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e show that the low-temperature susceptibility of Ce {In, Sn)3 compounds has a quadratic

temperature dependence with positive coefficient. We demonstrate that this behavior is well ac-

counted for by a generalization to arbitrary band shapes of the paramagnon theory, which has

been applied previously to liquid He. This. result is relevant to the whole class of mixed-

valence materials. We conclude that the previously proposed phenomenology that treats
valence-fluctuation materials as heavy, nearly magnetic Fermi liquids finds further support in

the present analysis.

I. INTRODUCTION

Intermediate-valence compounds have been exten-
sively studied' in the past few years, both experimen-
tally and theoretically. We will confine ourselves
here to those compounds which do not order at low

temperature, and more particularly to CeIn3 „Sn„ for
x )0.4, for which the temperature dependence of
the spin susceptibility has been recently measured"
over an extended temperature range and several
values of x between 0 and 3. karma has stressed
that the ground-state properties of mixed-valence
materials are those of a nearly magnetic Fermi liquid.
This is confirmed by experiments which demonstrate
the enhanced T' dependence of the electrical resis-
tivity, ' the linear temperature dependence y T of the
specific heat with large values of y, ' as well as the
linear variation with T of the thermal expansion, and
a temperature dependence of the susceptibility' '
resembling that of certain nearly magnetic itinerant
pararnagnets like Pd, ' with a maximum followed at
lower temperatures by an almost temperature-
independent plateau. In all these properties, a
characteristic temperature was shown to play an im-

portant role quite similar to the spin-fluctuation tem-
perature T,r of nearly magnetic fermion systems.
These are described, in the paramagnon model, ' by
itinerant fermions interacting via a strong, contact
repulsion I between opposite spins and where T,f
measures a Fermi temperature renorrnalized by the
interactions, T,r= TF(l —I). [TF is the Fermi tem-
perature in absence of interaction, and I the dimen-
sionless interaction IN(EF) cc I/EF, where N(EF) is

the density of states at the Fermi level. )
For CeIn3 „Sn„ it was shown in Ref. 2 that the ef-

fective moment p, '= TX/C (where the susceptibility
X was measured for several values of x) exhibits a
thermal variation which to a few percent is only a
function of T/T, r(x). This approximate scaling ap-

with

x(0) 1

Tsf
(1b)

and a is a number of order 1, which can be negative
or positive. Such a behavior follows from a generali-
zation to an arbitrary band shape of the paramagnon
result derived for liquid He with one parabolic band
of fermions with a spherical Fermi surface. In the

peared all the more amazing in that it held over the
whole temperature range. A similar approximate
scaling result has been observed in the archetypal
Fermi liquid, 'He, where T,f is varied by changing
the pressure. ' This similarity lends further credence
to the point of view that the magnetic properties of
the intermetallics are those of a Fermi liquid.

In the present paper, we would like to present
another striking feature of the Ce(In, Sn)3 com-
pounds which pleads again in favor of the spin-
fluctuation description. It is not our purpose to argue
on the profound significance of the pararnagnon
model as applied to intermediate-valence compounds,
aside from some remarks; it has been stressed else-
where that the real theoretical difficulty in mixed-
valence physics is to demonstrate that the behavior of
the underlying microscopic Hamiltonian reduces to
that of a Fermi liquid. We adopt this as a starting
point and take for granted the suggestion that, from
a phenomenological point of view, a Fermi-liquid pic-
ture with enhanced spin fluctuations could account
for magnetic properties of intermediate-valence com-
pounds, and we take for granted the experimentally
demonstrated existence of the temperature T,f, what
we will show is that, generally speaking, the very
low-temperature susceptibility of a nearly magnetic
ferrnion system varies like

X(T) =X(0) I+a for T &(.T,f, (la)T
'

Tsf
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x( T) = x(0) [I + b[x(0) T]'] . (2)

Such a form has been shown valid for liquid He. '
Therefore if the data for X( T) plotted versus T' ex-
hibit linear behavior, the extrapolated intercept gives
X(0) and the slope gives the coefficient b which can
then be compared to the theory. To accomplish this
we first show that one can subtract with quite good
precision the spurious impurity term responsible for
an extra I/T contribution at the lowest temperatures.
What remains fits the above formula very well, i.e.,
varies linearly with [X(0)Tlt. In the ensuing discus-
sion we compare the data of Ce(In, Sn)i to that of
liquid He bringing out similarities and differences
between the two cases.

II. EXTENSION TO AN ARBITRARY BAND SHAPE
OF THE PARAMAGNON SUSCEPTIBILITY OF

A NEARLY MAGNETIC FERMI LIQUID

In this section we will generalize the result ob-
tained in Ref. 9 for the temperature dependence of
the susceptibility of strongly interacting fermions in
the paramagnon model. The theory is extended so
as to apply to a band of itinerant fermions of arbi-

'He case the coefficient a was negative, so that the
susceptibility decreased for increasing temperatures in
excellent agreement with experiments '; the fit was
all the more remarkable in that the theoretical result
contained no adjustable parameter. We will show
that formula (1) is quite general for nearly magnetic

systems and that the coefficient a and its sign depend
only on the values and signs of the first few deriva-
tives of the density of states at the Fermi level. Thus
at low temperatures ( T &( T,f) x(T) can be either
monotone decreasing with increasing temperature
(a (0) as in He, or monotone increasing (a & 0).
If the latter holds, then, since at high temperatures
( T » T f) the susceptibility decreases in a Curie-
Weiss fashion, there must be a maximum of X(T) at
an intermediate temperature.

It has been argued on general grounds that band-
structure effects can cause the T' term in X( T) to
take a positive sign. " Certain authors"" argued
that the maximum observed in X( T) for several
nearly magnetic systems was due to a T'ln T variation
in X( T); but this was shown to be erroneous"" be-
cause, although such T'lnT terms exist, when they
are carefully collected, they altogether cancel, and the
only surviving term is the T2 term. The latter was
derived in Ref. 9 from first principles (by differen-
tiating the free energy with respect to the field).

Once we have derived Eq. (I) in Sec. II we will

compare it in Sec. III to the experimental data for
Celni „Sn„. To accomplish this we rewrite Eq. (I) in

the form

trary shape, in contrast with the parabolic band ap-
propriate to liquid 'He and considered in Ref. 9.

A. General formulas

The static susceptibility then follows from the cu =0,
q -0 limit:

-0

x(T) —= x(0, 0, T)-
I —Ix (0, 0, T)

x (T)
I —IX (T)

(4)

For a system close to a ferromagnetic instability the
susceptibility is maximum for q =0; and I = IN(EF)
& I so that for T r- (I —I) TF it follows that
T,f(( TF. For T (& T,f the fluctuation effects are
treated as perturbations in powers of T/T, i, modify-
ing the bare temperature-dependent Pauli susceptibil-
ity X (T) to X (T) where

x (T) =x'(T)[I+Sx„(T)] . (5)

As is well known the temperature dependence of the
Pauli susceptibility is obtained through a Sommerfeld
expansion in powers of T/TF

x ( T) = x'(0) [ I +gx'( T) ] (6)

Xo(0) is determined by the density of states at the
Fermi level evaluated at T -0 so that, in appropriate
units

x'(0) -N(EF) . (7a)

(7b)

where N' and N" are the first and second derivatives
of N evaluated at EF.

Collecting Eqs. (4)—(6) we then have

x(T) =— I+ [gx'(T)+Sxa(T)] . (8)
x'(0)

'

1 —I 1 —I

This last formula is quite general and useful, and it
clearly separates the fluctuation contribution. We
first show that it leads to known results in the ap-
propriate limits. (i) In the absence of interaction

As in Ref. 9 we first compute the irreducible two-
particle dynamic susceptibility X (q, co, T), which in-
cludes fluctuation effects arising from the emission
and reabsorption of spin fluctuations (paramagnons)
by the fermion propagators; then the dynamic suscep-
tibility in the presence of an interaction, X(q, cu, T), is
computed in random phase approximation (RPA)
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I =0 and, a fortiori, 5Xf[=0, so that

x(T) -x'(o)[I+&x'(T)]
N" N'2

=N(EF) I + —,—T', (9)
N N' E, 6

where A. is a constant, one can write Eq, (14)
1

II r T2
x(T) =x(0) 1+ TF2F

O' N &F Ts

or, equivalently

(17a)

Xp „];= N(EF) 1 —
&&

n'1 2 T
F

(10)

(ii) If fluctuation effects are neglected 5Xq =0 then,
for finite I we recover the Stoner susceptibility

x( r) — I + gx'( T)
x'(0)
1 —I 1 —I

x (0)
I I N" N'2 e

l-l 1 I N N2EF6

which for a parabolic band leads back to the tempera-
ture dependence of the Pauli susceptibility

P

tl I

x(T) =x(0) I +,F, [x(0) T]2 . (17b)
N N EF

Equations (17a) and (17b) are identical to the forms
(la) and (2), respectively. For the parabolic band of
liquid 'He studied in Ref. 9, F was computed and re-
duced to

F = 3 2n' /24 TFi

yielding for the low-temperature dependence of the
spin susceptibility of liquid 'He the pararnagnon
result

1 f

(T) F
1

3 2n' T (19)1-1 24 (1 —I) Tp-

where, for a parabolic band

N.(Er) t, r'
Xstoner

1 —I (1 —I) TF
(12)

Note that only one power of I/(I —I) enters into the
coefficient of T' (iii) In the .presence of fluctuation
effects, we will show in Sec. II B that

1

( )
T

1
3,27K T

Ts[' 24 '
Ts

(20)

clearly exhibiting the dependence on the reduced
temperature T/T, r One can wr. ite equivalently

which takes the form (la) with a (0 for a parabolic
band. Then

r

5X =F N" N' T
N'N (13) 32 2

Tx(T) = Tx(T=0) 1 — '
[— (xT= 0)

2]T2
24

x'(0)
X(T) =

1 —I
1'+ 5Xf]

1

1 —I

where F is a function of N, N', and N" which when
evaluated at EF can be positive or negative, depend-
ing only on the band shape at the Fermi level. Then,
assuming that F is finite at E~, and close to a fer-
romagnetic instability (I —1), 5X (T) will be negligi-
ble compared to 5Xq, and one obtains:

(21)

which has the form of formula (2) with b (0. This
last formula appeared in Ref. 9 as formula (21).

According to Eq. (13) gxn vanishes at T =0, and
diverges as I 1. Actually 5Xf[ contains a tempera-
ture-independent term Sxn(T =0), but this term
does not diverge as I 1, as will become clear in

Sec. II B. Hence strictly speaking, according to Eqs.
(4) and (5)

x'(0)
1 —I

N N' T
N N EF (1 —l)2

(14)
x'(0) [ I + gx„(0) ]

x(0) =
I —l x'(o) [1+gx, (0) ]

(22)

Xo(0) N ( EF)

1 —I 1 —I Tsf
(16)

Note that I/(I —I) appears to the power 2 in the
coefficient of T'. one power comes from the mean-
field hypothesis of Eq. (3) and was already present in
the Stoner result of formula (12); the extra power

«Q
comes from the fluctuation effects renormalizing X .
Then since, by definition

T„=(1-I}T,
and since

Clearly the additional term can be absorbed into
X (0), leading to an effective interaction
l,rr = l [I + gxn(0) ]. It was shown in Ref. 16 that
due to quantum effects at T =0 K, the effective spa-
tial dimensionality of the three-dimensional paramag-
non model is 6. This is larger than the upper margi-
nal dimensionality d'=4, defined such that for
d ) d' mean-field theory is valid arbitrarily close
to the critical point. In other words X(0) a: I/(I
—I,ff) with y=1 and l,f[. may be calculated in per-
turbation theory. In Ref. 17 an attempt was made to
calculate X and I,&[ self-consistently, but the calcula-
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tion is not tractable analytically. In the present paper
(as well as in Ref. 9) X(0) will be extracted from ex-
perimental data; therefore we ignore Sxa(0) in the
following, since it is incorporated into the measured
value.

B. Derivation of SX'fi(T)

In Ref. 9, which was concerned with liquid 'He,
the susceptibility was derived by differentiation of the
free energy with respect to the magnetic field. Such a
procedure would be very difficult for a nonparabolic
band. However, diagrammatically this procedure
amounts to dressing the bare bubble Xp(q, cu) with

paramagnon insertions in all possible ways. To
lowest order we need to compute the five diagrams of
Fig. 4 in Ref. 18 involving one paramagnon insertion
in all possible ways; this procedure will then yield Eq.
(13) above. These five diagrams are (in the order of
their appearance in Fig. 4, Ref. 18):

(i) A self-energy correction containing an odd
number of rings with the propagator

—I'x (q, a))

1 —I'[x'(q. ~) ]' (23a)

(ii) A self-energy correction involving a ladder di-

agram, with the propagator

—I'x'(q. p )
1 —Ix (q, a&)

(23b)

Here X (q. cu) is computed at 0 K, as will be seen to
be sufficient later on; q and ~ are the fluctuation
momentum and energy transfers. The most impor-
tant fluctuations have q, eo 0. Equations (23) have
to be multiplied by a factor of 2 to take account of
the symmetric diagram.

(iii) A vertex correction involving an even number of
I

rings with propagator

I'[x'(q. a)) ]'
1 —I'[x (q, cu)]'

(23c)

—I I
1 —I Xp(q, cu) 1 —I [Xp(q. rp) ]

—12
(23d)

1 —It [xp(q, co) l
t

(This again has to be multiplied by 2, for the same
symmetry reason as above. ) The physical meaning of
the combination was expained in Ref. 19. Essential-
ly, in a rotational invariant formulation, only one
spin fluctuation appears in these two diagrams; the
other being a density fluctuation of the form
1/[1+ IXP(q. ru} ] which has no divergence for
q, ao 0 and I l.

The q and ao fluctuation transfers also appear in the
fermion propagators in these diagrams and were tak-
en account of in both Refs. 9 and 18, but the result-
ing analytical calculation was very lengthy. In the
present case for arbitrary band shape, it would be
even messier. Since our purpose is essentially only to
extract the T' dependence of Eq. (13) and show that
the coefficient F can be positive as well as negative
depending on the band shape, we will neglect the q
and co transfers in all the fermion propagators in the
computation of the above five diagrams; the error in-
troduced will affect the coefficient of the T2 term by
a numerical factor but wi11 not affect the characteris-
tic features exhibited in Et). (13). Then, the task is
considerably simplified; for I close to 1, we are left with

(iv) A pair of diagrams which appear to involve two
paramagnon insertions rather than one, but which
when combined are of the same order as the other three

I I'x'(q, ~)
1 —IX (q, cu) 1 —I [X (q. co) l

N(E )SX„(T)=c — T X 64(k, a) —, T X Go'(k, a)
2N(EF) a, N'(EF) k, 1 —IX q, ru)

(24)

As in Refs. 9 and 18, I is set equal to 1 whenever it
does not appear in a divergent quantity; c is a con-
stant which accounts for the numerical error due to
the above approximation. One then has

I

Therefore

'I

5 N" 1 N'
2

T2

2(3I) (28}

T X Go (k, p) =, N" (E )
k, e

(25)
and then Eq. (19) becomes

T X G p ( k a )
)

N ( EF)
k, e

(26)

and (see the Appendix)

x'( ) T2
T X p' ~ [N(EF)]'e' . (27).„1—IX (q, co)

5 N" 1 N'

12 N 4
(29a)
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Here cp accounts both for the constant c and for the
proportionality coefficient in Eq. (27). For a parabol-
ic band (29) would give

2 T2
X(T) =X(T =0) 1 —c,—,(30)

6 (1 I ) TF

which, compared with the complete result (19) of
Ref. 9, shows that the numerical coefficient cp is of
order 1 (equal to 3.2/4 in that case). Therefore, in

Eq. (la)
t

5 N" 1 N'
0 = cp77 Tp

12 N 4N2 EF
(31)

or

5 N" 1 N' T
X( T) = X( T =0) 1 + cpm' Tp.

12 N 4 N &~ Tsp

(29b)

nearly ferromagnetic case except for very particular
Fermi surfaces. We hope to consider this more
carefully in the future.

In the event that the Stoner enhancement is not
large, the Pauli contribution 5X (T) [which we

neglected in the derivation of Eq. (29)] is expected to
contribute to the T' term. As can be seen from Eq.
(7b), there exists a set of conditions similar to (i)
through (iii) under which the resulting coefficient
will be positive or negative.

We wish to cite here the work of Ref. 21 which ac-
counts for arbitrary band shape, for the temperature
dependence of X and also for I, but does not include
the fluctuation contribution AXE. This amounts to
computing Eq. {11)with a temperature-dependent in-

teraction; i.e. , it results in a Stoner-type formula
where the interaction varies with T. It seems very
unlikely that this could account even phenomenologi-
cally for the various paramagnon insertions that we

consider here.

C. Discussion

Formula (29) clearly exhibits the conditions under
which X( T) will initially decrease or increase as T in-
creases, and hence the conditions under which a

maximum is expected in the temperature variation of
X(T). (i) If N"(Eq) (0, X(T) will decrease con-
tinuously as T increases and there will be no max-
imum. This would hold for any material, such as
'He, ~here the band is parabolic. (ii) If N "(E&) & 0
but N"/N ( , N'/N' then —the same behavior would

occur as in (i). (iii) If N" (EF) & 0 and N"/N

, N'/N' then, on t—he contrary, X will initially in-

crease with T as T', and a maximum should be ob-
served. For example, for a Lorentzian density of
states with half width I and center E~, this condition
would hold whenever EF —E~ & (5/9)' I'; if Ef
represented the position of the 4 f level, this condi-
tion would be satisfied when the level is nearly fully

occupied, i.e., for a nearly integral valence material.
In the derivation of Eq. (29) we have assumed that

the Fermi liquid is nearly ferromagnetic. However,
the ordering which occurs in CeIn3 is at finite q; i.e. ,
it orders antiferromagnetically. 2 This does not neces-
sarily imply that those compounds which do not or-
der, e.g. , the tin-rich Ce(In, Sn)3 compounds, should
be treated in the phenomenology as nearly antifer-
romagnetic. Nevertheless we wish to consider this is-
sue briefly. For nearly antiferromagnetic materials
the mean-field susceptibility diverges for finite

q = qp. It follows' that for small q —qp and small cu

one can expand X {q, cu) around its maximum, in

analogy to Eq. (A4), but the coefficients of co and ~'
no longer have the long-wavelength divergence. The
upshot should be that the coefficient of the T' term,
although enhanced by the spin fluctuations, should
not increase as dramatically as T,f 0 as in the

III. VERIFICATION OF T BEHAVIOR IN

THE SPIN-FLUCTUATION ALLOY
SYSTEM CeIn3 zSn„

A. Experimental results

As an example of a metallic spin-fluctuation sys-
tem we consider the alloys Celn3 „Sn„(Ref. 2) which
exhibit a continuous valence transition from triva-
lence (x ( 2.3) to weakly nonintegral valence for
x & 2.3. For all samples with x & 0.4 the ground
state is nonmagnetic. The susceptibility of three
representative samples (the data taken from Ref. 2)
is shown in Fig. 1. At high temperatures the suscep-
tibility is Curie-Weiss-like

X(x;T) =C [/T+0( )xj (32)

where C =0.807 emu K/mole is the Curie constant
5

for free J = —, cerium moments. At a temperature
1T,„=—,0 there is a broad maximum in the suscep-

tibility, and at low temperatures the susceptibililty
tends to the constant value

X(x;0) = C/20(x) (33)

(This constancy is obscured by the presence of an
impurity contribution, to be discussed in detail
below. ) As discussed in Ref. 2 we take the Curie-
Weiss parameter as a measure of the characteristic
temperature for spin fluctuations; i.e. , T,f(x) =0(x).
The values of T,~(x) for the samples discussed in this
paper are given in Table I, where it can be seen that
T,f(x) varies by a factor of 3.

We now consider the low-temperature behavior
more carefully. At the lowest temperatures the sus-
ceptibility rises with decreasing temperature. The
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FIG. 1. Susceptibility vs temperature for three samples of
Celn3 zSn; the data are from Ref. 2.

magnitude of the rise varies for two samples of the
same composition, and is also markedly affected by

annealing. Hence, the rise is not intrinsic, but is an
extrinsic effect due to foreign impurities, oxides of
cerium, etc. At still higher temperatures (e.g. ,
30—80 K in CeSn3) the susceptibility increases with T
and is concave upward; it is for this region that the
T behavior is most clearly present, as we shall show.

To demonstrate convincingly the T' law, we have
improved on the statistics of the data of Ref. 2 by

making a new sample CeSn3(8), and measuring its
susceptibility between 10 and 80 K. The results are
shown in Fig. 2{a). There is clearly a region where X

Fig. 2. (a) Low-temperature susceptibility for a second
sample of CeSn3(B). (b) XT/C vs T for CeSn3(B). C is

5
the cerium J =

&
free-ion Curie constant. The solid line

represents the behavior C;mp/C+ TX(0)/C, where the
values of C'mp and X(0) are taken from Table 1. This
asymptotic linear behavior at low temperature supports the
assumption that the impurities contribute to the susceptibili-
ty simply as C;~p/T. (c) Sum of the squares of the residuals
vs exponent n for a least-squares fit of the data for
CeSn3(B) to the equation X(T) = X(0) +AT" + C&~p/T. The
data set included 41 points in the interval 10—72 K. The
minimum near n =2 demonstrates the low-temperature T~

behavior.

increases with T faster than linearly; but it is also
clear that proper account of the impurity contribution
must be made before the power law can be estab-
lished.

To accomplish this we argue that the simplest as-
sumption concerning the impurity behavior is that it

TABLE I. valence Z, spin-fluctuation temperature T,f, impurity Curie constant, intrinsic zero-
temperature susceptibility, and coefficient of the T term for four samples of Celn3 zSnz. The
values of Ci~p X(0) A, and P are taken from least-squares fits of the data to X( T) = X(0) +A T
+ C; /T = X(0) I 1 + P( X(0)/C ]~ T' } + C, ,/T.

Sample
x(0) A P

Z (K) (10 emu K/mole) (10~ emu/mole) (10~ emu/mole K ) (K )

CeSn3(A) 3.1

CeSn3(B) 3.1

Celno 5Sn& &
3.0+

Celn& 5Sn& 5 3.0

g200
p200

120
70

2290
6449
3400
1479

1713
1742
3281
5885

0.042
0.041
0.19
0.67

5.4
5.0
3.4
2.1
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is of the form C;,/ T. While other forms are plausi-
ble (e.g. , the impurity may experience crystal-field ef-
fects) this assumption is nevertheless quite reason-
able, and as we will show below, there are important
self-consistency checks supporting it. ' Thus we as-
sume that the low-temperature behavior of the mea-
sured susceptibility is related to the intrinsic suscepti-
bi lity by

x „,( T) = x,„,( T) + ( C, ,i T) (34)

(35)= x(O) + W T"+ ( C,.„/ T),
where X(0), A, n, and C'

p are to be determined
from the data.

As a first self-consistency check we plot in Fig.
2(b) the quantity TX „,/C which we expect to ap-
proach T =0 linearly with slope X(0)/C and intercept

C;~,/C; at high temperatures it should rise faster
than linearly. A ll these features are apparent in Fig.
2 (b), giving firm support to our assumption.

Next, for various choices of exponent n we per-
formed least-squares fits to the data of CeS n3 (B)
with X(0), A, and C;, as parameters of the fit. In
Fig. 2 (c) we plot the sum of the squares versus the
value of the exponent n, it is seen to have a well-

defined minimum at n = 2. 1 5. This is sufficiently
close to the value n = 2 that we assert that the true
behavior is as T' [Several fa. ctors would cause this
small deviation from the value n = 2; (a) the thermal
lag effects discussed in Ref. 2; (b) incorrect choice of
the fitting interval, e.g. , for 29 data points in the in-

terval 10—60 K the optimal value of n was 1 .90.]
As a final demonstration of the T' behavior we ex-

hibit in Fig. 3 plots of the intrinsic susceptibility

X;„,( T) vs T', where C;, is taken from the least-

2500 5000

1 .95
O
E

I .85

I .WS
O

3.50

~

C S Oo

I

S.ro

t I t t I
I t I I

l .95

l .85

I.75

-6.!5

- 6.05

- 5.95

500 I000 200 400
T~(K ~)

FIG. 3. Intrinsic susceptibility Xm,» —
Ctmp/ T vs T for all

four samples of Celn3 „Sn„. The solid lines represent the

best fits to X|'0) + A T~; where the values of X(0), A, and

C'fnp are taken from Table I.

squares fit to Eq. (35) when the exponent is con-
strained to the value n = 2. The data for CeS n3 ( 8)
give especially striking confirmation of the T' be-
havior. The values of C; p X(0 ) and A are listed in
Table I. As a second self-consistency check on our
subtraction of impurity background, we note that the
values of X(0 ) and A (i.e. , the intrinsic susceptibility)
are in good agreement for the two samples of CeSn3
even though the impurity contributions differ by a

factor of 3 .
To make further comparison with the theory, we

write

x(T) =x(0)[l +a(T/Tr)'1 (36)

=x(O) {l+p[x(O)/C{'T'[, (37)

where we have assumed T,r = C/2X(0) as mentioned
above, and where A =PX (0)/C' and a = —P. The

values of the constant P are listed in Table I; while

they vary somewhat with x, all values observed are of
the same order of magnitude, namely, of order unity.

B. Discussion of the low-temperature behavior

of Celn3 „Sn„and comparison

with that of liquid 3He

%e thus see that the low-temperatu re susceptibility
for CeIn3 „Sn„ is adequately represented by Eq. ( 1 )
or (2) . This gives strong support to the Fermi-liquid
picture. Stated in even greater generality, the ex-
istence of a T' term in the susceptibility, with its in-

nuendo of a Sommerfeld expansion, attests to the
fermion character of the 4.f electrons in the ground
state. This obedience to quantum statistics (as op-
posed to the classical statistics obeyed by convention-
al rare-earth materials) is a hallmark of the inter-
mediate-valence ground state.

The coefficient of the T term for CeI n3 „Sn„ is
positive; hence, if these intermetallics can be
described by the theory outlined in Sec. II, it follows
from Eq. (29) that the conditions N "/N & —, ( N' /

N') {s and N" (EF) & 0 must be satisfied. As we

noted in Sec. II C if we model the 4f band by a
Lorentzian centered at Ef and with width I these con-
ditons are satisfied for Eq —Ef & ( 9 ) ' 'I; this occurs

for nearly complete occupancy of the level, i.e. , for
nearly integral valence. This condition is indeed sa-
tisfied in CeI3 „Sn„; the alloys are essentially
trivalent for x ( 2.3; the valence increases smoothly
with x in the interval 2.3 (x ( 3.0 to the value 3.1

for CeSn3 (Table I) . We are suggesting that the posi-
tive coefficient, and hence the susceptibility max-
imum, are associated with the near integral valence
of the material and would not be expected were the
Fermi level pinned to the peak of the 4f band
(strong intermediate valence), since in the latter case
we would have N" (E~) (0 so that the condition (i )
of Sec. II C would be satisfied. Indeed, the transition
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metal palladium, which exhibits a susceptibility max-

imum, also satisfies this condition that the Fermi lev-
el is very near the top of the band"

Given that the observed T2 behavior in Ce(In,
Sn)3 represents a form of Fermi-liquid behavior, it
behooves us to make a more detailed comparison to
the behavior of that archetypal Fermi liquid, 'He. In
Ref. 10 it was found that Eq. (37) is obeyed for 'He,
with P negative and of magnitude 0.53; this is in ex-
cellent agreement with the paramagnon value 0.58.
Furthermore P remained constant as the pressure
was varied, while X(0) and hence T,f varied by a fac-
tor of 2. This latter represents scaling behavior; i.e.,
as long as the coefficient a in Eq. (la) does not vary
with X(0), the "effective moment" TX(T) is a func-
tion only of a scale variable r = T/T, r. This is

demonstrated in Fig. 4 of Ref. 10.
From Table I it is seen that as x varies in

CeIn3 „Sn„causing X(0) to vary by a factor of 3.4,
the coefficient P varies by a factor of 2.5. Such a
variation with x is a weak effect, since the full coeffi-
cient A of the T' term varies as PX'( 0)/C', i.e. ,
X (0) varies by a factor of 40, on which scale the
variation of P is an order of magnitude smaller.
Such a weak variation of P is indeed expected to
arise, given Eq. (29); i.e., one effect of varying x
should be to shift the position of the Fermi level with

respect to E~, hence causing N, N', and N" to vary;
this certainly must happen since the valence changes
as x increases above the value 2.3.

However, this variation implies that the scaling ob-
served in CeIn3 Sn is-only approximate at low

temperatures. Since the T' contribution is only a
small fraction of the total susceptibility, the deviation
from scaling is not large. It is also not clear whether
the deviation is present for all x, or only as the ma-
terial becomes truly mixed valent for x ) 2.3; in Ref.
2 it is already suggested that scaling may break down
in the strong intermediate-valence regime. This
situation —that at low temperatures the scaling ob-
served in liquid He is quite accurate, while only ap-
proximate in CeIn3 „Sn —is reversed at higher tem-
peratures. As can be seen from Fig. 5 of Ref. 10,
when XT/C for 'He is plotted versus the scale vari-
able r marked deviations (of order 3'/0) are observed
at high temperatures when the data for two different
pressures [and hence two different T,r(P) ] are plot-
ted simultaneously.

We stress again, however, that the deviations from
scaling are in both cases quite small. It is truly a re-
markable fact that the susceptibility of liquid He ap-

proaches the classical value at temperatures of order
T,f, which is well below the degeneracy temperature
TF, and that it does so, to within a few precent, only
as a function of a scaled temperature variable. This
is not well understood theoretically for 'He. That
essentially the same behavior is obeyed by the sus-
ceptibility of Celn3 „Sn„strengthens the argument
that these intermetallics behave as Fermi liquids—
surprisingly even the high-temperature scaling
( T ) T,f) may represent a Fermi-liquid property.

IV. CONCLUSION

We have seen that the phenomenological picture of
intermediate-valence materials as nearly magnetic
Fermi liquids goes a long way towards describing
their low-temperature susceptibility. Future experi-
ments in other systems are warranted. It would be
extremely interesting, for example, to see whether
the susceptibility of CeA13 obeys a T' law below the
maximum which occurs in that system around 600
mK (Ref. 5); this is particularly attractive in that
many other properties of the system' indicate that it
behaves as a Fermi liquid with an unusually large
enhancement.

In future extensions of the theory we intend to ex-
amine the effect on the specific heat and resistivity of
arbitrary band shape. A more detailed treatment of
nearly antiferromagnetic materials is also warranted,
It is clear that the central issue vis-a-vis the Fermi-
liquid behavior is to show how it emerges from the
underlying mixed-valence Hamiltonian. Only then
will it be possible to calculate the actual band shapes
which enter the phenomenology.
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APPENDIX

A. Calculation of Eq. (27)

We want to calculate

(A1)

2 ImX (q, ~)
(2w)' e ~r 1[1—/ReX (q, ru)]'+[1—1 &(mq. ~)]
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which can be expanded in powers of T

J(T) =J(T ~0) + T K(T ~0) (A3)

where qp is a momentum cutoff of order kq. When
q 0 and I 1 the integral of the numerator is
clearly nondivergent; the denominator gives

For a nearly ferromagnetic Fermi liquid, X (q, cu)

has an absolute maximum for ~=0, q =0; therefore
for small q and cu it may be written quite generally,
preserving the homogeneity of the formula and the
symmetry of the Hilbert transforms, as

r I

X'(q, ~) =W(E, ) 1-~q, -S " +tp "
&Fq &Fq

f00
q dq ln 1 —I 1 - o.—q

0 kp-

which has the form

2
ep fa

x dx ln 1 —I+ x
0 kF

(A7)

(A8)

(A4)

The constants a, P, and 5 depend on the band shape.
Strictly speaking they are tensors, but we assume that
they are positive scalars; this simplifies the calcula-
tion without affecting the main result, viz. , the form
of Eq. (27).

The divergences in powers of i/q in Eq. (A4) fol-
low from the nearly ferromagnetic character for
which long wavelengths dominate (infrared diver-
gences) in contrast with the nearly antiferromagnetic
case where the coefficients of cu and ~2 do not
diverge. ' However, the interesting region is that for
which ru/uFq ( l; i.e., au goes to zero faster than q.

We first sketch the calculation of J( T 0) in or-
der to show that SXn( T =0) is not a divergent quantity
when I 1, so that it can be absorbed into a redefin-
ition of I as explained at the end of Sec. II A:

f~0 gr&q
OJ deJ(T 0) cx q dq

(1 —I Rex')'+ (IP~/urq)'

(As)

which remains finite when I 1.
The calculation of K amounts to expanding the

denominator of Eq. (A2) in powers of ~

where

3' = () —I +/aq'/kF')' (A10)

so that

K(T 0)
o dq KdK 1

~rq o e"-1 3
(A11)

where we have made the change of variables K = ~/T
Hence

q dq

(l —I+laq /kF)
(A12)

Therefore the most important part of K is

(l —I ReX ) +(IImX ) =3 +B ~ /urq, (A9)

~0, (1 —I ReX')'+(I p)'f q dqln
0 (1 —I ReX )'

K a 1/(1 —I )

so that

(A13)

gX„(r) J(r) r'/(i —I } . (A14)
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