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Spin waves in itinerant-electron spin-density-wave states

R. Kishore
Cotrselho Nacional de Desenvolvinrento Cienti f'tt o e Tec rrolo'gizmo, Instituto de Pesquisas Espaeiais,

(2.200-Sao Jose'dos Carnpos, SP, Brasil

(Received 13 November 1979)

The transverse dynamical susceptibility and the spin-wave stiffness constant of spin-density-

wave (SDW) states in itinerant-electron systems are studied. The Hamiltonian is transformed

by using a transformation which rotates the spin coordinate system locally, so that the new .
direction lies in the direction of the local spin. For this transformed Hamiltonian, a self-

consistent many-body theory developed by Fedro and Wilson and extended by Kishore is ex-
ploited to derive an exact expression for the transverse dynamical susceptibility. From the

long-wavelength limit of the spin-wave spectrum, given by the poles of the transverse dynami-

cal susceptibility, an exact formula for the spin-wave stiffness constant is obtained. Within the

Hartree-Fock approximation, it reduces to the Fisher's formula for antiferromagnets.

I. INTRODUCTION

In 1960, Overhauser' showed the possibility for the
existence of spin-density-wave (SDW) states in

electron-gas model within the Hartree-Fock approxi-
mation. And later on Penn, ' Alexander and
Horwitz, ' and Morris and Cornwell showed their ex-
istence in narrow band solids, using the Hubbard
model within the Hartree-Fock approximation. Ex-
perimentally, SDW states have been found in transi-
tion and rare-earth metals. ' In spite of the experi-
mental and theoretical indications for the existence of
SDW states, very little is known about their collec-
tive excitations, namely, spin ~aves. In ferromag-
nets, "it is now well established that in the long-
wavelength limit, the spin-wave spectrum is given as
ao —Dfq', where co is the energy of the spin wave, q
is the magnitude of the spin-wave wave vector, and

Df is the spin-wave stiffness constant. Edwards and
Fisher, ' Corrias and Pasquale, ' and Kishore, '

by us-

ing different approaches, obtained exact microscopic
formulas for Df, from the exact expressions for the
transverse dynamical susceptibility. In antiferromag-
nets Fisher, "

by using an approach similar to that of
Edwards and Fisher for ferromagnets, obtained an
exact formula for the stiffness constant D„given by
the spin-wave spectrum ao —D, q. The disadvantage
of this approach, as pointed out by Fisher" himself,
is that one cannot work out an exact expression for
the transverse dynamical susceptibility. In this paper,
we show that, by using an approach similar to that of
Kishore' for ferromagnets, it is possible to obtain
exact expressions for the transverse dynamical sus-
ceptibility, as well as the spin-wave stiffness constant
for SDW states of which antiferromagnetic state is a
special case.

We describe our itinerant-electron system by the

Hamiltonian

H= QTJa; aj +H, , (1)
ija

where T„" is the transfer integral between the lattice
site R; and R&, a; (a; ) are the creation (annihila-
tion) operators of the electrons at the site R; and spin
cr, and H, , is the Coulomb interaction between the
electrons. In absence of spin-orbit interaction, which
we assume, it is invariant to local spin rotations. For
our formal calculation, we do not need the explicit
form of H, , But for actual calculation, one has to
choose a particular form for it.

The coordinate transformation corresponding to lo-
cal spin rotation, can be considered as follows. Let
8;, $; be the polar and azimuthal angles of the direc-
tion of local spin at the site R; in the laboratory
spherical coordinate system, then under a transfor-
rnation, which rotates the spin-coordinate system lo-
cally so that the new z direction lies in the direction
of the local spin, the annihilation operator a; in the
laboratory frame is transformed into the correspond-
ing annihilation operator b;, in the locally
transformed frame according to

-i of./2 ~
-i erg. /2

a; =e ' cos(
2 8;)b; —ere ' sin(

2 8;)b;

(2)

For SDW states qh; is independent of the site index i

and 8; =Q R;, where Q is the wave vector of the
SDW state. Ferromagnetic and antiferromagnetic
states correspond to Q =0 and Q =K (half of the
minimum reciprocal-lattice vector), respectively.

The new operators, b;, satisfy the same commuta-
tion relations as a;

[b;,b ]+=SJS
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and the Hamiltonian (1), in terms of these new

operators, takes the form
for X,~ (t) with respect to time t gives the equation
of motion

H = XTtt+bt~~bt~+i Xa Ttt b;~b& ~+H,', , (4)
if' (Ja

where

i —X—,& (t) =2a. (S )5; 5,5(t)

+iO(t) ([S, , LS, (t)] ), (11)

with

+ 1 + ik. (R,.-K.)
T, = QT=eJ 2~ k

k

(5)
where, for any arbitrary operator 0, the Liouville
operator L is defined as

+T= = —(T- ——Q+ T- ——Q)k 2 k 2
— k

Here, N is the total number of lattice sites and H,',
is of the same form as H,

' „except that operator a' s
are replaced by the operator b's.

In Sec. II, starting from the Kubo formula, "we
derive an exact expression for the transverse dynami-
cal susceptibility by using an approach similar to that
of Kishore' for ferromagnets. Finally, in Sec. III,
from the long-wavelength limit of the spin-wave
spectrum, given by the poles of the transverse
dynamical susceptibility, an exact formula for the
spin-wave stiffness constant is derived. By express-
ing this formula in terms of two single-particle self-
energies, it is found that Fisher's expression" for an
antiferromagnet is just a special case of our general
result.

LQ =—[H.Q]

and it is assumed that

—, Xa(b'-b-) = ($') —= ($')

SJ (t) = PSJ (t) + (1 —P)SJ (t)

where the projection operator P is chosen as

(i4)

(is)

with

Pt~Q = trSt ([StQ] )/,2 (S ) (16)

is independent of the lattice index i. The Green's
function, on the right-hand side of Eq. (11), is calcu-

1

lated by breaking the operator S& (t) into two parts

II. TRANSVERSE DYNAMICAL SUSCEPTIMLITY

The calculation of the transverse dynamical suscep-
tibility starts from the Kubo formula" for the gen-
eralized dynamical susceptibility.

On substituting the identity (14) in Eq. (11) we get

I

l Xt (t) =2a (S ) S„stra'5(&) + X f);, 'Xtt' (t)
Icr)

+iO(t)([S, ,L(1 P)S, (t)]—)

X (q, cu) = g'tt, g' XX„-—(at)e
' ' ', (7)

il
where

(17)

I

where Xt (at) is the Fourier transform

I OO I

Xt (~) = dt Xt (()e '"' (g)

I

and X,& (t) is the double time-retarded Green's func-
tion

(18)

From the solution of the equation of motion of the
operator (1 —P)8(t)St (t), it can be shown
that' '

with

x,i (t) =i O(t) ([S;,S, (t)]

S; —= S,"+i a-S; —b. b-

(9) (1 —P)8(t)St (t) = X dre"' ' (1 —P)L
0

t

1 I(7]SI ET) (F

2 (Sz)
S; (t) is the Heisenberg operator, S; =S; (t -0),
and the angular brackets ( ) denote the ensemble
average. For tr'- tr, Eq. (7) corresponds to the
transverse dynamical susceptibility.

Now, we use a self-consistent many-body theory
developed by Fedro and Wilson' for single-particle
Green's function and extended by Kishore' for
many-particle Green's function. A brief description
of this theory is as follows. Differentation of Eq. (9)

(i9)
which, after substituting in Eq. (1'7), gives a closed

I
equation for the Green's function X~ (t)

I
I

i X&~~ (t) =—2c—r($ )gtgao'g(t)+ XOtt 'Xtt' (t)
St IcrCT)

OO I

+ X dr y~ '(r)X„' (t —r), (20)
I
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where

yt t(r)- ;~ e(,)([S.~ Let«t etL-(I —P)LS t] )

2(S )
(2i)

where yt '{cu) is the Fourier transform of yt '(t),
and is defined according to Eq. (8). Equation (22)
can be solved by taking its Fourier transform in
momentum space, defined as

In terms of Fourier transform, Eq. (20) can be rewritten
I

cuXe (cu) =2cr(S }&,J&crct'+ X f}g 'X(q' (cu)
I sr )
I

+Xyg '(cu)xo' (cu), (22)
I rr]

1 t q (R.-R.)
Fe (cu) =—XF (q, cu)e

N
(23)

I I I

where F& (eo) stands for y;, (cu), or 0;, . The
substitution of Eq. (23) in Eq. (22) gives us

[cu —II (q) —y (q, cu}]X ( q, cu) = 2crN—g'tct2t(Sz}gcrcr + [II (q) +y (q, cu)]X (q, cu) . (24)

The solution of Eq. (24) gives an exact expression for the transverse dynamical susceptibility as

crg'tcg'N—(Sz) [cu —A (q, cu) ]
X (q, a)) =

[cu —A (q, cu)][cu —A (q, cu)] —rl (q, cu)A {q,cu)

where

{q a)) =0 (q }+y (q a))

and from Eqs. (8), (18), (21), and (23)
I

II (q) - ([S-,LoS:, ]
2N (Sz)

and
~ I

(q, cu} = ~tdt e '"'O(t) ([LoS ,e" ' -(I —P)LoS: ]
2N (Sz) J 0 q~ 0 q

(2s)

(26)

(27)

(28)

Here,
I

susceptibility (25), is given by the quadratic equation

S-= Xe 'S; = Xb „+ bt, -~-
I k

and the operator Lp is defined as

LoQ —= [Ho Q]-

with

(29)

(3o)

o)' —P(q, o))ao —T(q, (u) =0

where

P(q, cu) = XA (q, cu)

and

(33)

(34)

Hp=H —H,', (31)

In deriving Eqs. (27) and (28}, we have used the fact
that [H,' „S; ] =0 because of its invariance under
local spin rotations and for any arbitrary operators X
and Y

T(q, cu) =A (q, cu)A (q, cu)

—w-(q, ~)w- — (q, ~)

From Eqs. (27) and (28}, it can be shown that at
q=0

(3s)

([LX, Y] ) = —([X,LY] ) (32)
and

p(o, )=T(o, )=o (36)

which follows from the cycle invariance property of
the trace implied in the ensemble average.

III. SPIN-WAVE STIFFNESS CONSTANT

The spin-wave stiffness constant is obtained from
the long-wavelength limit of the spin-wave spectrum
which, from the poles of the transverse dynamical

A (0, co) =A (0, cu) = —A (0, cu) (37)

and therefore, in the long-wavelength limit, Taylor's
expansion of P {q, cu) and T(q, co} gives the spin-wave
spectrum as

(38)

where q is the magnitude of the spin-wave wave vec-
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tor q and the spin-wave stiffness constant D~ is

D& = lim [ (I/q') T( q, Lo) ] ' '
q~Q,
Cat ~0

which, from Eqs. (35)—(37), is given as

D& = —lim —, X(rdl (q, Oo) lim —X aA (q, Lo)
1

q 0, p~Q q
~~p ~Q O'ET

It can be rewritten in a form similar to that of Fisher" [see Eq. (40) of his paper] for antiferromagnets as

D„=(2ad)' j2N(S )

where from Eqs. (26)—(28) and (32)

(40)

(41)

e

= llm —, $( [L 3-;,34:„ I )+ —,
' f de e '"'O(l) $ (I LeS ;"" ' l l —-,P) L S:„I)'

Q'

Cat ~0
(42)

and

d=l'm, . L, X s , . X s —, -+ fde '"'o(e) Lex s, ,
"" ' (3 —p)Lex s —, )I, . (43)

p-p. 2q' 'I
CT CT

Ctp ~Q

In the long-wavelength limit, the term

LpgaS, —= Hp, gaS-,

is proportional to q and the terms, multiplied by the projection operator P, are proportional to q . Therefore, up
to the order q, the terms multiplied by the projection operator P do not contribute, and Eqs. (42) and (43) be-
come

—, $([L,S „' S:;I )+ —, f de-e '."'O(l) $([L,S ;"L,S:;I l-,
CT CT

Ctl ~0

(44)

and

(45)d=em, ! L X s , X s +l d-l '"'0( )-(eL X s , LX s )"I,--o. 2q
Cal ~0

It should be noted that the second terms on the right-hand sides of Eqs. (44) and (45} are nothing but the
Fourier transform of the Greens' functions

i O(r) g ([LpS O, LpS p
(r) ]—)

and

I 0( t) LQ o.S-,LQ AS —( t)

respectively. Thus, the quantities a and d given by Eqs. (44) and (45), respectively, are the same as that of Fish-
er, " The only difference is that he ~orked in two sublattice model of antiferromagnets, awhile we worked in

terms of operators transformed under a transformation which rotates the spins locally. Also, our results are more
general in the sense that they are applicable to SDW states of which antiferromagnetic state is a special case.

In Eqs. (44) and (45), the first term can be calculated exactly after substituting the commutator

LpS —= [ H p S- ]—= X ( T++- —T-+„)b-„+- b-„—i Lr X ( Tk+-b k +- b-„—T k b-„i- b-„)
k k

(46)
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which one gets directly from Eqs. (4) and (31). But
the second terms, in general, cannot be calculated
without making some kind of approximation. The
difficulty arises because of the presence of the ex-
ponential e" . %'e calculated these terms by dividing
the Liouville operator L into two parts.

X(Tk +~k.)

tano-k =
X rs(T&+X& )

(52)

where

d-„=cos( , —0„)-b „-+i sin( —,0-„)b-„, (51)
1 1

L =Lp+Li (47) and

where L p and L
~ are assumed to correspond to the

Hamiltonians

H, = X(T&+X&.)b-'„.b-„.
h 2' i/21

+ $( T=„+X=„)

+i X rr(T=„+ X=„)b-„b-„
ka

(48) (53)

For the exponential e"L, we use the operator identity

and plle f' irL
~itL e 0+ I

I d e OL eirL
0

(54)

Hi =H-Hp (49)

Hp= XE-„d-„d-„ (so)

respectively. The self-energies X~- are supposed to
arise from the Hamiltonian H,

' „in such a way that
the effect of H~ is a small perturbation to Hp. It is
possible to diagonalize Hp in the form

and substitute Eq. (46) for L0S~ in Eqs. (44) and
(45). Then, after converting the operators b-„'s into
d-„'s from Eq. (51), using the equation

exp(irLp)d d- -=exp[ir (E- —E- )d- d-t
k (cr) k2a2 k )cr) k2a2 k )cr) k 2cr2

(ss)
obtained from Eq. (50), and by performing the time
integrals, Eqs. (44) and (45) become

r

a = X Tski n-„t)1 —T=„sin i)-„& X(T=„+X=„) Xo(d-„d-„
k a' cr

—him ~ — Ch
' ' ( )g lich. hhS-', C L, " LhS: )~q~0 2 oo q' q. —

a'
ctt 0

(56)

and

d =
2 X(q t7-„) T& X (d-„d-„)+ X (q 'c'-)tTk sing-„—

2(q 7-kT&) cos '7-k
(d-„d-„

er

I—lim l dr e ' 'O(r) Lp gaS-, dre pL~e""Lp XaS—
e -0. 2q
cpr ~0

(57)

Equations (56) and (57) are the exact expressions
for the quantities a and d of the spin-wave stiffness
constant D& for itinerant-electron-spin-density-wave
states. They hold good for all one-band itinerant-
electron Hamiltonians provided that electron-electron
interaction part H, , is invariant to the local spin ro-
tations. Usually the Hamiltonian Hp can be con-
sidered a good approximation to the total Hamil-
tonian H, and hence the contributions from the third

I

terms on the right-hand side of Eqs. (56) and (57)
are quite small and can be neglected for all practical
purposes. Thus, a good estimate of spin-wave stiff-
ness constant depends on the reliability of the self-
energies X=„. It is easy to see that within the
Hartree-Fock approximations (X+-k = 1n, X=„=O
for the Hubbard model), the expressions for a and
d are identical to that of Fisher" for antiferromag-
nets.
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