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The theory of phonon-limited resistivity p of metals is extended to include the effects of anharmonicity,
Debye-Waller factor, and the first term of the multiphonon series. The double-time temperature-dependent
Green’s-function approach is used. All the relevant Green’s functions involving two-, three-, and four-
phonon operators are obtained exactly. The contribution to p from the third-order correlation functions are
identified with the interference term. The contribution to p from the fourth-order correlation functions are
identified with the Debye-Waller factor and the first term of the multiphonon series. The anharmonic
contributions to p arise from the cubic and quartic shifts of the phonons and the phonon width, which are
obtained from the full anharmonic one-phonon Green’s function. The interference term represents the
explicit cubic anharmonic contribution to p. Our expressions are valid for all temperatures. In the high-
temperature limit all these contributions to p are found to vary as T 2 Thus the formula for p in the high-
temperature limit is found to be p = AT + BT ?, where the linear term arises from the harmonic theory.

L. INTRODUCTION

The phonon-limited resistivity of metals (0)
has been computed by many workers employing
the following expression: :

p(T)=C’ JE }:Zk daglw(g)|®81q- ;1% (Bws,) ,
F

(1.1a)

where ¢=|q| and

f—l(Bij) = [exp(BﬁWZj) -1] [1 - exp(—Bﬁng)l .
(1.1b)

In these equations W(g) represents the screened
electron-ion pseudopotential form factor and
w;j,‘e’gj are the phonon frequencies and associate
eigenvectors for the mode §,j. The integration
over ( extends beyond the first Brillouin zone out
to a sphere of radius 2k;. The other constants
are given by 8 = (kzT)"*, where kg is the Boltz-
mann constant, 7' is the absolute temperature,
and

C’ = 3%,
16Me*v2 ks’
where M is the ion mass, vy the Fermi velocity,
e the charge of the electron, #Z Planck’s constant
divided by 27, and 2, the volume per ion. This
formula for p(T') is of course applicable only to
those metals which have a spherical Fermi sur-
face of radius k.
The above expression has been derived by
Baym® and Greene and Kohn® from the following
general expression of p:

pr)=c [ dadw@l [ aws@ w
<2kp -

Bw
Xy, (L2)

where
C=M/mC’,

. ; R (1.3)
5@ W= gy | ate (2 expl-id- %,

i’
xexplid- X, 0)]),

and the angular bracket denotes the thermal
average. )-E, (¢) is the instantaneous position of
the ion. Equation (1.1) can be derived from Eq.
(1.2) if the following assumptions are made:

(a) Only harmonic averaging is carried over
all states in Eq. (1.3).

(b) The effect of the Debye-Waller factor and
the multiphonon series is ignored.

We note that under these approximations the re-
sistivity as given by Eq. (1.1) is proportional to
T in the high-temperature limit.

Recently, Grimvall® has analyzed the constant-
volume resistivity data as obtained by various
experimental workers for K, Na, Cu, Ag, and
Au in the high-temperature limit. His conclusions
are that formula (1.1) overestimates p approxi-
mately by 10% in the high-temperature limit.

More recently, Shukla and Taylor* performed
a first-principles calculation of p for K and Na in
the temperature range 20 °K to melting based on
formula (1.1). No parameters were adjusted to
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fit the experimental data, yet the agreement for K ]

was better than 3% for all T =40 °K and for Na
better than 4% for all T = 60 °K.

These conclusions are in contrast to the findings
of Grimvall,® who included, in his semiempirical
analysis of p, other terms such as a term pro-
portional to T2 in the high-temperature limit.

In a recent paper® we have enumerated and sum-
marized the contributions to resistivity from
anharmonicity, the Debye-Waller factor, and the
first term of the multiphonon series. However,
no detailed derivation of these terms was given.
The purpose of this paper is to present a complete
Green’s-function theory of phonon-limited re-
sistivity which yields all the contributions pro-
portional to T2 in the high-temperature limit.
Detailed expressions for p are required in order
to compute the proportionality constant.

The plan of this paper is as follows: The cal-
culation of p requires a knowledge of S(q, w). In
Sec. I we evaluate the contribution to S(q, w) from
two-, three-, and four-phonon operator correla-
tion functions using the respective Green’s func-
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tions. The two-operator Green’s function includes
the effects of the cubic and quartic anharmonic
terms. The two types of three-operator Green’s
functions are evaluated and shown in Sec. III to
make equal contributions to p. They represent

an explicit anharmonic contribution from the cubic
term in the Hamiltonian. The four-operator
Green’s functions are evaluated exactly in the
harmonic approximation as the anharmonic terms
produce a temperature dependence of 7" with

n>2 for p in the high-temperature limit. Two of
the three-operator Green’s functions are identi-
fied with the Debye-Waller contribution and the
other with the multiphonon term. Green’s func-
tions involving more than four operators are ig-
nored, as their contribution to p in the high-tem-
perature limit is O(T"), where n>2.

Section III contains the -corresponding contribu-
tions to p evaluated at any temperature. All the
contributions to p proportional to T2 in the high-
temperature limit are discussed in Sec. IV. The
discussion and conclusions are presented in Secs.
V and VI, respectively.

II. DETERMINATION OF S(4,w)

In order to determine S(q, w), we first substitute

X, (t) = R, (0) + Ty (¢)

(2.1)

in Eq. (1.3). In Eq. (2.1), U,(t) is the displacement of the I/th ion from its equilibrium position R,(O) Here
we represent the operator U, (¢) in the Heisenberg representation. Since the ¢ number R, (0) commutes with

Ui(t), S@, w) can be expressed as

5@, w)= 9N N f M‘Z exp{—lq [R;(O) Rz +(0)] }(exp [-4q- Uz(t)]eXp[zcl Uz (O)pat . (2.2)

The thermal average in Eq. (2.2) is now, with respect to the following Hamiltonian, expressed in the

second quantized notation:
H=H,+H,,
where
¥
Hy= Z hwy;(agaz; + 3,
qi

HA=K’ 2 .

q171qz924373

(2.3)

V3(flljp azjzy asja)AalleazjzAE:;jg"'Az z

-

- .
q1J192F2d33i3q474

X V4(611j1, asz) ?13.7'3, a4j4)AalleH2j2A33j3Aa4j4 .

The various symbols appearing in Eq. (2.3) are defined as follows: A is an order parameter to be set
equal to 1 at the end of the calculations, a%j and ay; are the phonon creation and annihilation operators,

A‘~ =a_q] +ag;, \%4 (CLJU AzJ2s qs]a) s

and

V4(-élj AR aZjZ.’ aajsy a4j4) ’

are the Fourier transforms of the anharmonic force constants defined explicitly in Ref. 6 and Born and
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Huang.”
Expanding the product of exponentials in Eq. (2.2) and recalling that the operators U;(¢) and U;-(0) do
not commute, we get

exp[- G- Uy(t)] exp(i - Uy (0)] = 1+ [ G- Ty(t) +74 - Ty (0)] *{% - G0+ ;- B OFF

+[-d4- U,0][4G- 6;:(0)]}
4

¢ (=i GO 6,,<o>12}

]»—-

[~ By + 37+ Ty 01+ 37 (= - Ty(0))*[5d - Ty (0)

w

1

+{4i[ iq- Ty (0]*+ [zq Uy (0))*+ 37 (= 4 Ty())*(ad - Tir (0)]

+(§) [—i?l'ﬁz(t)]z[ifl'ﬁ:'(o)]2+%[—iﬁ-6,(t)][iﬁ-ﬁ,r(0)]3}+- oL (249)

It is easily verified (for example, see Ref. 8) that the thermal averages, with respect to H [Eq. (2.3)],
of all linear terms vanish. Following the same arguments one can show that the thermal averages, with
respect to H, of all terms containing only odd powers of operators at equal time also vanish, and we ob-
tain .

(exp[-17q" U, ()] exp[id - 611(0)])

<{2| [_lq Uz(t)] [Zq Uz (0)] 4::11[ Zq Ul(t)] Zlflla ﬁz’(O)J4+' : }>

+(l-a- ol 6,,(o>1>+ L (- - GOl B + o (- B0l B0
+ 3%7([—1?1 002G Ty (0)] ([—zq U,0][i4- 0, (0)]*) +(2|>({ i U018 Uy (0)]}2) ++ « - . (2.5)
Substituting (2.5) into (2.2), we get

S@, w) =54, w) +S,(@, w) +S;(@, w) +S,@, W) ++ -+, (2.6)

where in Eq. (2.6) the subscript indicates the number of operators to be averaged, and Sa(d, w) is the
elastic part of S(§, w) which arises from the equal-time operators in Eq. (2.5) and does not contribute to
the resistivity. The other terms are

5.8 @)= o | 2 expl -G [R(0) - R OIK([-d- G- T at, @)

1254

54 @)= o L eZ exp{- i+ [Ry(0) - ﬁ,'(on}{ﬁq— G+ 0y (0)*(id - Ty ()]

¢ 2= BolE- B <o>]2>}dt 2.

5@ W= gor | e‘w';:,exp{-ia-[ﬁ,<o>-ﬁ,l<o>1}{—;~!<[—za-ﬁ,mJ (8- By (OO + 37 ([~ - Do+ T O]

+(§1f> ([-q- ﬁz(t)Jz[ia‘ 61'(0)] 2>}dt . (2.9)

To evaluate the expressions of S,, S;, and S, we need to express Ul(t) in terms of Ag;, i.e.,

ﬁz ()= (m) ;44: (w—egjymexp[iﬁ . ﬁ,(O)]A;j ). (2.10)
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A. Calculation of S,(d,w)

For the time being we concentrate on the simplification of S,(d, w). Substituting ﬁ,(t) into Eq. (2.7), we
get

S,(@, w) = szf "‘"Zexp{—zq [R;(0) - R,/ (0)]}(2ﬁ >

NM
-iQ-€ &
X Z (=g~ cuh)(’q ng’Lexp[qu R, (0)]exp[iq, R, (0)| €Az ; (AT ;. (O). (2.11)
- = (wz ) 4173 dzi2
Q14,0505 41919327,
Interchanging theq sums with the [ sums and usmg the property E,exp[zQ R, (0)] =Nbg 3 and following

the conventions e_;,- —eij, w_ g =wy, and Ay, ‘A’,» we obtain

S,@@, w) = E (2WN> (ZNM)_LJTZW f “ et Az, (DAL, (Ot (2.12)

The last 1ntegral is well known and can be evaluated employing the Green s-function method.®® [Note
in Ref. 6 Eq. (2.6) should read J"k t-t)= (Ak,],(t JA7;(t).] For the Hamiltonian (2.3), we obtain®

1 “+ oo iw
I55,1,(@ =§;f_w e“Hay; (AL, (Ohat, (2.13)
=~lim (-_’_Bﬁ_)IquJ is (w+ie), (2.14)
€0

B 2wy, 0, 5 2wy; T'y; (w)
T (- e ) ((wz—ﬂﬁjl) +4wﬁj1r'§j (w)) (2.15)
where ]
Q%= Wi + 2wy, A (w) . (2.16)

The symbols A (w) and I'; j(w) appearing in Eqgs. (2.16) and (2.15), respectively, are the shift and width
functions of a phonon of mode qj with the important property that they are even and odd functions of w, re-
spectively. They are defined as follows:

Ag,(w)= A (w) + A (w), , (2.17a)
where
A2 - - - - . >
A3(w)=18 = Z V2(=7,d, 7,5 275) | *P[2 F (@, 41, Aoz )] (2.17b)
Q119272
and
22
Agj(w)_‘lz"' Z V4 (Q1]U_q1]1:q], QJ) iy ? (2-170)
01]1
with
F(q1]1’q2]z’ w)=(Ny ; +N; )( 1 1 >
944y 2"\ (W= w‘1111 azlz) (w + Wi, + wazjz)
. 1 1
+(Ns , =N A)< - > (2.17d)
%272 i1 (w_ w5111+ wazjg) (UJ+ wi jl agjz)
and P stands for the principal part;
- 1872 - .- - -
Ty (w)= ;;2 E [V3(=Q7, 0,715 0272) |2G (@, 7,5 Gada; @) (2.18a)
Q719272
where
G(ad'uazjz;w)=%{(Naljl+Na2; )[8(w - wg 5 - W) = 6(w+w +w52j2)]

+(N§2:'z_ 3111)[6(“) w“+w ) - 5(“’“"6111“"6212)]}’ (2.18b)

/2
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with

Ny, = coth(Bhiwg,/2).

Substituting Eq. (2 15) into Eq. (2.12), we obtain S,(d, w). We note that in the harmonic approximation
S,(q, w) reduces to

o=y L 138, 17 [0(w=wg; )= 8(w+wy, )]
~ 2M g 1 -ef) ’

ds,

which at first glance appears different from that quoted by other authors.'®!' However, the expressiongiv-
en by the above equation and those obtained in Refs. 10 and 11 have the same value at w= Wi, and — Wy, -

B. Calculation of Ss((';),w)

Using the same procedures as outlined in the calculation of S,(q, w), we find

84(q, ) ==S4(q, w) +S5(q, w) , (2.19)
where
~ n__\¥*iN AQ=-q,=0y) - =
S w)=(———~> 57 Z =22 (qr €5 ;) )(q - €2
$a, 2NM 8,857 ind (waljlwazjzwaj)xfz (@ a4y @- €354, @- )
><—— f et (A, ]1() taia (AL,(0))at (2.20)
and
- n >3’21N 3 Alq-d, - q,)
B (I =A== (&)@ €5, ) €8,)
Ss(q’w) (2NM 2! dyd571d07 (wﬁlfxwazizwaj)l/z (q v iz
X f e (A (DAL, (0)AL,, (0D . (2.21)

Shukla and Muller® have evaluated a similar integral to the one appearing in expression (2.20) for
SA(J, w). Following their procedures we find

1 ©
Jéq(w)="2"_”_ [ e“M(Aaljl(t)Aﬁzjz(t)Agj(O»dt, (2.22)
=~ lim z_m) ImDA(w +ie) , (2.23)
e—~>0
where the Green’s D#(w) is given by
62 1 1 , .
D"(w)—ﬁV (- q1]1’"h]zyq])F(ql]lqu]z,w)( @y " (w+w;,,.)> ; (2.24)

and F(Q, ,,Q,j,; @) has been defined in Eq. (2.17c). We note here that to O(A) the extra terms arising in
expression (2.24) of Ref. 6 cancel out exactly in the harmonic approximation.

Substituting for DA(w) in Eq. (2.23) and the resulting expression into Eq. (2.20), a typical term arising
from the product

(@ )
(wtwg) w-— W5 i, = Wgj

272

in the expression of SA(q, w) is

n 3/2 3 A[d-4, -q . e e - - - - -
(W) <2,)< ) Z (@ (g 4 » joW(—qlJl,—quz,q])(q-ealjl)(q-652,2)(q-e§‘,)

Qapiind \WE5, Y55, %0

(Nalfl +N62.1'2) 6(0) +wai) - 5(0)— waljl - w62j2)

~Bh
(1 = e78w) (wg; +wq ; W5,

(2.25)
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The other seven terms arising in SA(q, w) can be
written in a similar fashion.

The contribution from the second term Sf(ﬁ, w)
in Eq: (2.19) can be found provided the Green’s
function

DE() = (A5, (1AL, (AL, (O))
© =9[4y, AL, (AL, O]
is known, where O(t) is the Heaviside unit step
function, the square bracket is the commutator,
and the angular bracket denotes the thermal av-
erage. We have obtained this Green’s function us-

ing the equation-of-motion method. Defining an-
other Green’s function,

DE() = (By, (t);Agl,l(mAgz,z(o») ,

where By, =ag; - _qj, and using the equatiohs of
motion of the operators Ay; and By; obtained from
the Hamiltonian (2.3), we find

i a DE=wy, D? (2.26)

. d B .
i g5 D =wy Di+—— 2 V3(A4Jas G575, —aNET ,
Qlgig is

(2.27)

where E? is the two-phonon Green’s function

(@) (1) ()

Q,854,dp7 (wallqulz aj

INCE TN - e e
J—*g’*-%/?vs(qupqz]z,—qﬂ(q-e )(q «f

) Ow+ wg;) — 6(w - w;
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€Aq

Qiq
Since EZ arising in Eq. (2.27) multiplies a term of
O(M\), we evaluate it in the harmonic approximation
and obtain

(D4g,,, (1AL, AL, (O).

Qfl

1 - -
Ef= or F(Q4jas 95753 w)(634316j4j166552615j2
+03,5.0,.,.05.3.0,;), (2.28)
where F(d,j,,ds]s; w) is defined in Eq. (2.17d).
Fourier transforming Eqgs. (2.26) and (2.27) and
making use of expression (2.28) for EZ, we obtain
the following expression for DE(w):

GA -, -, -, Y ) - .
Df(w)= '4—7T’;1T Vs((h]n Q272"'q])P (Q171,q2]23w)

><< 1 1 ) . (2.29)
W= Wy Wty
We use the definition
1 g
B = iwt(A | t AL
T =5z | ety AL, ()AL, (Oat
2 B .
=~ lim Ao @) Im DB (w+ie), (2.30)
o (1 )

substitute for D2(w), and extract the term similar
to that given in expression (2.25). This corres-
ponding term is

)(qe)

CEN wizi’z-)

(Nalj1+N
(1 —-e Bﬁw)

(g wg, +’w~ )

(2.31)

992

Careful comparison of the expressions (2.25) and (2.31) show that (a) owing to the summations over al
and q,, these vectors can be changed to —q, and —q,, respectively, without affecting the resulting sum, and
(b) if in expression (2.25) q is changed to —q, the resulting expression is identical to minus expression

(2.31).

Careful pairwise comparison of the eight terms arising in SA(q, w) and S3(q, w) show that the properties
(a) and (b) hold true for all corresponding pairs. We therefore conclude that

SP(q, w) ==S#(-q,w).
Hence we can rewrite Eq. (2.19) as

Sz(a’ w) ="[53A(a: w) +S:?(_a’ w)] .

(2.32)

(2.33)

Looking ahead to the contribution of Sa(a, w) to the resistivity, we note that the g-dependent factors
multiplying S,(q, w) in expression (1.2)"are symmetric in g whence SA(q, w) and S#(-q, w) will yield equal

contributions to p.

C. Calculation of S,(§,w)

Following the procedures outlined in the calculations of S,(q, w) and S,(q, w), we find

S4(q, ) =8(q, w) +54(q, @) +5(g, @),
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where
- 7 \*N A(=q+§, +0,+0,) . - -
A _ Zr 1 . . q°€
S: (q’ w)__(zNM> 3! & (wﬁj Wy ;. Wy 2 w,s_)1/2 (q 6?111‘1)((1 E't'lzjz)(q €?131‘a)(q 63(1)
4135437170737 171 9272 9373 W
x ok et g, 04g,, WA, DAL 0)a, (2.34)
- 7 \2 N Al—q+q; +9)Ald —qs — Q) ;= > - - - -
@0 () G .. L 14990 290 (5.2, ) (30 €, )G 8, ) (@0 T
’ 2NM @1) Q1993304 1727374 (w'ﬁ11'1w3212w33i3w'&414)1/2 Qi 272 9373 Q4dq
1 ° iw
) [ et Ay, (0Ag,,, (AL, 0)AL,, O) (2.35)
- 7 \*N A(Q-0, =0, —0s) (= = (= .= - -
s§<q,w>=—(—) 3.2 e (- €0 (@3, (@ 3, (@ &)
2NMJ 31 Q1243717237 (walflwazjzwasjs )/ ? " 2z s
5 f e’ (Ag; (DAL ; (0)AL ; (0)A -3(0))dt. (2.36)

The integrals arising in Eqs. (2.34), (2.35), and (2.36) are evaluated from the following respective Green’s
functions:

Ef =(Aq,, Ay, (DA, (0);AL,0), (2.37)

EP =(Aq,;, (DA ; (1); AL (0)AL; (0, (2.38)
and
Ef =(Aq(1); A, (AL, (DAL ; (0)). (2.39)
The corresponding expression for J§ (w) is given by
o 5 2 « ;
J2 (w)_—learzn a _e.B,,(‘,)ImE1 (w+i€), (2.40)

where « is assigned the value of A, B, and C, respectively.
The derivation of E# requires the solution of eight simultaneous equations involving various Green’s
functions. In the harmonic approximation the system of equations can be solved exactly to yield

1 1 1
Ef=—[(a+ﬁ+7+5)( - >+(a+B—y-—5)< 1 - 1
87 W—-W; —Wy, =W, WA+ W, +W,+ W, W= W, — Wy + Wy W+ Wy + Wy = Wy
1 1
o — -0 -
+( By )<w—w1+w2—w3 w+w1—w2+w3>
1 1 )
+(@-B-y+5 -
(@-f-v+ )<w—w1+w2+w3 WA W, - W, — Wy ]’ (2.41)
where
a= 6‘5171 6]11 652‘33 6]'213N3212 ’ B= 632'5 6]21 6‘13-31 6]’3]'1N33]3 4
‘ —_ (%2 W3 o Y
7 =043 0535 93435 01195 Narsn » 6_—(w3 ** W B+ W, ok
and
waiji=wi, i=1,2,3.

The derivation of EZ requires the solution of four simultaneous equations involving various Green’s fun-
ctions. Once again, in the harmonic approximation, an exact solution can be found, viz.,

EP= F(qul,qzjz, ) (B33, 0157, Oty 01472+ Oaita Oraiy Ot Osaia) s (2.42)

Q4dy Vigdy “dsdz
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where the function F(§,j,,d,j,; w) is given by Eq. (2.17d).
The Green’s function Ef involves only one operator at time # and hence will be a function of only one

frequency wy;, viz.,
wyg; (@+B+7y)

Ef= ———t
1 T (wz—a)éj)’

(2.43)

where the factors a, 8, and y involving sums and products of Kronecker deltas have been defined in Eq.
(2.41). The final expressions for S(§, w) are obtained by evaluating J ¢ (w) [Eq. (2.40)] for each of the three

Green’s functions given by Eqs. (2.41) to (2.43).

The results are then substituted in the corresponding S¢(g, w) given by Egs. (2.34) to (2.36). We find

. 7 \?aN 1€, 1215
52, 0= gmr) N 3 4
’ 2NM 3! aljlj (.L)-aj

N

Qi) (1 = ¢ B1%)

==  zE.e 2
Iq €31i1’ Iq €§2j2|

L (60 = wy,) = 8w +w3)], (2.44)

- 7 \? - > -
S2(q,w)= <M> @ Z A(-q+4, +q,)
§ydp/ 1z

ﬁlfl

1 - -
—— 2G(Q,j,, Upj gz} W) (2.45)
wﬁzjz (1 —e gh ) 1/1s 42/ 29 ’

where G(§,7,,d,/2; @) has been defined in Eq. (2.18b) and

S$(8, w)=55(q, @)

III. CALCULATION OF RESISTIVITY FROM S(q,w)

From expansion (2.6) of S(q, w) and expression
(1.2) for p, we find

p=px(T) +p,(T) +p (T)+ 2, (3.1)

where p,(T), p,(T), and p,(T) are considered
separately and represent the contributions from
S,(§, w), S,(q,w), and S,(q, w), respectively.

A. Calculation of p,(7)

The expression of p,(T) is given by

p)=C [ aia|w@)|* [ dw i ysi(@,0).

<2krfp

(3.2)

Substituting for S,(q, w) from Egs. (2.12) and
(2.15), we obtain

[ daadwoltla gl

i <2kF

Ch
p(T)=

0 Bw
x f 40 G 1)1 = o)

/ 2w, Ty, (w)
@7z szg,)2+4w§,r§j(w)> .

(3.3)

(2.46)

The last integral over w in Eq. (3.3) can be ap-
proximated as follows:

204, T ()
(w? - 93,)%+ 4w T3 (w)°

(3.4)

The function Z peaks inthe regions w =+£,,, and
since the width Ty,(w) is small, it can therefore
be expanded about any point in the neighborhood
of I‘ﬁj(w) =0. One common approximation is to
replace this function Z by the delta function
m6(w? - %), which corresponds to the firstterm
in the MacLaurin’s expansion. When the integral
given by Eq. (3.3) is evaluated in this approxi-
mation, we obtain Eq. (1.1) with f(Bwy;) replaced
by f(82y;) in Eq. (1.1b).

The above approximation yields only one of the
contributions to p(T) of O(A\?). The other is ob-
tained from the next term in the MacLaurin’s.
expansion of Z, viz,

Z[w, 2y (w), Ty;(w)] =

2wy, Ty;
Zorbwi-2)s THEUG L 08)

When the integral in Eq. (3.3) is evaluated with
the second term in Eq. (3.5), we obtain the fol-
lowing explicit contribution to p(T) from the phonon
width, viz.,

Cr ped - = - . -,
=53 [ adq| W@ Ha- 2| 1@ @i,
™ < 2t
(3.6)

where
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(Wy . +wy ;)
&) 181r>\ B - - Lt P 1
1(87) 2 |V-Ei, 8,0, du) 2<(N 4N,
q w2 I s 1715 A2 2 ' 151+ Nags,) [COShBh(w'ﬁljl"'wﬁzjz) -1 [(w31!1+ wﬁzfz)z — ng]z
(}V (w'ﬁlfl - wﬁgiz) 1 )
+ . =Nao .
ti2 ~Nawid) [cosh Bitlwy 5, = Wy,5,) = 1] [(wgy, =g, V- 03,17
(3.7)
I
We note that Q; in the function f(8;), as given where p2 2(T) is the usual harmonic contribution to
by Eq. (2.16), is well approximated by p(T). p5(T) and pg(T) are the contributions from
the cub1c and quartic phonon frequency shifts.
.= A 3.8
Q= wg; + By, (@g;) (3-8) Full expressions for p$(7T) and p(T) are given
where the phonon shift Ay (w) defined by Eg. by
(2.17a) is evaluated at w = wy;.
Substituting for £4; from Eq. (3.8) into f(8%2y;),
expanding in powers of Ay, (wy;), and retaining pg‘(T)-— - Z f dqq,W(q){ ﬁfq €ﬁ]'2
only the linear term in Ay (wy;), as it is of O(\?),
we obtain
1
B?Z) coth(38%w,.) « <_ _BE)A* ) coth(zB%wy,)
)= = . ) ——A it Aw ik L abhvtnd 7 248 7
f(BQa]) f(ﬁwaj) ( 4 Ay (w‘ﬁj) smhz(;ﬁh’waj) 4 ﬁ’( L s1nh2(éﬁhjwaj) ’
(3.9) (3.10)

1t is clear that, when Eq. (3.9) is substituted into
Eq. (1.1), we get formally the following contri-

butions to p,(T): where *=C or @, and thequantities AZ (wy,) and

A2 (wy;) are defined in Egs. (2.17b) and (2. 17¢),
p5(T) +p5 (T) +p3(T), respectively.

B. Calculation of p3(T)

The contribution to p(T') from S,(3q, w), viz., ps(T) is obtained from S#(q, w) and S?({§, w). Since
S2(q, w)=-S#(-q, w) as shown in Sec. II, we obtain from Eqgs. (2.33) and (1.2) and the arguments presented
in Sec. II,

ﬁ) (2N> > N (@ &)@, )@ %)

ps(T)=C Lk 4a|Wa) '2(-i)<2MN 21 )
F

U1dpi1427 (wﬁf 4101 Pigis
191

-0

) z;an—f“w_“ﬁJ?(w)dw- (3.11)

The last integral, although tedious, can be evaluated from Egs. (2.23), (2.24), and (2.17d). In compact
notation, the integral is given by

f dw T ( Bhw 1) aA(w)dw & Vs(‘_c’hjv "Ez]z’—a])

(Naxh +Nﬁzf z) ((%1’1 +Wa, 2)

X128 [ cosech®irz (wy ; +wy , ) — cosech? 387wy,
Buwy; (walj1+w.&2j2)2_w§j [ BTz ( 891 T Wagds 2Blwy;]

(Naljl _Nﬁzjz)(wﬁ,jl - “’aziz)

+ [cosechzﬁﬁé(waﬂ.1 - wy,;,) — cosech? %Bﬁww]] .

2
(wﬁljl - w'ﬁgjz) - Wy

(3.12)
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C. Calculation of p,(T)

Since we have shown in Sec. II the equivalence of S4(d, w) and S$(d, w), there are only two distinct con-

tributions to p(7T) arising from SA(q, ) and $3(q, w).

Substituting the expressions for S4(d,w) and S3(q, w)

given by Eqs. (2.44) and (2.45), respectively, into Eq. (1.2) and integrating over w, we obtain

pn=C [ a@qq|We)| T,

2kp
where x=A or B, and
13 6N -
Iff(CD=—W 3,|q €3] Bf(Bwg, D) ,

‘11!1

- I 1q €
D@=377 Zj: 19 ey, [7 Nﬁlf ,
2

(3.13)

(3.14a)

(3.14b)

(3.15a)

. 1§ €, 1210 €q 128 o » .
B@)= (” (21)2 2 A(—q+q1+q)q TR Y H(qal,qzaz),

q14,3242 “’am“’ﬁzlz
-, N 21
H(qul,q2]2)=(Nam+N32,2)(wam+ wazjz)cosech gﬁh’(wal,lJr Wa,is)

+ (NQ212 Nalfl)( wii,j; -

21 -
“’32!2) vcosech zBﬁ(“’am w

) (3.15b)

PP

and the function f(wy,) arising in Eq. (3.14a) was defined earlier in Eq. (1.1b).

IV. HIGH-TEMPERATURE LIMIT OF p(T)

In the high-temperature limit, i.e., 7> §,, the
Debye temperature, it is possible to expand in
powers of T the thermal factors arising in the ex-
pressions of p,(T), p,(T), and p,(T) derived in
Sec. III. p,(T) contains four terms arising from
the harmonic, cubic and quartic shifts, and the
phonon width. In the high-temperature limit the
harmonic contribution is proportional to 7' and the
contributions from the cubic and quartic shifts
and the phonon width are all proportional to 72,
We can summarize all the leading high-tempera-
ture-limit contributions to p,(7) in the following
equation:

PoT)= ()5 T+ (P,) T2+ (0,)g T?+ (p, )y T2, (4.1)

where all the coefficients of 7' and 72 in Eq. (4.1)
are independent of 7. (p,), is obtained from Eqs.
(1.1a) and (1.1b). (p,)¢, (p,), and (p,), are of
O(\?). (p,)y is obtained from Eqs. (3.6) and (3.7),
while (p,)c and (p,), are obtained from Egs. (3.10),
(2.17b), and (2.17c).

In the high-temperature limit, p,(7) can be ex-
panded in powers of 7' and the leading contribution
is of the order T?. From Egs. (3.11) and (3.12),
we have

Po(T)= (p,),T2. (4.2)

We note that p,(T) is of O(\) and arises from the
cubic term in the Taylor expansion of the crystal
potential energy.

The remaining high-temperature-limit contri-
butions of O(T?) to p(T) from the Debye-Waller
factor and the first term of the multiphonon series

I
are obtained from pf(T) and p2(T), respectively.
Although these terms are of O(T?), they are essen-
tially harmonic in nature and therefore indepen-
dent of the parameter A. From Eqs. (3.13) to
(3.15) we find

PAT)= (P )pw T2+ (P)mp T2 . (4.3)

It'is straightforward to obtain the temperature-
independent coefficients in Eqs. (4.1) to (4.3) from
the respective equations derived in Sec. III.

V. DISCUSSION

We have evaluated the contributions to the pho-
non-limited resistivity, (p) of metals from the
anharmonicity, the Debye-Waller factor and the
first term of the multiphonon series. The latter
two contributions to p are obtained from the cor-
relation functions involving four operators,
whereas the anharmonic contributions arise from
the two- and three-operator correlation functions.
The three-operator correlation function repre-
sents an explicit anharmonic contribution to p
from the cubic term of the Taylor expansion of
the crystal potential energy. The other anhar-
monic contributions to p from the cubic and quar-
tic shift of phonon frequencies and the phonon width
and are obtained from the two-operator correla-
tion functions.

The correlation functions are evaluated exactly
from the respective Green’s functions. The
mathematical structure of the contributions to p
from the cubic shift, phonon width, the three-
operator correlation function, and the first term
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of the multiphonon series have one thing in
common, viz., the delta function A(d+d,+d,), re
stricting the three wave vectors.

In the high-temperature limit (7> 6,) all the
above contributions to p are found to vary as T2.
The higher-order correlation functions (viz.,
five- and six-operator, etc.) yield a higher-order
temperature dependence (73, etc.) in the high-
temperature limit. Similarly, the anharmonic
terms of O(A?) in the evaluation of four -operator
correlation functions and terms of O(A*) in the
evaluation of two-operator correlation functions
produce a higher-order term in p in the high-
temperature limit (i.e., 7%, etc.).

The same argument holds true in the case of
three-operator correlation functions. Thus our
theory of the phonon-limited resistivity presented
in this paper omits these higher-order terms.

Finally, we make some remarks about the de-
coupling procedure in obtaining the Green’s func-
tion and the correlation function. The two-opera-
tor Green’s function has been obtained exactly to
O(A\%). The details of the derivation, which re-
quires some decoupling procedure, have been
given in Ref. 6. The other Green’s functions in-
volving three and four operators can be obtained
exactly, and no decoupling procedure is needed
in their derivation. However, if the Green’s func-
tions E# and EC are obtained by decoupling, we
find

Ef = X Ag,;, (DA, (1) ((Aam
Ec = 3<A32:2(0 Aasfa(o D (A ()

A*,<o>>> . (6.1
AN, (5:2)

Since in the harmonic approximation

<A32~'2 A3313 )= <qujz ) 33,3 (o)
=N32f2632336i2i3 s (53)

the corresponding S# obtained from Eqs. (5.1) and
(5.2) is the same as that given by Eq. (2.44). In
this case then the decoupling procedure gives the
same result for S‘:, as obtained from the exact
Green’s function, viz, Eq. (2.44), and of course
we find S4=SS. No decoupling procedure can be
applied to obtain Ef. However, the correlation
function arising in the integrand in S? given by
Eq. (2.35) can be decoupled to give

<A3111(t)A5212(t)A§3:3 (0)A q4j4(0)>
=(Aq,,(DAq,; (N (AL (0)AL , (O))

+<A"111 ) 03j3(0><Aq212 ) dada 0»
(A, (DAL, () (Ag,, (DAL, (). (5.4)

The first term in Eq. (5.4) is independent of
time, as seen from Eq. (5.3). This term does not
contribute in the derivation of p§. The second
and third terms in Eq. (5.4) make equal contribu-
tions in the evaluation of p2. These contributions
can be evaluated in the harmonic approximation.
The time-dependent correlation function is given
by

<A3111 Q313 (o) = f et Jﬁuuz(w)ﬁﬁlﬂg dw,

where J, ; ;. was defined earlier in Eq. (2.13). We
omit the details here but simply note that o ob-
tained by this procedure is identical to the p? ob-

tained exactly and given by Eq. (3.13).

VI. CONCLUSION

All the contributions to the phonon-limited re-
sistivity of metals which are found to vary as T2
in the high-temperature limit have been derived.
The expressions for the various contributions to
p (six of them), which have been derived from the
appropriate Green’s functions, are valid for all
temperatures. The physical significance of these
contributions has been demonstrated.

The results of a detailed first-principles nu-
merical computation'? of these six contributions
to the coefficient B in the BT? term in p in Na
and K show a strong pairwise cancellation among
the following contributions to p: Debye-Waller
factor and multiphonon term, cubic and quartic
phonon shift, phonon width, and interference
term. Very recently, these numerical results
for K have been used by Cook et al.'® in the esti-
mation of the vacancy formation energy from the
high-temperature resistivity measurements. A
manuscript containing these Na and K numerical
results'? is in preparation.
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