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The theory of phonon-limited resistivity p of metals is extended to include the effects of anharmonicity,
Debye-Wailer factor, and the first term of the multiphonon series. The double-time temperature-dependent
Green's-function approach is used. All the relevant Green's functions involving two-, three-, and four-
phonon operators are obtained exactly. The contribution to p from the third-order correlation functions are
identified with the interference term. The contribution to p from the fourth-order correlation functions are
identified with the Debye-Wailer factor and the first term of the multiphonon series. The anharmonic
contributions to p arise from the cubic and quartic shifts of the phonons and the phonon width, which are
obtained from the full anharmonic one-phonon Green's function. The interference term represents the
explicit cubic anharmonic contribution to p. Our expressions are valid for all temperatures. In the high-
temperature limit all these contributions to p are found to vary as T . Thus the formula for p in the high-
temperature limit is found to be p =AT + BT', where the linear term arises from the harmonic theory.

I. INTRODUCTION

The phonon-limited resistivity of metals (p)
has been computed by many workers employing
the following expression:

p(T)=c'g Jt dqqlw(q)l'Plq. ~„,l'f(P~„,),
j & gA,'~

(1.Ia)

i'') = & J dtiel w ta)l'
oo

where

c = (M/u)c',

du) &(q, u))

(1.2)

where q= Iql and

f '(pu)-;) = [exp(pfi(u-„, ) —1][1—exp( —pScu-, )] .

(1.1b)

In these equations W(q) represents the screened
electron-ion pseudopotential form factor and
u-j, e-j are the phonon frequencies and associate
eigenvectors for the mode q, j. The integration
over q extends beyond the first Brillouin zone out
to a sphere of radius 24'~. The other constants
are given by P =(AsT) ', where ks is the Boltz-
mann constant, T is the absolute temperature,
and

3@00
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where M is the ion mass, v~ the Fermi velocity,
e the charge of the electron, 0 Planck's constant
divided by 2m, and 0, the volume per ion. This
formula for p(T) is of course applicable only to
those metals which have a spherical Fermi sur-
face of radius k~.

The above expression has been derived by
Baym' and Greene and Kohn' from the following
general expression of p:

S(q, (u) =
2

dte' ' Q exp[-iq X,(t)]
QQ ll'

(1.3)

xexp[iq x, t01]),

and the angular bracket denotes the thermal
average. X,(t) is the instantaneous position of
the ion. Equation (1.1) can be derived from Eq. .

(1.2) if the following assumptions are made:
(a) Only harmonic averaging is carried over

all states in Eq. (1.3).
(b) The effect of the Debye-Wailer factor and

the multiphonon series is ignored.
%e note that under these approximations the re-

sistivity as given by Eq. (1.1) is proportional to
T in the high-temperature limit.

Recently, Grimvall' has analyzed the constant-
volume resistivity data as obtained by various
experimental workers for K, Na, Cu, Ag, and
Au in the high-temperature limit. His conclusions
are that formula (1.1) overestimates p approxi-
mately by 10%%uo in the high-temperature limit.

More recently, Shukla and Taylor' performed
a first-principles calculation of p for K and Na in
the temperature range 20 K to melting based on
formula (1.1). No parameters were adjusted to
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fit the experimental data, yet the agreement for K
was better than 3% for all T & 40 K and for Na
better than 4% for all T & 60 'K.

These conclusions are in contrast to the findings
of Grimvall, who included, in his semiempirical
analysis of p, other terms such as a term pro-
portional to T' in the high-temperature limit.

In a recent paper' we have enumerated and sum-
marized the contributions to resistivity from
anharmonicity, the Debye-%aller factor, and the
first term of the multiphonon series. However,
no detailed derivation of these terms was given.
The purpose of this paper is to present a complete
Green's-function theory of phonon-limited re-
sistivity which yields all the contributions pro-
portional to T' in the high-temperature limit.
Detailed expressions for p are required in order
to compute the proportionality constant.

The plan of this paper is as follows: The cal-
culation of p requires a knowledge of S(q, v). In
Sec. II we evaluate the contribution to S(q, x) from
two-, three-, and four-phonon operator correla-
tion functions using the respective Green's func-

tions. The two-operator Green's function includes
the effects of the cubic and quartic anharmonic
terms. The two types of three-operator Green's
functions are evaluated and shown in Sec. III to
make equal contributions to p. They represent
an explicit anharmonic contribution from the cubic
term in the Hamiltonian. The four-operator
Green's functions are evaluated exactly in the
harmonic approximation as the anharmonic terms
produce a temperature dependence of T" with
n & 2 for p in the high-temperature limit. Two of
the three-operator Green's functions are identi-
fied with the Debye-Wailer contribution and the
other with the multiphonon term. Green's func-
tions involving more than four operators are ig-
nored, as their contribution to p in the high-tem-
perature limit is O(T"), where n &2.

Section III contains the corresponding contribu-
tions to p evaluated at any temperature. All the
contributions to p proportional to T' in the high-
temperature limit are discussed in Sec. IV. The
discussion and conclusions are presented in Secs.
V and VI, respectively.

II. DETERMINATION OF S(q,~)
In order to determine S(q, &u), we first substitute

X, (t) = R, (0)+ U, (t) (2 1)

in Eq. (1.3). In Eq. (2.1), U, (t) is the displacement of the lth ion from its equilibrium position R, (0). Here
we represent the operator U, (t) in the Heisenberg representation. Since the c number R, (0) commutes with
U, (t), S(q, &v) can be expressed as

+ oo

S(q, (d) = 8' exp(-iq [R,(0) —R, (0)])(exp[-iq Ug(t)]exp[i'd U, (0)])dt.mX

The thermal average in Eq. (2.2) is now, with respect to the following Hamiltonian, expressed in the
second quantized notation:

B =IIO+Hg, (2 3)

H, = g k~-q, (aq, a-q, + —', ),

&1J102J 2&3 J 3

I' (qiju qsjs qs js)Aq, ~, q, ,Aq, ,+
~ 1~ 102~2[3J 3%4J4

«'{(q,j „q,j„q,j„q,j,)A-„„,A;„,A-„,,A-„,,
The various symbols appearing in Eq. (2.3) are defined as follows: X is an order parameter to be set

equal to 1 at the end of the calculations, a-. and a~~ are the phonon creation and annihilation operators,qJ'

~ ~ ~, ~ ~

Aqi a qi + «qi ~ ~ (ql-jli qs js& qs js) s

and
~ M e ~ ~I' W,j„q,j., q.J., q,j.),

are the Fourier transforms of the anharmonic force constants defined explicitly in Ref. 6 and Born and
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Huang. '
Expanding the product of exponentials in Eq. (2.2) and recalling that the operators U, (t) and U, (0) do

not commute, we get

1 - .~ ~
2 1exp[-iq U, (t)]exp[iq ~ U, (0)] = 1+ [-iq U, (t)+ iq ~ U, (0)]+ —[-iq U, (t)]'+ —,[iq ~ U, (0)]'

+ [-iq (r (t)][iq tr, (o)]I

+ —[- iq U, (t)]'+ —[zq U, (0)]'+ —,[-zq U, (t)]'[zq U, (0)]

1
+ —,j-iq U, (t)][iq U, .(0)]'

1 . 4 1 . ~ 1
+ —,[-iq U, (t)]'+ —,[iq U, (0)]'+ —,[- iq U (t)]'[iq U, (0)]

+
o, l [-tq U(t)]*[to 0 (o)1'+et[- 0 U(t)][to U, , (o)1'I+ . (De)2f]

ft is easily verified (for example, see Ref. 8) that the thermal averages, with respect to H [Eq. (2.3)]
of all linear terms vanish. Following the same arguments one can show that the thermal averages, with
respect to II, of all terms containing only odd powers of operators at equal time also vanish, and we ob-
tain

(exp[-iq U, (t)]exp[iq U, (0)])

-- t+ —[-ttt (r, (t)]'+
t

itq U, (o)l'+ —[-tq U(t)1 + —, jiq '0, (o)l'+

+ —iq U, t iq U, 0 + ——iq U, t 'iq U, 0 + —
,

—iq U, t iq U, . 0

+ 8, ([-iq U, (t)] [iq U, (0)])+ 2, ([-iq U, (t)][zq U, .(0)]')+ 2, (E[-~q UJ(t)][iq Ul'(0)]j )+ ' (2'5)

Substituting (2.5} into (2.2), we get

S(q, ~) =S., (q, ~)+S,(q, ~)+S,(q, ~)+S,(q, ~)+ (2 8)

where in Eq. (2.6) the subscript indicates the number of operators to be averagedan, d S,J(q, (t)} is the

elastic part of S(q, e) which arises from the equal-time operators in Eq. (2.5) and does not contribute to
the resistivity. The other terms are

Jtp OO

S,(q, w) =
~OO

e' 'g exp(-iq ~ [R, (0) —R, (0)]j([-iq ~ U, (t)][iq U, (0)])dt,

exp[-iq [R (D) —R (0)])( t([ tq' U (t)] [iq' U '(D)])
0

+ —([-t'q U, (t)J[tq ~ U, , (0)]*)Idt,

(2.7)

(2.8)

1
S,(q, (t)) = e' ' exp(-iq [R,(0) —R, .(0)jj —([-zq U, (t)]'[iq U, .(0)]) + —([-iq U, (t)] [zq U, .(0)]')

2mN J l l l

2
1

+ —, ([-iq . (r, (t)]'[iq ~ (r, (o)J )Idt. '

To evaluate the expressions of S„S„andS, we need to express U, (t) in terms of Aq, , i.e. ,

1./2

U (t) =
( Z "„:,exp[iq ~ R, (0)]d„(t) .

(dqd

(2.9)

(2.10)
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A. Calculation of S2(q,w)

For the time being we concentrate on the simplification of S,(q, ~). Substituting U)(t) into Eq. (2.7), we
get

S,(q, ~) = t e'"' g exp'- iq [R, (0) —R, (0)]]'I

(2.11)

(2.12)

x g ' '"~» ' 'q"2 exp[iq, R, (0)]exp[iq, ~ R, .(0)]p.-q, (&)A- „(0)).
qlj q+2 ql 1 l2 2

interchangingtheq sums with the I sums and using the property Z)exp[iQ R, (0)] =N~o, and «Iiowing
. =A-, we obta

q) q)&

S ~ ) g N (q' ~q»)(q'~q&, ) (~t~ (tent (0))df
2wN 2NM ( - ~- )"'

~l 2 q~2 ~ 00

The last integral is well known and can be evaluated employing the Green's-function method. " [Note

i Ref. 6 Eq. (2.6) should read p' (t —t') =BI,. (t'gk (t)) 1 For the Hamiltonian (2.3), we obtain'

+ oo

J-„, (u) = — e' '(A „,,(t+I, ,(0))d~ (2.13)

2= —lim „„~ ImG- . ((a)+is), (2.14)

(2.15)

where

0'-. = (d'-. +»- &- ((d) .
~1i ai Ci ai (2.16)

The symbols n.;.(&u) and I";,((d) appearing in Eqs. (2.16) and (2.15), respectively, are the shift and width
functions of a phonon of mode qj with the important property that they are even and odd functions of (d, re-
spectively. They are defined as follows:

n;,.((d) = LE,.((d)+ aqo, (u)),

where

2
&c.((u) =18 —, ~V'(-qj, q, j„q,j,) ~'P[-,'F(q, j„q,j„(u)]

01f102)2

(2.17a)

(2.17b)

&-„(~)=» —Z &'(q, j„-q,j„qj,-qj)N;„, ,
Old 1

with

d 1 1F( ' '
v) = (N . +N . )--

(fd —fd —fd ) (fdd +fd ) )11&1 12~2 "~1~1

)( . 1 1+(N-. -N- . )I"" '( (fd —dl- + dl- ) (fd+ fd- —fd- ) )'4&2

and P stands for the principal part;

18 X2
I'-„(~)= @', l&(-qj, q, j„q2j2) I'G(q, j„q.j2', ~)

Ql dl f12 Jt2

where

G(q, j„q j; )= —'((N~ +N- )[6( — -,. — -
&

) —6( + -,. + -,. )]

+(N. . —N. )[6(&u —z- . +(d- ) —6(z+(d- . —&u- )]],'.12~2 ~1~ 1 ~2~2

(2.17c)

(2.17d)

(2.18a)

(2.18b)
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with

N-, =co. th(PR(()-,.j2).
Substituting Eq. (2.15) into Eq. (2.12), we obtain S,(q, a). We note that in the harmonic approximation

S,(q, ~} reduces to

(q q. . ~2 [6((d —a;, ) —6(()+(u. . )j"q'=Z 2M
'

(1' . -)
~1 qJ'1

which at first glance appears different from that quoted by other authors. "'" However, the expressiongiv-
en by the above equation and those obtained in Refs. 10 and 11 have the same value at (d = ~-. »d -~-. .

B. Calculation of S3(q,m)

Using the same procedures as outlined in the calculation of S,(q, ~), we find

S,(q, (u) =-S,"(q, u))+S~(q, z),
where

3/2

i1a2i1J2J '0] 21 f1212 U

(2.19)

civet t A tA 0 (2.20)

h ' ' » ~(q- q —q ) ~-.
& )(-.~.* )(q. &.* )S,'(q, ~)= ~~ 2( (~ ~ ~ )1/2 (q'

&].r((2&1&2& 44 ~2~2

OO

x e'"'(A (f)A' (0)A'- (0))« (2.21)

Shukia and Muller' have evaluated a similar integral to the one appearing in expression (2.20) for

S,"(q, e). Following their procedures we find

f' oo

J"(~)= e'"'(A- . (&)A;, (f)A';, (0))«, (2.22)

= —lim, ~„„) ImD,"(&@+i&),1-
where the Green's D,"(e) is given by

)1(~ ):4 ')'('q) t), 7 rl)))'(t)) t))'& j ) ( ~ ))47t 5 4) + (d-

(2.23)

(2.24)

and y'(q, j„q,j„e)has been defined in Eq. (2.1 lc). We note here that to 0(&) the extra terms arising in

expression (2.24) of Ref. 6 cancel out exactly in the harmonic approximation.
Substituting for D,"(&u) in Eq. (2.23) and the resulting expression into Eq. (2.20), a typical term arising

from the product

1 1

in the expression of S,"(q, ~) is

~ ~ ~
~ ~ ~

ff
'~~ iN 3X ~ 6(q —q, —q2)

), . &(-q, j„-q.j., qj)(q ~;...)(q ~;„,)(q ~;,j
~1~2~1~2& ~1~1 2~2

(N. . +N . ) &(z+&u-. ) —.6((d —~- . —~- . )02 012 1 q222

(1 —e '"") (2.25)
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The other seven terms arising in S,"(q, w) can be
written in a similar fashion.

The contribution from the second term S~s(q, e)
in Eq.. (2.19) can be found provided the Green's
function

D~(t) -=&&A;, (f);A.t, (0)A',-, (0)))

=-ie(f)&[A,,(f),A"., , (o)A,', (0)])

is known, where e(t) is the Heaviside unit step
function, the square bracket is the commutator,
and the angular bracket denotes the thermal av-
erage. We have obtained this Green's function us-
ing the equation- of-motion method. Defining an-
other Green's function,

«A-„, (f)A;, (f);A';;„(0)A';, ( ))) .
Since E, arising in Eq. (2.27) multiplies a term of
O(X), we evaluate it in the harmonic approximation
and obtain

where E(q,j„q,j,; &a) is defined in Eq. (2.]7d).
Fourier transforming Eqs. (2.26) and (2.27} and
making use of expression (2.28) for EP, we obtain
the following expression for D~~(&u):

6x
1 (+) 4

~ (qlll& q2229 q~) (ql~l&q2~2t
4&m

D.'(f) = «&;, (f)-;A';...(0)A';...(o))),

where B;j= a;j —a;, and using the equations of
motion of the operators A;j and B;j obtained from
the Hamiltonian (2.3}, we find We use the definition

(2.29)

and

i —D~=(u- D~d
(2.26)

oo

z 3s((d) = ' 8'"'&A;, (t)At, (o)A. t (0))dt

d ~ 6X
2 ~ggDi +

@ 2 l' (qsj4~q5/5~-qj}E& g

Q4Q5j4 j 5

= —lim —, :~„) lmD~(~+is), (2.30)~] e -/Ace

where E~l is the two-phonon Green's function

(2.27) substitute for D~(&u), and extract the term similar
to that given in expression (2.25). This corres
ponding term is

(
"' iN 3X & ~ A(q —q, —q, )

) ~
(

' „ ),g. p'(q, i, q.i. -qA(q &;*...)(q &~,,)(q &;;}
Ql™12jlj2j Qljl Q2j2 Qj

(N. +N. , ) 5'(e+ v-,.) —6(&u —e;,. —(d~,. )
(2.31)

(l 8 -Bh&u)

Careful comparison of the expressions (2.25) and (2.31) show that (a) owing to the summations over q,
and q„ these vectors can be changed to -q, and -q„respectively, without affecting the resulting sum, and

(b) if in expression (2.25) q is changed to -q, the resulting expression is identical to minus expression
(2.31).

Careful pairwise comparison of the eight terms arising in S,"(q, ~) and Sg(q, &u) show that the properties
(a) and (b) hold true for all corresponding pairs. We therefore conclude that

S3~(q, (u) = -S,"(-q, v) .
Hence we can rewrite Eq. (2.19) as

S,(q, (u) = —[S,"(q, (u)+S,"(-q, (u)].

(2.32)

(2.33)

Looking ahead to the contribution of S,(q, ~) to the resistivity, we note that the q-dependent factors
multip]ying S,(q, ~) in expression (1..2) ar'e symmetric in q whence S,"(q, v) and S,"(-q, e) will yield equal
contributions to p.

C. Calculation of S4(q,u)

Following the procedures outlined in the calculations of S,(q, &u) and S,(q, &u), we find

S,(q, ~) =S,"(q, ~)+S;(q, ~)+S,'(q, ~),
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N

(11fl2q3jl j2j3j 11j1 02j2 %3j3 1j

(2.34)

s( )
@ ~ g +( 0+Qx+Q2)+tQ %3 'Ze)

( ) ( .g )(
2NM (2!)' - - - - (~- . &u- &u- . &u- )'~' ~ '&'& ~"' '3'3 &'4

«f1yg2Q3Q4j'yf2f3j!4 1 1 2 2 3 3 4 4

(2.36)

&1&2&3&1&2&3& I 1 2 2 3 3

x eccvg g j t f j 0 f j 0gf . O (2.36)

The integrals arising in Eqs. (2.34), (2.35), and (2.36) are evaluated from the following respective Green's
functions:

z", =((~, (fg, (fg, (f);~t,.(o))), (2.37)

(2.36)

zc =((x&(f);at&,. (o)At&,. (opt&,. (o))) .

The corresponding expression for 4;(&u) is given by

(2.39)

&4 ((u) = -lim, l „„)lm Zp(|d+ ie),e-Bh (2.40)

where n is assigned the value of A, B, and C, respectively.
The derivation of E", requires the solution of eight simultaneous equations involving various Green's

functions. In the harmonic approximation the system of equations can be solved exactly to yield

A 1 1 1 1Z", = —(o. + p +y+ 6) — —— —+ (o.'+ p —y —&)
Bm N —CO& —K2 —603 (d + K& + (82+ 003 (d —N& —402+ M3 (d + QP&+ 602 —K3

1 1+(~-p+y-6)
(d —(d& + 602 —C03 h) + (d& —('d2+ 603

1 1
+ (o' py+ &)--

CO —CO + CO + 40 . (gP+ 4) —(d —CO (2.41)

where

a=5 -5. . 6- 5. . N- . P =6- -6. . 6- - 5. . N- .
aye j 3 j q2-'43 j 2j3 a2j2 ~ a2a j 2j a3"fly j 3jj 03j3

3 2

The derivation of &, requires the solution of four simultaneous equations involving various Green s fun-

ctions. Once again, in the harmonic approximation, an exact solution can be found, viz. ,

(2.42)
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where the function F (q,j» q2j» (d) is given by Eq. (2.17d).
The Green's function E, involves only one operator at time t and hence will be a function of only one

frequency ~&, , viz. ,
c (d-. , (o'+P+r)
I v (~2 ~2)» (2.43)

where the factors o.', P, and y involving sums and products of Kronecker deltas have been defined in Eq.
(2.41). The final expressions for S, (q, (d) are obtained by evaluating Z~ ((d) [Eq. (2.40)] for each of the three
Green's functions given by Eqs. (2.41) to (2.43).

The results are then substituted in the corresponding S~ (q, (d) given by Eqs. (2.34) «(2.36). W«ind

3N

iII~1~ Q2 0121

(2.44)

2

S,'(q, ~)=( d. (, ). g 4(-q+q, +t),)

~1~2 1~2

Jq. Eg,. I'fg Eg, I'
1 ~ ~ ~

(1 -j)2 )
2G( 4j). q2 j2» (2.45)

where G(q, j„q,j,; (d) has been defined in Eq. (2.18b) and

Sc(q, (d) =S,"(q, (d) . (2.46)

III. CALCULATION OF RESISTIVITY FROM S{q,u)

p= p.(T)+p, (&)+p. (T')+ (3.1)

where p2(T), p2(T), and p4(T) are considered
separately and represent the contributions from
S,(q, (d), S,(q, (d), and S,(q, (d), respectively.

A. Calculation of p2{T)

The expression of p, (T) is given by

P2(T) =C
&2AF

qql~(q) I' „
P(d

d(d
( j)2~ 1) 2(q»

Substituting for S,(q, (d) from Eqs. (2.12) and

(2.15), we obtain

(3.2)

From expansion (2.6) of S(q, (d) and expression
(1.2) for p, we find

The last integral over (d in Eq. (3.3) can be ap-
proximated as follows:

2 (dj),.r((,.((d )
(d —(d@

(3.5)

2(d 2,I g ((d )
»)j( )» '5j( )t

(
2 f12 )2 4 2r2 ( )'

(3.4)

The function Z peaks inthe regions co =+~&&, and
since the width r&,.((d) is small, it can therefore
be expanded about any point in the neighborhood
of r&,. ((d) =0. One common approximation is to
replace this function Z by the delta function
v5((d2 —0&,.)» which corresponds to the first term
in the MacLaurin's expansion. When the integral
given by Eq. (3.3) is evaluated in this approxi-
mation, we obtain Eq. (1.1) with f(p(d&) replaced
by f(PQ&,.) in Eq. (1.1b).

The above approximation yields only one of the
contributions to p(T) of 0(X2). The other is ob-
tained from the next term in the MacLaurin's
expansion of Z, viz,

P(d
(e'""- l)(1 - e '"")

J J
~

2~„r„
(~ *. —()4» )'+ 4~.,',.»'»,.(~))

(3.3)

When the integral in Eq. (3.3) is evaluated with

the second term in Eq. (3.5), we obtain the fol-
lowing explicit contribution to p(T) from thephonon
width, viz. ,

j»,"(T)=
M 2 J St(4(l»»(4)(l'lt) .4„.1*»(t(j)~(qj),

F
(3.6)

where
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18W 'A 'p
012102J2

((0~ . +(d~ )1~1 2 2 1
[coshPA((u + u) ) —1] [(~ + rz )~ —a~ ]~

&'(- j j, j)' pr +x
&2&2

((d~ . —
CO~ )

(3.7)

We note that 0&,. in the function f(PQ&,.), as given
by Eq. (2.16), is well approximated by

(3.8

where the phonon shift &&,. (~) defined by Eq.
(2.17a) is evaluated at &u = u&&&.

Substituting for &&,. from Eq. (3.8) tntof(p&~, ),
expanding in powers of &&, (a;,.), and retaining
only the linear term in &&,. (&u&,.), as it is of O(X'),
we obtain

pg coth(-, PA~;, )
f(PQ~,.) =f(P(u-, ) — &. «;(&«;)

(3.9)
It is clear that, when Eq. (3.9) is substituted into
Eq. (1.1), we get formally the following contri-
butions to p, (T):

p,"(T)+p,'(T)+ p,'(T),

where pH(T) is the usual harmonic contribution to
p(T). p, (T) and p, (T) are the contributions from
the cubic and quartic phonon frequency shifts.
Pull expressions for p, (T) and p~o(T) are given
by

p,*(T)= -—p „t d q q f W(&)
f

'l8
f
q. «~.

f

'
j (2 ky'

x --@ g~ coth —,
'

5~~,.
sinh'(~P@(o~, .) '

(3.10)

where s =C or Q, and thequantities +~, (~ ) a„d
&-.(v~) are defined in Eqs. (2. 17b) and (2.17c),
respectively.

B. Calculation of p {T}

The contribution to p(T) from S,(q, &u), viz. , p, (T) is obtained from S,"(q, &u) and S, (q, v). Since
S, (q, co) =-S,"(-q, &u) as shown in Sec. II, we obtain from Eqs. (2.33) and (1.2) and the arguments presented
in Sec. II,

(q =„)(q «;, )(q «;, -)

q ~T'~ =~ |l dq& lN'~&~ l*~-~~( ) (—,) I ~~q-q, -a)

fx ( @~ )
e13 ((d) d(d . (3.11)

The last integral, although tedious, can be evaluated from Eqs. (2.23), (2.24), and (2.17d). In compact
notation, the integral is given by

+OO

d(o
( „„)J',"((u)d&u = ——V'(-q,j „-q,j„qj)

x 12P&a&& -[cosech2PA —,'(&u&,. +&@; z ) —cosech' 2PR(u„.]+ h)~ . ) —CO@
1 2~2

+n, ~,
—+a,~,)(~r,~, ~a,~,)

[cosech'Ph —,'(~&,. —~&., ) —cosech'-,'Pk&u&, ]k~q . —~q ~ J —j ~

l~ 1 2&2
1&1 2 2
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C. Ca1culation Of p4{T)

Since we have shown in Sec. II the equivalence of S",(q, &u) and Sc(q, &o), there are only two distinct con-
tributions to p(T) arising from S",(q, cu) and S, (q, ~). Substituting the expressions for 8,"(q, ~) and S, (q, ~)
given by Eqs. (2.44) and (2.45), respectively, into Eq. (1.2) and integrating over v, we obtain

p"(T) = C
Jl

&2,kF

where x=A or B, and

(3.13)

I (q)= —~~ Q 3t ~q '&
y~ Pj(P&;g)&(q)

~l&x ~l&i

&(q,j„q,j,) = (N~, ~, + N~„)(~&„,+ ~~„,) cosech' ,' ph(-&u&, ~, + &u&,~, )

+ (¹„&,-N~
& )(&u& ~

—&u,- ~ ) cosech'-,'PS(u&., &
—~; & )

and the function f(~&&) arising in Eq. (3.14a) was defined earlier in Eq. (1.1b).

(3.14a)

(3.14b)

(3.15a)

(3.15b)

P2(T) = (P24T+ (P2)cT'+ (P2)oT'+ (P2)wT' (4 1)

where all the coefficients of T and T' in Eq. (4.1)
are independent of T. (p, )„ is obtained from Eqs.
(l.la) and (l.lb). (p, )c, (p, )o, and (p, )~ are of
O(A.'). (P, )~ is obtained from Eqs. (3.6) and (3.7),
while (p, )c and (p, )o are obtained from Eqs. (3.10),
(2.17b), and (2.17c).

In the high-temperature limit, p, (T) can be ex-
panded in powers of T and the leading contribution
is of the order T'. From Eqs. (3.11) and (3.12),
we have

p, (T)=(p.) T' (4 2)

We note that p, (T) is of O(A. ) and arises from the
cubic term in the Taylor expansion of the crystal
potential energy.

The remaining high-temperature-limit contri-
butions of O(T') to p(T) from the Debye-Wailer
factor and the first term of the multiphonon series

IV. HIGH-TEMPERATURE LIMIT OF p(T)

In the high-temperature limit, i.e. , T& 8~, the
Debye temperature, it is possible to expand in
powers of T the thermal factors arising in the ex-
pressions of p, (T), p,(T), and p, (T) derived in
Sec. III. p, (T) contains four terms arising from
the harmonic, cubic and quartic shifts, and the
phonon width. In the high-temperature limit the
harmonic contribution is proportional to T and the
contributions from the cubic and quartic shifts
and the phonon width are all proportional to T'.
Vfe can summarize all the leading high-tempera-
ture-limit contributions to p, (T) in the following
equation:

are obtained from p4(T) and ps(T), respectively.
&though these terms are of O(T'), they are essen-
tially harmonic in nature and therefore indepen-
dent of the parameter A. . From Eqs. (3.13) to
(3.15) we find

P4(T) =(Pg)nwT + (P4)~yT (4.3)

It is straightforward to obtain the temperature-
independent coefficients in Eqs. (4.1) to (4.3) from
the respective equations derived in Sec. III.

V. DISCUSSION

%e have evaluated the contributions to the pho-
non-limited resistivity, (p) of metals from the
anharmonicity, the Debye-%aller factor and the
first term of the multiphonon series. The latter
two contributions to p are obtained from the cor-
relation functions involving four operators,
whereas the anharmonic contributions arise from
the two- and three-operator correlation functions.
'The three-operator correlation function repre-
sents an explicit anharmonic contribution to p
from the cubic term of the Taylor expansion of
the crystal potential energy. The other anhar-
monic contributions to p from the cubic and quar-
tic shift of phonon frequencies and the phonon width
and are obtained from the two-operator correla-
tion functions.

The correlation functions are evaluated exactly
from the respective Green's functions. The
mathematical structure of the contributions to p
from the cubic shift, phonon width, the three-
operator correlation function, and the first term
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E", = 3(A, (f)A, , (f)) ((A, (f);A'„(0))), (5.1)

Zc= 3(At~ „. (0)At~,. (0))((A~,.(t); At~
~ (0))) . (5.2)

Since in the harmonic approximation

(A~„.,(t )A~„.,(t )) = (At,(,(0)At~„.,(0))

&2&2 &83 iu3 & (5.3)

the corresponding S", obtained from Eqs. (5.1) and

(5.2) is the same as that given by Eq. (2.44). In
this case then the decoupling procedure gives the
same result for 84, as obtained from the exact
Green's function, viz, Eq. (2.44), and of course
we find S4 =S4. No decoupling procedure can be
applied to obtain E, . However, the correlation
function arising in the integrand in 84 given by
Eq. (2.35) can be decoupled to give

of the multiphonon series have one thing in
common, viz. , the delta, function b(q+q, +q, ), re-
stricting the three wave vectors.

In the high-temperature limit (T& HD) all the
above contributions to p are found to va, ry as T'.
The higher-order correlation functions (viz. ,
five- and six-operator, etc. ) yield a. higher-order
temperature dependence (T', etc. ) in the high-
temperature limit. Similarly, the anharmonic
terms of O(A. ') in the evaluation of four-operator
correlation functions and terms of O(A.') in the
evaluation of two-operator correlation functions
produce a higher-order term in p in the high-
temperature limit (i.e. , T', etc. ).

'The same argument holds true in the case of
three-operator correlation functions. Thus our
theory of the phonon-limited resistivity presented
in this paper omits these higher-order terms.

Finally, we make some remarks about the de-
coupling procedure in obtaining the. Green's func-
tion and the correlation function. The two-opera-
tor Green's function has been obtained exactly to
O(X'). The details of the derivation, which re-
quires some decoupling procedure, have been
given in Ref. 6. The other Green's functions in-
volving three and four operators can be obtained
exactly, and no decoupling procedure is needed
in their derivation. However, if the Green's func-
tions E, and E, are obtained by decoupling, we
find

(A, ,( )A~, ,(t)A;, ,(0)Ai~, ,(0))

=(A; ) (t)A; q (f)) (A; ) (0)At ) (0))

+(A.,~, (t)At ) (0))(A; ) (t)A~ ),(0))

+(Ag, (t)A;,. (0))(A;,. (t)A~,. (0)) .
The first term in Eq. (5.4) is independent of
time, as seen from Eq. (5.3). This term does not
contribute in the derivation of p, . The second
and third terms in Eq. (5.4) make equal contribu-
tions in the evaluation of p, . These contributions
can be evaluated in the harmonic approximation.
The time-dependent correlation function is given
by

(5.4)

where J, &„., was defined earlier in Eq. (2.13). We
omit the details here but simply note that p, ob-
tained by this procedure is identical to the p4 ob-
tained exactly and given by Eq. (3.13).

VI. CONCLUSION

All the contributions to the phon. on-limited re-
sistivity of metals which are found to vary as T'
in the high-temperature limit have been derived.
The expressions for the various contributions to
p (six of them), which have been derived from the
appropriate Green's functions, are valid for all
temperatures. 'The physical significance of these
contributions has been, demonstrated.

The results of a detailed first-principles nu-
merical computation" of these six contributions
to the coefficient B in the BT' term in p in Na
and K show a strong pairwise cancellation among
the following contributions to p: Debye-%aller
factor and multiphonon term, cubic and quartic
phonon shift, phonon width, and interference
term. Very recently, these numerical results
for K have been used by Cook et al." in the esti-
mation of the vacancy formation energy from the
high-temperature resistivity measurements. A
manuscript containing these Na and K numerical
results" is in preparation.

ACKNOWLEDGMENT

This work was supported by the Natural Sciences
and Engineering Hesea. rch Council of Canada.

G. Baym, Phys. Rev. 135, A1691 (1964).
M. P. Greene and W. Kohn, Phys. Rev. 137, A513
(1965).

G. Grimvall, Phys. Cond. Matter 17, 135 (1974).

R. C. , Shukla and R. Taylor, J. Phys. F 6, 531 (1976).
R. C. Shukla, E. R. Muller, M. VanderSchans, Thermal
Conductivity 15, 191 (1978).

6R. C. Shukla and E. R. Muller, Phys. Status Solidi B



THEORY OF PHONON-LIMITED RESISTIVITY OF METALS. . .

43, 413 (1971).
YM. -Born and K. Huang, The Dynamical Theory of Crystal

Lattices (Clarendon Press, Oxford, 1954).
SR. C. Shukla and E. R. Muller, I'hys. Status Solidi 39,

561 (1970).
D. N. Zubarev, Usp. Fix. Nauk 71, 71 (1960) [Sov. Phys. —
Usp. 3, 320 (1960)].
R. C. Dynes and J. P. Carbotte, Phys. Rev. 175, 913

(1968).
f1N. H. March, W. M. Young, S. Sampanthar, The Many-

Body Problem in Quantum Mechanics (Cambridge,
England, 1967), p. 276.

f2R. C. Shukla and M. VanderSchans (unpublished).
i3J. G. Cook, Roger Taylor, and M. J. Laubitz, J. Phys.

F 9, 1503 (1979).


