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Temperature dependence of the librational tunneling and proton relaxation
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A coupling between the librations of the methyl groups or proton tetrahedra (e.g. , CH4 and

NH4) in a solid is shown to explain the experimentally observed decrease of the librational tun-

neling splitting without significant lifetime broadening when the temperature is raised at low

temperatures. Due to the same coupling, the libration amplitude of a given group is influenced

by neighboring groups. The amplitude can momentarily increase so much that the group under-

goes random jumps to other equilibrium orientations even at liquid-helium temperatures. This
model agrees with the nearly temperature-independent spin-lattice relaxation time T~ of protons

in some samples for T & 4 K and with the temperature-dependent T~ described by the activa-

tion energy equal to the separation between the ground and first-excited-librational levels at
somewhat higher temperatures.

I. INTRODUCTION

Nearly all the theories associated with the tunnel-
ing splitting of the librational levels of methyl groups
or proton tetrahedra (for example CH4, NH4+, SiH4,
etc.) in a solid employ the assumption of an isolated
group, which feels the effect of its environment
through a hindering potential. Such considerations
generally lead to a good description of the experimen-
tal data for static properties like the magnitude of the
tunneling splitting at T =0 K (Refs. 1—3) and of the
second moment M2 of the proton-resonance absorp-
tion curve.

On the other hand, the temperature-dependent
properties are not so well understood. Although
there are many experiments ' supporting the some-
what loosely derived expression for the tunneling fre-
quency v(T) of a methyl group at temperature T, '4 '6

$v„exp[ —eo„/(kT) ]

v(T) =
/exp[ —eo„/(kT) ]

a firm theoretical explanation is still lacking. Here v„
is the tunneling frequency of the methyl group for
the nth excited librational state, and ep„ is the differ-
ence between the nth excited and the ground libra-
tional level. The problem is that, although v(T) de-
creases significantly when the temperature is raised,
distribution of the tunneling frequency does not show
any lifetime broadening until relatively high tempera-
tures are attained. "' ' ' Related to this problem
are the motion responsible for the proton spin-lattice
relaxation and its temperature dependence, which are
not as yet completely understood despite many
theoretical efforts. ' '8 In some samples containing
methyl groups, the proton relaxation time T~ seems
to be determined by an activation energy equal to ~p~

at low temperatures, "while in some other com-
pounds the activation energy near T = 10 K is defin-
itely smaller than 6p&. A still larger deviation from
6p~ is observed in some samples containing proton
tetrahedra, for example solid CH4, ""
(NHq)2pbC16, "and ND4Cl04. " In these compounds
the apparent activation energy decreases with tem-
perature until an almost temperature-independent T]
is observed at liquid-helium temperatures.

A coupling between the librations of the neighbor-
ing proton groups is felt to provide the answer to the
problems mentioned above. Although the coupling
may not be large in comparison with the librational
potential, its effect can nevertheless be important,
because the libration frequencies of the single groups
are equal in the absence of the coupling. There ex-
ists some experimental evidence of such an interac-
tion between methyl-group librations in gaseous
methyl ethers. 2' The coupling extends over all the
groups, and the librational state of the sample is
described by so-called normal modes. The amplitude
of a normal mode is a linear combination of the libra-
tional amplitudes of the single groups. Therefore, an
excited state of a normal mode is practically a linear
combination of the ground and excited states of the
single groups. The product of such combinations
forms the librational wave function of the sample.
The population of the excited states and, hence, the
product function depend on temperature and there-
fore the result (1.1) is obtained (Sec. II).

There are 3N librational normal modes in general
(only Win the case of one-dimensional libration),
where N equals the number of librating groups. Con-
sequently, the libration amplitude Q; of the group i is
a time-varying combination of 3N normal modes. If
these modes happen to be at such phases that they
tend to increase @;, the group i may be able to jump
to another equilibrium orientation or reorient. Since
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such reorientations do not necessarily involve any en-
ergy absorption, but rather require a momentary ac-
cumulation of the librational energy to a given point
in the sample, they are believed to occur even at
T =0 K. Their frequency is expected to increase
with temperature in proportion to the mean libration-
al amplitude. This model explains the behavior of
the proton Tt at low temperatures (Sec. III).

The relation between the reorientations and the
broadening of the tunneling levels is discussed in Sec.
IV. In addition some examples are given about the
effect of the coupling strength on nuclear relaxation.

+—k'g) +ki2$) Q2
2

(2.2)

The corresponding eigenvalue equation X~2/ =EP
separates to two uncoupled equations by the substitu-
tion

coupling is believed to have an important effect. In
the case of only two coupled CH3 groups, the libra-
tional Hamiltonian in the harmonic approximation is

jj2+ —Af ——
2I t)y' 2 21 ti@'

II. TEMPERATURE DEPENDENCE OF THE
TUNNELING FREQUENCY

A. Librational wave function

Qi 1 1

Qt 1 —1

The librational frequencies are

v) 2= [(k'+ k)2)/1]' '
2'

(2.3)

(2.4)

+ v(@,),g2 g2

2I l)$2
(2.1)

where I is the moment of inertia of the methyl
group, and V($~) is the librational potential, which is
the same for all the groups. If there were no cou-
pling, one would obtain the same librational energy
levels and frequencies for every group. But just be-
cause of the equality of the frequencies, even a small

For simplicity a sample containing equivalent
methyl groups is considered. The CH3 groups are as-
sumed rigid, and the libration is restricted to take
place in a fixed plane. Therefore, only one quantity,
the librational amplitude P&, is needed to describe the
motional state of the group i. The librational Hamil-
tonian for a single uncoupled group is

which-do not differ much from the uncoupled fre-
quency (I/2m) (k'/I)' 2 when kt2 is small.

In the case of N coupled librating CH3 groups, the
normal modes Q& (j=1,2, ...,N) are linear combina-
tions of all the single-group. amplitudes @~. In the
harmonic approximation the wave function for the
normal mode Q,. is

H (gj) exp[ —(k)I)' QJ'/(2l)] (2.5)

Here H . ( Q, ) is a Hermite polynomial of the order
J

mj corresponding to the mjth. excited state, and kj is
close to k', actually the nearer kj is to k', the smaller
the coupling between the CH3 librations. The total li-
brational wave function is

F~=F(lt 1; 1~', m~ m& m~) =gH (Q~)exp[ —(kqI)' 'Q,'/(2t)]
J

gH (g&) exp[ —(k'I)'2(df+$)+ +@2)/(2t)], (2.6)
j

where the approximate equality holds for the cou-
pling coefficients k& which are small in comparison
with k'. The indices of j indicate that all the methyl
groups librate about their equilibrium orientation la-
beled I and that the mode gz is at the m, th excited
state.

8. Temperature dependence of s ( f)

To calculate the tunneling frequency of the methyl
group i one has to construct a function similar to Eq.
(2.6), except that the group i is librating about its
equilibrium orientation 2, which is obtained from the
orientation 1 by a 3 (2n ) rotation. This function is

denoted by

F2=F(lt 2; Igm) m) mg)

The third function representing the situation where
the group i is librating about the equilibrium orienta-
tion 3, obtained from the orientation 1 by a —, (4rr)
rotation, is denoted by

F3=F(lt 3; lq', mt .
m& mq)

In the following the equilibrium orientations of the
other methyl groups and the states of the normal
modes are assumed constant. Assuming this, it is
then possible to construct librational functions Q,
specified by the point-group symmetry C3 of the
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where s refers to the irreducible representation A, E',
or E of the point group C3, A., =1 for the identical
representation A, A., =~=e'2" for E', A., =e' for Eb,
and

r8= IF(F2d ) d N

equals the overlap integral. Because the protons have
the spin 2, they must obey the Pauli exclusion prin-

ciple. Thus the spin-librational wave functions must
remain unaltered in the even permutations of the
methyl protons, which means that the spin functions
of the CH3 group i associated with A, E'- and Eb-

species librational functions must transform as the A,
Eb- and E'-species functions, respectively. Because
these spin functions are orthogonal, the tunneling
frequency v( T) of the group i is obtained from the
expression

»( T) = &P,.IXibl 4,.) —
&A~ I Xib I t~) ~

where 3C];b is the total librational Hamiltonian con-
taining the coupling terms. The second matrix ele-
ment in Eq. (2.8) is

(i[ig IXiblirig& = [3(1+2R)1 '(3(FilXi'blFi&

+6 &FilXlibl F2) )

=(1+2R) '(e„b+2(F, IX,;blF2))

(2.9)

where e];b equals the librational energy of the sample
for a vanishing overlap and with no tunneling. The
overlap matrix element of 3C];b is evaluated by resort-
ing to the approximation of the uncoupled librations
or Xi;b = Q, Xi [cf. Eq. (2.1)],which should not be so
greatly in error since kJ && k. Then

(F,IX„,IF,) = (F, IX, + +X, , +X, ,

+ . +X~IF2) + (FilX;IF2)

(&lib —~;)R + &Fi IXil F2) (2.10)

because F~ and F2 differ only in their dependence on
Replacing (FiIXi;blF2) in Eq. (2.9) by Eq.

(2.10), one obtains

( I I )
(Filx(I F2) —~;R

iIIA lib ii A +lib+
I +2R (2.11)

A similar calculation for the first matrix element of
Eq. (2.8) produces

methyl group i

ilia= (3[1 +(li., +li.,")R]] '~ (Fi+)i.,F2+)i.,'F3)

(2.7)

By ignoring the R-dependent terms in Eq. (2.11) as
nearly vanishing, the tunneling frequency becomes

hi (T) =—3(FilX(i) IF2) (2.13)

In principle one should determine the linear combi-
nations of it s for each normal mode Q, and calcu-
late the overlap matrix element (2.13). This is nearly
an impossible problem, but one can get a fairly good
idea concerning the magnitude of the matrix element
by resorting to approximations. The Hermite polyno-

m. m.-2 m, -4
rnial H, (Q, ) contains powers Q,. ~, Q, ', Q, '

mJ

etc. , but, in the following, H(Q, ) is, replaced bymJ

Q, '. In addition, Q~ is assumed to be a symmetric
linear combination

Qj= (4»+42+ +alii)
1

(2.14)

For a moment let the mode Q,. assume the first excit-
ed state corresponding to Q, exp [(k,I) '~'QJ'/(2t) 1

and all the other modes be in the ground state. Then
the probability of finding the methyl group i in the
ground state equals Po = (N —1)/N and the probabili-
ty of finding it in the first excited state equals
Pi =1/N. Here the probability means the fraction of
time that the group i stays in a given state when the
librational phonon of the normal mode QJ travels
coherently through the crystal. If the mode Q, is in
the mJth excited state, the various probabilities are
obtained from the expansion

m —2
N —1 ' I @2+

N
i

+ mJ

2

r

/PA'=
N

+ N4
l

m)+m2+ ' ' ' +m~

(2.16)

because the methyl group i can be at an excited state
in any normal mode.

The next problem is to calculate the quantum
numbers mJ. According to Bose-Einstein statistics,
mJ or the number of phonons of a harmonic oscilla-
tor librating at the frequency i = cot/Ii, at thermal
equilibrium, equals

(2.15)
For example the multiplier of @;~ equals the probabili-
ty of finding the group i in the second excited state,
in agreement with the approximate representation of
H (Q, ) by Q, '. If the other normal modes besides

J
Q, are also in excited states, the probabilities of find-
ing the group i in various librational states are ob-
tained from

&FiIX;IF2& —.,R
(q,.lXbbl y,.&

= ~i;b— (2.12)
rri, = (exp [ cot/( kT) ] —I I

' = r (2.17)

Because all the normal-mode frequencies are nearly
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equal when kp « k, then m~+m2+ +m~=¹. Therefore Eq. (2.16) becomes

Nr Nr

1+ 1
' Nr

t

Nr
~ + Nr ( Nr 1)

@
—
2+,'I + „~ + t „2~2 + (2.18)

The effective tunneling frequency is then

v( T) = QP)v(= e "(vp+ rvj+
2

r v2+ ) . (2.19)1

I

At low temperatures r = exp[ —apt/(kT) ] (& 1, and
Eq. (2.19) becomes'

v( T) = vp {1—exp[ —Ep&/(kT) ] }

+vt exp[ —ep~/(kT) ] + O(r2) . (2.20)

This agrees with the zero- and first-order terms of
Eq. (1.1), although the higher-order terms are dif-
ferent. Actually Eq. (2.19) approaches the value
v( T) =0 more quickly than Eq. (1.1) with increasing
temperature.

The above derivation suffers from weak assump-
tions concerning Q, 's and the Hermite polynomials,
and Eq. (2.19) cannot therefore be claimed to be ex-
act. The fact that its leading terms are the same as in
the experiment-supported Eq. (1.1) proves neverthe-
less that the model of coupled librations of the
methyl groups can explain the temperature depen-
dence of the tunneling frequency. A good point of
the present model is its simple description of the li-

brational state of a single CH3 group as a linear com-
bination of the ground and excited states without
resorting to rapid jumps between librational states.
Actually the above theory interprets the fluctuating
lattice potential' in terms of the coupling between
the CH3 librations.

($,2) = a + b {exp[ep~/(kT)] —1} ' (3.1)

Here a represents the zero-point amplitude and
b = 2a if the energy is proportional to' (Q,2), as it is in
classical mechanics. It is not clear to which power of
(P; ) the rate is proportional, but for simplicity it is
assumed to be I/r = ($2). Besides, one has to take
into account that a methy1 group in an excited libra-
tional state is more likely to reorient than a group in
the ground state. Therefore, (QI2) has to be multi-
plied by a factor

g c„exp[—ep„/(kT) ]

Xexp [—ep„/( kT) ]
(3.2)

r

the principle that the zero-point motion cannot give
energy away. The reorientation requires only an ac-
cumulation of the librational energy to one methyl
group, which, after jumping, continues librating at
the same modes with the same energies. If the tem-
perature somewhat deviates from T =0 K, energy
changes may occur between the modes, but they in-
volve low-energy (~kT) lattice vibrations so as to
conserve the total energy.

The relaxation rate depends on how frequent
reorientations are. It would seem natural to claim
that the reorientation rate 1/7 is proportional to the
libration amplitude of the CH3 groups. Because of
the coupling, the libration amplitude of a single group
increases continuously with temperature and is as-
sumed to obey the Bose-Einstein statistics

III. TEMPERATURE DEPENDENCE OF Tg

The libration amplitude Q~ of the methyl group i is
a time- and site-dependent linear combination of the
normal-mode amplitudes Q, . If Q, 's are sufficiently
large and have proper phases, then $; may grow so
large that the CH3 group jumps to another equilibri-
um orientation. The critical librational energy, which
is proportional to the critical amplitude, is not many
times larger than the zero-point energy of a CH3 li-

bration, since the zero-point energy is often a sub-
stantial fraction of the potential barrier hindering the
librational motion. Therefore, such reorientations
are believed to occur even at T =0 K, at least in
some compounds with a small hindering barrier and a
large coupling between the CH3 librations. A
coupling-induced jump is not in contradiction with

c„=—exp[ (Eb &p~
—)'/ w' l (3.3)

where eb is the energy difference between the top of
the barrier and the ground state, E is a constant, and
w represents the width of the distribution of the CH3
librational energy, which should bc proportional to
the width of @;2—(@2). The width w probably in-

creases with the strength of the coupling. If
w (( (6p 6p&), then cp « c~ && c2 . . The

where exp[ —ep„/(kT) ] equals the fraction of time
that the CH3 group stays in the n th librational state.
The factor c„ increases with n, and it takes into ac-
count that reorientations from a higher initial libra-
tional level require less energy and arc more frequent
for larger couplings. For descriptive purposes it
might be approximated by a Guassian function
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reorientation rate now becomes

1 + b

exp[cot/(kT) ]

, Xc„exp [—eo„/( kT) ]
n

V exp[ ep„—/(kT) ]

5.10

For exp[ —col/(kT)] « 1, one obtains 0-10

1= —~oi—= cpQ 1 +—exp
co (kT)

5 10

-~OI=u+P exp-(„) (3.5)

10

with P/o;= cl/co » 1. Below the temperature of the
TI minimum corresponding to cop7 =1, where ~o is

the angular Larmor frequency, TI is generally be-
lieved to vary proportionally to ~, provided that zoo

and the tunneling frequency co( T) are far away from
the level-crossing conditions cu( T) = coo or
co( T) = 2coo. Therefore

Tt ——[n+P exp[ —epl/(kT) ]] ' (3.6)

If there exists a temperature range with

P exp[ cot/(kT) ] » n, then TI = exp[col/(kT) ]/P
and

ln Tt = cot/kT +const . (3.7)

—= [0.22+1870exp( —100/T) ]10'o s ' . (3.8)

It corresponds to cot/k =100 K, which is near the
prediction cot/k = 70 K stated by Kataoka et al. 26

This agrees well with recent experimental data for
some methylpyridines, sho~ing that the activation
energy equals eoq within a certain temperature range
belo~ the temperature of the T~ minimum. ' When
the temperature is lowered further, the present model
predicts u » P exp( eo~/k—T), and TI should be-
come independent of temperature. The results for
methylpyridines do not extend to sufficiently low
temperatures for verification of this prediction, but
the apparent activation energy shows some tendency
to decrease with temperature. Additional evidence
about T] becoming nearly constant is provided by ex-
periments on proton tetrahedra. The activation ener-

gy describing the proton TI in (NH4)2PbC16 decreases
steadily from the high-temperature value 5.9 kJ/mol
to 0.06 kJ/mol between 5 and 10 K, and there is no
reason to believe that the latter va1ue should be the
lower limit. The deuteron TI in ND4C104 is nearly
constant below 4 K.24 And the proton T] in solid
CH4 is known to become constant belo~ 4 K except
for a small variation due to the spin-isomer conver-

Actually the v data for T ( 15 K by Nij-
man and Trappeniers" can be represented quite accu-
rately by the expression (Fig. 1)

-12510

I I I I I I I I I l I I I I

10 15 20
T (l~]

FIG. 1. Temperature dependence of the correlation time
of the CH4 reorientations in solid methane. The solid curve
represents Eq. {3.8) and the experimental points are from
Ref. 22.

Probably a part of the discrepancy arises from the
weakening of the hindering potential for CH4 reorien-
tations between 10 and 20 K.

The expression (3.5) is expected to be valid as far
as the librations are nearly harmonic, which is prob-
ably true for T & col/k. At temperatures T & col/k
the effect of the higher excited librational states with
n ~2 in Eqs. (3.3) and (3.4) becomes dominant, and
the activation energy increases towards the height of
the rotation barrier. An alternative explanation
would be that the internal and lattice vibrations mask
the coupling between the CH3 librations more effec-
tively at higher temperatures, so that finally a CH3
group becomes an uncoupled hindered rotator with
the activation energy comparable to the height of the
potential barrier. Although the transition between
the two regions is determined by ~OI and not by ~, it
often seems to occur near the minimum of TI, corre-
sponding to ~o7 =1.

IV. DISCUSSION

The models presented above depend in two dif-
ferent ways on the coupling between the librations of
the methyl groups. First, the coupling causes a mix-
ing of the librational states of a methyl group, and
consequently the tunneling frequency of this group is
a weighted average of the tunneling frequencies of
the ground and excited librational states. The model
introduces no broadening of the tunneling distribu-
tion in so far as the frequency of the reorientations
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remains low in comparison with the tunneling fre-
quency. Such a constant width has been noted, for
example, in (NH4)2pbC16, NH4C104, ' " and
(NH4) 2SnC16."

Second, the coupling between the CH3 librations
leads to a momentary local accumulation of the libra-
tion energy an'd to a consequent reorientation. The
reorientations induce relaxation transitions and
broaden the tunneling levels. The broadening of the
T-species levels of the NH4 ions becomes observable
by NMR about 10 to 20 K below the temperature of
the T» minimum with mo~ =1. It is important to
note that the beginning of the broadening corre-
sponds roughly to (Ice,') r' =1, where b, co, is the
low-temperature width of the tunneling levels. This
result can also be obtained from the proton-
relaxation theory, based on the assumption of a com-
mon spin temperature, predicting that

2 js
~sk

& 2 2 f(Qis) dCdsTt, TEk 2" ~—I +(cu, —keep) rs
(4.1)

where f (ip, ) is the distribution of the tunneling fre-

quency co, = (e, —eq)/f. The correlation times r, are
represented here by the common symbol 7. As far as

(ro, —keep)'7' » 1 for most of the tunneling groups,
the shape of the T» minimum, observed as a function
of the resonance frequency, should stay constant.
But when a substantial fraction of the groups obeys
(~, —keep)2r2 ~ 1, one should observe changes in

the shape of the minimum. This condition corre-
sponds to the equation (A~,') r' = 1 mentioned above.

Although the model of Sec. III predicts an activa-

tion energy ~0» for a certain temperature range in

agreement with a recent derivation, "the two models
are different in principle. The accumulation of the li-

bration energy to one methyl group or proton
tetrahedron and the consequent coupling-induced

jump to another equilibrium orientation do not re-

quire transitions between librational states of the
same symmetry. Such a jump does not necessarily
involve any change in librational energy either, be-

cause all the modes can retain their original states
after the jump. The nuclear spin-lattice relaxation al-

ways means an energy transfer from the spin system
to the lattice. Therefore, because the lattice modes
can absorb energy even at T =0 K, a low tempera-
ture does not reduce the effectiveness of the
coupling-induced reorientations in the relaxation.

One should also realize that the motion just
described is probably not the main reason for a life-

time broadening of the librational levels. Thus the

jump rate at low temperatures is not related to the

width of the first librational level, nor need such a re-
lation be valid at higher temperatures, sin'ce a change
of the librational energy is not automatically followed
by a reorientation. The transitions between different
librational states may have some effect on v at higher
temperatures, but not necessarily a dominant effect. '

Such transitions broaden the librational levels, but
their effect on tunneling levels is nearly vanishing.
This can be seen by repeating the calculation of v( T)
for a librational state defined by the normal mode
quantum numbers m», m2, ,m,'= m, +1, ,m~
[cf. Eq. (2.16)]. In the present model it is only the
jumps over the barrier which determine v, and such
jumps require a coupling between the CH3 librations
at low temperatures.

The experimental results for samples containing
methyl. groups do not always show temperature
ranges of a decreasing tunneling frequency with a
constant distribution width and of a temperature-
independent T»." This fact may arise from the rath-
er large distance between the neighboring methyl
groups, which 'makes the coupling weak. The width
of the distribution of the CH3 librational energy or ~
should decrease with the coupling, and thus the ratio
ct/cp is large, according to Eq. (3.3). Therefore n in

Eq. (3.5) is believed to be many orders of magnitude
smaller than P, and a very low temperature in com-
parison with ep /ktis required before the region
1/r = o. is reached. However, in samples containing
NH4+ ions and in solid methane, the distance between
the neighboring proton tetrahedra is small and conse-
quently the libration coupling large. Hence o. is quite
large, and the plateau in T» can already be observed
at temperatures of some kelvin. On the other hand a
high potential barrier makes the energy eb large, and
the factors c„small in Eq. (3.3), and therefore the
spin-lattice relaxation due to libration coupling may
be very slow indeed. The proton relaxation in NH4C1
is believed to be an example of such a case.

The present models for the temperature depen-
dence of the tunneling frequency and the proton re-
laxation time T» are based on a many-body con-
sideration and therefore can not yet be solved quan-
tum mechanically in detail. The semiquantitative and
qualitive considerations presented here explain many
experimentally observed results and open a totally
new way of approaching the low-temperature data of
librational tunneling and nuclear relaxation.
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