.5
15.1 + 0.8
15.7 6 0.8
20.5 + 1.0
22.1 + 1.1
26.1 +1.3

that & varies as a function of temperature:

D=A(T —T ) +D (2) 30-

where D is the diffusion coefficient linearly ex-
trapolated to the melting temperature T (T
= 504.9 K). The values obtained for the parame-
ters A and D are recorded in Table II.

20.

10 ~

Ag

III. INTERPRETATION

Using the result given by Thorne, ' " the binary
collision diffusion coefficient D,. of the solute i in
the solvent labeled s can be written in the Enskog
approximation

D(10 cm s )

20-

600 800 1000

Sb

1$00

Sno„g„(0„) 2g p,

where p=m, m, /(m, +m, ) is the reduced mass,
p„o, are the hard-sphere diameters of solute and
solvent atoms, respectively, a„=-',(o, +o,), and

g;,(o„) is the radial distribution function of unlike
atoms at contact. In order to calculate D, , we
must therefore know o, and o, and g„(o„). We
now briefly describe our method for determining
these quantities.

A. Hard-sphere diameters

In his work on liquid metals' '' Protopapas
showed that the self-diffusion coefficient can be
accurately predicted if each atom & is considered
as a hard sphere with a diameter o (T) depending
on temperature according to the law

10.

28

20

12

600

Au

1000

1000

1$00

1$00

1/2
o (T) = 1.288 1 —0.112 (4)

Pom &m

where p is the mass density at melting tempera-
ture T . Using this equation, we can calculate
the diameters o, (T) and o,(T) at any temperature

FIG. 1. Comparison of experimental diffusion coeffi-
cients of ~Ag, Sb, and Au in liquid Sn with those
given by different authors: ----- Davis (Ref. 5), p
Tychina (Ref. 6), 8 Golovchenko (Ref. 7), 0 Kharkov
(Ref. 8), Q Teillier Q,ef. 9), 4 Foster (Ref. 10), + Du
Fou (Ref. 11), ~ this work.
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D(10 cm s ]
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FIG. 2. Comparison of experimental self-diffusion coefficients in liquid Sn with the data of different authors: ~

Kharkov (Ref. 12), D Ma and Swalin (Ref. 13), *Foster (Ref. 10), ~ Davis and Fryzuck (tRef. 14), ~ this work.

T, and we assume that their values remain un-
altered in a dilute alloy.

B. Radial distribution function

(2- y)
gis(ois) {2y )(l )

s

(6)

From the work of Lebowitz ' the radial distribu-
tion functions {RDF)g«, g„, and g„are obtained
through an extension of the apercus-Yevick theory
to multicomponent systems. The RDF are func-
tions of the hard-sphere diameters and of the
partial-packing fractions y, and y, of the solute
and solvent, respectively,

g(((o() =(l )~ l(i+ sy) + s(y, /~, )(o( —~,)],

1
g;,(o;,) =

2
[o;g„(o,) + (r, g„(o,)],

20'~s

where y = y, + y, is the packing fraction of the bin-
ary mixture and g„(o,) is obtained from g„(o,.) by
interchanging g„,o, with g„., 6, . As it stands the
expression for g„{o,,) can be introduced in Eq.
(3) to obtain D, . However, it is well known that
the Carnahan-Starling equation of state for binary
hard-sphere liquids is more accurate than the
apercus- Yevick equation -of state. Therefore we
replace the factor &1 —

y) involved in the expres-
sions of g«and g„by the factor (2 —y)r'[(2+ y)
x(l —y)'], which makes sure that the resulting ex-
pressions for the radial distribution functions are
compatible with the Carnahan-Starling equation. of
state. Using this procedure we obtain the follow-
ing expression for g„(o;,):

which is introduced in Eq. (3) to give D, .
This equation is obtained in the frame of the

Enskog approximation, which neglects correlated
collisions between diffusing species. Apart from
the work of R6sibois, Mehaffey and Cukier, '
and Hynes, Kapral, and Weinberg, there is no
analytic or semianalytic description of these
correlations. We therefore prefer, as we did in
Ref. 1, to rely on molecular dynamics calculations
for estimating these correlation effects.

C. Dynamic correlations

The difference between the diffusion coefficient
D,. obtained experimentally and the binary colli-
sion diffusion coefficient D,. calculated using
Enskog's theory can be attributed to dynamic
correlations, which are completely ignored in the

iiomAg i13Sn i24Sb 1&5Au

A(10 cm s K )
D~ (10 cm2 s )

17.2
2.07

12 10.6
1.80 2.23

17.7
1.30

TABLE II. Values of the parameters A and D [Eq. (2)]
for the diffusion of Ag Sn, Sb, and ~Au in
liquid Sn.
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C,(ViY )

1.5

0.5-
1.5

0.5
1.7

0.4 0.3 0.2 0.1
10 Vt'V,

V

FIG. 3. Experimental ratio D, /D+= C~(V/Vo) in Sn (squares) compared with Alder's data (Ref. 3). D /D@ calculated
with the effective hard-sphere diameter given by Eq. (9) (points).

Enskog description. According to the computer
simulations made by Alder et al. , ' these cor-
relations depend strongly on the solvent density,
as well as on the relative size and mass of the
solute with respect to the solvent. Using our
experimental results and the binary collision
diffusion coefficient calculated in a hard-sphere
system, we can estimate a correction factor due
to dynamic correlations and compare its value
to that predicted by numerical simulation. In
what follows we discuss separately density ef-
fects and the influence of the mass and of the size
of the solute atoms.

1. Density effects

Density effects are most easily discussed when

self-diffusion results are considered. The binary
collision self-diffusion coefficient D, can be writ-
ten

3 uT '/'
8na', g,(a,) vm,

where a,(T) is given by Eq. (4) and

(2 —y)
gs( s} 2(1 )3

is a function of the density only and represents
the departure of D, from the binary collision dif-
fusion coefficient D, .

The values of C, obtained using this procedure
are represented in Fig. 3 and compared with theo-
retical values obtained by Alder' in hard-sphere
systems. Qualitatively, the overall agreement is
fairly good (i) at high densities (1.5 & V/Vo(1. 7),
the backscattering regime is predominant and leads
to a value of C, which is smaller than unity and (ii}
in the intermediate density range (V/V, -3), C, is
larger than unity, which can be traced to persis-
tence effects induced by the initial motion of a
given atom. As shown by Alder" it is likely that
the test particle initiates long-wavelength hydro-
dynamic motions which decay slowly, which ex-
plains the long-time tail in the velocity autocorre-
lation function and the increase of the diffusion
coefficient with respect to its value in the Enskog
approximation.

In a second step in our interpretation, we as-
sume that the values Cy of Cy calculated by Alder
are exact and we determine the value of the effec-
tive hard-sphere diameter a,'(T} which would give
the Enskog coefficient

In what follows we assume that the temperature
dependence of the self-diffusion coefficient is
contained in D, and that the ratio

S
1

We find that, instead of the value of a,(T) given by
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C(NI, X),

1.5-
Au

0

Sb
Sn

600

1.78

1000

2.06

1400

2.37 V/Vp

~Boo

FIG. 4. Experimental values of C2Qf, p) for ~Ag, 5Au, Sb, and Sn according to Eq. (12).

Protopapas,

o,(T)= 3.30[1 —0.112(T/T )' ']
where C, (V/V, ) is given by the Eq. (7). Using this
procedure, we can calculate at each temperature
the correction factor

and corresponding to the packing fraction y = 0.472
at the melting point, we must use

0,' (T) =3.17[1-0.082(T/T )' '], (9)

c,(M, z)= —j ~,
5 8

(12)

in order to recover the results predicted by mole-
cular dynamics calculations. The values of o,'(T)
differ by at most 3% from that of o,{T) in the tem-
perature range investigated in the present work,
and correspond to a packing fraction y' =0.455 at
the melting point. The values of o,'(T) must not
be taken too seriously, however, because the
dynamical properties of liquid tin are not neces-
sarily accurately represented using an equivalent
hard-sphere system.

1.5-
y/y =3

'~ 1.3

~ 1

0.75

~0 5

0.25

2. Impurity diff'usion —mass and size effects

Once the binary collision diffusion coefficient
DE for impurity diffusion has been calculated us-
ing Eq. (3), we assume that the ratio

C,. = ~D.
5

(10)
0.5

is a function of the density of the fluid and of the
ratios M = m, /m, and Z = o,./o, of the solute- and
solvent-mass and size, respectively. As our ex-
periments have been made in very dilute alloys,
we can assume that the dependence of C,. on den-
sity is the same as that found in self-diffusion.

Therefore we can write

c,.((v/v, ),i(f, z) = c,(v/v, )c,(M, z)

0.01 0.1 M

0 048 1
l al

10

FIG. 5. Variation of D&/D+& as a function of log~0M,
for various size ratios g. interpolation of
Alder's results; -----: extrapolation of Alder's data
to N. Z) &(1.1).
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V/V =3

1.5-

-« 0.1

0.5-

I

0.5 1.3

FIG. 6. Variation of Di/D@ as a function of g at con-
stant M. Alder's data; ————:extrapolation of
Alder's data to (M, g) & (1, 1).

which is represented in Fig. 4 for "' Ag, '"Au,
"Sb, and '"Sn in $n.

Molecular dynamics calculations have been made

by Alder et al.' on hard-sphere systems with

(M, X', ) ~(1, 1). It is therefore necessary to extra.
polate these results to the range (M, Z) ~ (1, 1)
in order to make a comparison with our experi-
mental results. This extrapolation is made using
the same method as that used by Protopapas. "
For instance, at the density corresponding to
V/V, =3, we mention these points: (i) We note
(Fig. 5) that in the range M ~ 1, the values of

D, /D, ca.lcul. ated by Alder vary linearly as a func-
tion of log, P1 whatever the size ratio Z. It is
therefore possible to extrapolate these results up
to M =3, and we think that the values of C,. =D,/D';.
obtained in this way do not depart drastically from
what would be obtained in a detailed computer cal-
culation. (ii) We use the same procedure to obtain

C,. for values of Z up to 1.3 (Fig. 6). Using the
value of C, (V/V, ) given by C,.(V/Vo, 1, 1) we obtain
"theoretical values" of C,(M, Z) which are reported
in Table III for V/Vo = 3 and 1.6.

It is now possible to compare the experimental
value C;*"of C, given by the Eq. (12) to the theo-

TABLE III. Values of C; =D;/D; interpolated and extrapolated from Alder's data (Ref. 4) and values of C2""'=C;/
C;(V/Vp, 1, 1) calculated for V/Vp=3 and 1.6. C2" ' denotes the experimental values obtained by Eq. (12) for Ag, Au, Sn,
and Sb in liquid tin.

Solute

V/Vp =3

Ctheor Ci
M C; = D; /D; C;(V/Vp, 1, 1)

V/Vp = 1.6
expt

C2 Ctheor
(V/Vp = 2.6) Ci =Di/D~ Ci(V/Vpq 1~ 1) C2

Ag

Au

Sn

Sb

0.75 0.1
0.9
1
2
3

0.9 0.1
0.9
1
1.7
2
3

1 0.1
0.9
1
2
3

1.03 1.05
1.3 0.1

0.9
1
2
3

0.91
1.25
1.27
1.37
1.46
0.86
1.29
1.31
1.40
1.43
1.52
0.82
1.31
1.33
1.43
1.55
1.36
0.75
1.38
1.40
1.57
1 ~ 68

0.68
0.94
0.95
1.03
1.10
0.65
0.97
0.98
1.05
1.08
1.14
0.62
0 ~ 98
1.00
1.09
1.17
1 ~ 02
0 ~ 56
1.04
1.05
1.18
1.26

1.30

1.49

1.00

1.04

0.47
0.81
0.83
0.91
0.97
0.43
0.78
0.80
0.86
0.87
0.93
0.40
0.76
0.78
0 ~ 86
0.92
0.80
0.37
0.71
0.73
0.83
0.89

0.6
1.04
1.06
1~ 17
1.24
0.55
1.00
1.03
1.10
1.12
1.19
0.51
0.97
1.00
1.10
1.18
1.03
0.47
0.91
0.94
1.06
1.14

1.10

1.38

1.00

0.96
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Q(MQ)„,
1.5—

AQ Sn Sb

1 V/Vo--3
~ Alder

M=1 V/V =1.60

0.5-

0.5 1.5

FIG. 7. Variation of Cf' and C "'0'with y at two
different densities P/&0= 3 ( ), V/Vo= 1.6 (-—--).

(V/Vo =—3), however, it can be seen in Fig. 'I that

C,""is larger than C.,'"~' for impurities smaller
(Ag) or larger (Sb) than Sn. For the Sb solute,
C,""is larger than unity, as can be predicted us-
ing Alder's results. A more challenging result is
that C;*"(Ag) is much larger than unity, whereas
C,'""'(Ag) is smaller than unity for the density
V/VO=3. This can be due to valence effects: For
an impurity whose valence is different from that
of the solvent, the RDF at contact may be very
different from the values calculated using hard
spheres. Moreover, the local density of the fluid
around the impurity can be changed from its mean
value and, as C,. depends strongly on V/V„ this
may affect considerably the velocity autocorrela-
tion function of the impurity. Some calculations
are now in progress to settle this point.

retical value C,'""'. This comparison is made in

Table III as a function of M and Z. It can be noted
that both experiment and calculations exhibit the
same M dependence of C,; C, increases as the
mass of the solute atom increases from Ag to Au,
whatever the density. This behavior is easy to
understand for the following reasons: (i) at high
density the backscattering effect decreases when
the mass of the solute increases and (ii) at inter-
mediate density, a heavy test particle is more
efficient for inducing hydrodynamic modes than p
light particle. Let us also note that the agree-
ment between C;""and C,'"'" would be quantita-
tively very much better if, instead of approximat-
ing C,(V/V, ) by D,/D, , we had used the value

C,(V/Vo, 1, 1) obtained by Alder.
In Fig. 7 we have reported the values of C,"'

and C,'"'" as a function of ~' at two different den-
sities (V/V, =1.6, 3) At the density corresponding
to V/V, =1.6, both C;*"and C'""' decrease when
Z increases from Ag to Sb. At smaller densities

IV. CONCLUSION

We have measured the diffusion coefficients of
Ag, '"Sn, '"Sb, and '"Au in liquid tin using a

shear cell assembly which provides data with a
precision of about 5%. From the density effect on
the self-diffusion coefficient of Sn, we have been
able to determine an effective hard-sphere dia-
meter of Sn in a large temperature range. At
large densities, the correction factor to Enskog's
theory decreases as the mass of the solute de-
creases, as predicted by molecular dynamics cal-
culations. Size effects on the correlation factor
do not exhibit the same trend as in calculations,
especially for smaller impurities. As our inter-
pretations are essentially based on calculations
made on hard-sphere systems, it would be very
interesting (i) to calculate the binary collision
diffusion coefficient of Sn using realistic poten-
tials and (ii) to calculate the diffusion coefficient
of impurities in Sn using interatomic potentials
deduced from liquid-alloy theory.
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