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of the dynamic-scaling hypothesis and the mode-coupling theory

George Reiter
Texas Acf M University, College Station, Texas 77843.

AIttes LaboIatory, U. S. Deparonent of Ettergy, Antes, Iowa 500I I,
and Befool have/I Natiottal Labotatofv, '

Uptorn, /Yew Vouch II@73
(Received 19 October 1979)

The usual spin-wave theory, when applied to the calculation of rotationally invariant averages
in the Heisenberg model, permits exact calculation of static and dynamical correlation functions
in one dimension. The results are also believed to be exact in two dimensions, although this
has not been shown rigorously here. The one-dimensional ferromagnet in the hydrodynamic re-

gime and the two-dimensional ferromagnet at all wave vectors do not satisfy the dynamical scal-

ing hypothesis. There is no characteristic exponent in these cases. The present results contra-
dict the prediction of the mode-coupling theory.

It is shown here that a self-contained spin-wave
theory exists for the Heisenberg model in one and
two dimensions that permits the calculation of the
equilibrium correlation functions and the dynamical
response in a simple way. The method is an exten-
sion of the usual spin-wave theory to the case that
the order pararleter vanishes but there is still well-

developed local order. One may calculate correlation
functions of operators that are combined in rotation-
ally invariant quantities involving spins located within
a distance much less than a coherence length, obtain-
ing the leading term in a temperature expansion, or
expansion in 1/S, exactly. The method reproduces
both the exactly known static correlations and the ex-
act results for the leading term in the temperature
expansion of the generalized spin current damping
rate' for the classical nearest-neighbor Heisenberg
chain, and permits the extension of these results to
two-dimensional systems, more general interactions,
and quantum systems where exact results for static
correlations have not been previously available. We
use it here to calculate the static and dynamic pair
correlations for the classical ferromagnet in two di-

mensions and the dynamical response of the fer-
romagnetic chain, when q &( K. (K is the inverse
coherence length. )

We find that there are severe violations of the
dynamical scaling hypothesis in both cases. ' In the
one-dimensional chain a characteristic frequency that
is hypothesized to vary as (Ka )' actually varies as
(Ka )

~
inKa ~, where ~ is the inverse coherence

length. In two dimensions, the characteristic fre-
quency varies as (lnKa) ', rather than (~a)'. The
situation in two dimensions is particularly interesting
in that the theory makes clear that the decay of the
longest-wavelength spin fluctuations involves modes
distributed uniformly throughout the zone, in con-
trast to the assumption underlying the mode-coupling

theory. ' Indeed, the mode-coupling theory predicts,
incorrectly, that scaling is satisfied for the one-
dimensional Heisenberg model, and gives violations
of scaling in two dimensions that do not agree with

the results for the Heisenberg model. We note that
these are first examples of the mode-coupling theory
giving incorrect dynamical exponents (there really are
no exponents in the two cases mentioned), as op-

posed to incorrect spectral functions.
We shall not comment further on the extension of

the theory to quantum systems, other than to point
out that it can be done in a straightforward manner. '

I. SPIN-%A VE THEORY —STATIC RESPONSE

The spin-wave theory used here is essentially a

classical version of the Holstein-Primakoff theory.
We expand the longitudinal spin vector

S;=(S'- S-S+) '~' = S —-'S-S+/S

where S;—= S,"+iS;.
The method is generally regarded as inapplicable in

one and two dimensions because when one calculates

(S; S;+) one finds that it diverges, as indeed it must,
since (S;) =0, and is not close to S. ' e shall not

use the method to calculate averages such as S;,
which are not rotationally invariant. For a quantity
such as S,', the probability of large scale deviations
from the z axis is large, and the linearization Eq. (1)
impermissible. However, to calculate a rotationally
invariant quantity such as S; S,, we need only the
conditional distribution for S, given S;, and as long
as K~ r; —r, ~

(( i, only small deviations of S, from
the direction given by S; are probable. The lineariza-

tion will be valid, if we choose for S; the direction of
S;. Since the average does not depend upon the

21 5356 O1980 The American Physical Society



21 SPIN-WAVE THEORY OF CRITICAL DYNAMICS IN ONE- AND ~ ~ . 5357

direction of S;, the full average is equal to the conditional average. For the ferromagnet

s, s, =—s'- —,'{s,-s,++s;s,+)+ ,'(s—,s,+-+s;s,'), (2)

@of
or in terms of S, -N ''Xe 'S;

Sp S, =N8, 8, S' ——(8, +8, )X8(qi+qz —qi —qt')S S++ (—Sp S,++S, S,+)

Eq. (3) has only operational significance, since some
of the spins involved in the transform are further
apart than a coherence length. It is to be understood
as having meaning in sums that restrict the distance
between sites to distances such that Eq. (2) is valid.

The Hamiltonian is such a sum. For calculating the
conditional distribution of a group of spins, given
that a particular site in the group is aligned along
some axis we take as the z axis, we can use the ap-
proximation

e sn-exP zPQJ, S, S p

=exp ——,Px(Jp —J,)SpS+, + , PNJpS . —(4)

The approximations (2)—(4) yield

{S'S-p) NS8p 8X2kT(Jp —J )
e

It is {(8S;S&)z)'~' which is the smallness parameter
in the spin-wave expansion, not (S, S;+), when there
is no long-range order.

The prediction of the spin-wave theory for the
correlation functions of the 2D Heisenberg model, is,
for nearest-neighbor interactions of equal strength J
in both directions, on a square lattice, with

n„a -(r;, —
r&,„(, etc. ,

kTN 'Z I —-cos(q n, a+q„nba)
S;SJ -sz—

J (2 —cosq„a —cosq„a)
(9)

The preceding heuristic arguments do not of course
prove that Eq. (9) is correct. The theory is expected
to work better in two dimensions than in one dimen-
sion, however. When n, n„-n the result(9) is

particularly simple and is

+2kT(Jp Jp)— (5)

n-1

(S; S)) -S' — X (n'+ —,') '
mJ

(10)

The sum is divergent in one or two dimensions, but
Eq. (5) can only be strictly valid for each q (rather
than in the sense of a formal expression for calculat-
ing averages for fixed site separation), when q» n,
where it should be compared with the exact result for
the nearest-neighbor chain, for small values of T'

(Sp S,),„„,=2kT(J(na)'+ Jp —J, ] '

J~=2Jcosqa

(6)

The exact result, from Eq. (6) is S'(I —na)". Thus
for nba && 1, the leading term in an expansion in
(n~a) is given correctly. Higher-order correlations
are also given correctly in the same sense. For

8S; S)~S; SJ —(S;SJ)

we find

((8S;S~)) S(n an)

which agrees with the exact solution for n~a (& 1.'

a is the lattice spacing and na =kT/JS' For this sys-.
tem, we have from Eq. (5), with na =~r; —rj~

(S; SJ) -N 'Xcosqna(S, S,)

-S —kT/J X(1—cosqna)(1 —cosqa) '

-S (I —n a)n

II. SPIN-WAVE THEORY-DYNAMICAL RESPONSE

If one attempts to do a straightforward perturbation
theory to calculate dynamical quantities such as spin-
wave linewidths, one runs immediately into diver-
gence difficulties. These can be avoided by using
the projection operator' identities to reduce the prob-
lem to the calculation of dynamical response func-
tions that may be evaluated from the lowest-order
harmonic theory. One can show that the correlation
function X, (z) can be represented in terms of the
frequency- and wave-factor-dependent spin current
damping rate yp(z) as

X,(z) =Jt, e '{S,(r) S,(0))dr

=i (S, S,) (z —co,'/[z+y, (z)]] '

rap is the exact second moment, (Sp S p)/(Sp S p).
To calculate eo, for q & ~, requires knowledge of
{S,S p) for q &n, and so falls outside the rangeof
the theory, in that Eq. (6) not Eq. (5) inust be used.
The theory is only self-contained for q & K in gen-
eral. We expect this can be remedied by including
higher-order terms in the perturbation series. For
the moment, one can calculate for q & 2 if the sus-
ceptibility is known by other means.
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yq ( f), where yq (z) = e "'yq ( t) dt, is given exactly by
0

y, (t) = t X V(qtqqqq) r(qt'qqq3 ) ( S, (t) 5 S, (t) S, (t) S, BS, S, )/(S S ) (12)

where

I'(q, q q ) = —[(J —J )(J —J ) +(J —J )(J —J )]5(q —q, —q —q )

+lot f

Sq
—(t) =e q Sq- (13)

~here coq = S(JO —J~), leads to the exact T =0 equa-
tion of motion for 5Sq 'Sq (t). (This is true in theql q2

antiferromagnet as well, with the appropriate expres-
sions for cvq. ) Consequently, Eqs. (13), (12), and

(3) allow one to determine approximations for y, ( t)
that will be correct to leading order in the tempera-

There are actually projection operators involved in

Eq. (12), but as has been shown in Ref. 7, these pro-
duce only higher-order corrections (in T ) to the
terms we will calculate. The essential reason for this
is that by subtracting the average part of Sq Sq weql

have eliminated most of Sq hsq2 S q3 that has a pro-ql

jection along Sq, and that projection is now of order T.

At this point, in Ref. 7, it was necessary to resort
to the exact calculations of the correlation functions
for the classical chain, and equations of motion for
5Sq Sq (t) that could be shown to be exact at T =0,
to evaluate the expressions in Eq. (12), We have al-

ready seen, that to lowest order in the temperature,
the initial value of rotationally invariant averages
such as those appearing in Eq. (12) could be calculat-
ed exactly from the spin-wave theory. It is also true
that the approximation (3), together with the time

dependence appropriate for a free spin wave,

I

ture. yq(t) can be expanded as

yq«) =JS
2 yq](t)+ 2yq2(~)+

kT kT
JS' ' JS' ' (14)

The rigorous definition of the terms in Eq. (14) is
obtained by observing that the moments of y, (t) for
any order 2n, i.e., the 2nth term in the Taylor series
expansion, depends on the average of spins a finite
distance apart and can be expanded as a Taylor series
in the temperature. Resumming terms to all order in

n for a particular order of the temperature leads to

yq l(I), yq 2(&) etc. We note from Eq. (8) and the
Schwartz inequality' that each factor of 5Sq Sq that

appears in an average introduces a factor of k T/JS2,
and one may show that (S, S ~) is also proportional
to kT/JS', so that the leading term in a temperature
expansion of Eq. (12) is proportional to T, as indicat-
ed in Eq. (14) ~ We also note that the relation be-
tween the coherence length and the temperature is

quite different in one and two dimensions. In one
dimension kT/JS =Ka, whereas in two dimension
kT/JS ~

~
lnKa

~

The leading term in Eq. (14) is obtained by replac-
ing Sq (t)'S, by NS'Sq 5 t in Eq. (12), and we ob-q I q I

tain the expression for y (t)
q~

(JS)
& y~ t(t) =iS /q

' QI'(0 qtq&)I'(0qt'q& ) (BS~ (t) S~ (t)BS, S, )/( S ~ S ~)JS' ' ql q2
(1S)

For arbitrary q, yq 2 is quite complicated, and contains contributions, arising from the higher-order terms in the
time evolution of Sq

—that have been neglected in Eq. (13), as well as contributions from the projection operators
that have been neglected. For q =0, since as we shall see, yo l(t) —=0, there are no contributions of the first
kind, and it may be shown that there are also no contributions of the second kind. ' We can therefore evaluate

yo 2(l) from the harmonic theory,

yoz(t) =& 'XT(qtq~q~)1(qt'qzq3)(BS (t) S,BS (t) S (t)BS, S, )/(S S )JS 1 ql 2 3 ql q2

where Eq. (3) is used tg express SSq S, in terms of Sq-, and Eq. (14) is used for the time dependence. It is
I

straightforward now to evaluate yq l and yo 2, in both one and two dimensions.
We note that the first use of the notion of local order in a dynamical calculation appears to be the work of

McLean and Blume. ' Berezhinsky and Blank, and others, ' have incorporated this notion into the calculation of
static correlations, where it is the basis of renormalization group calculations" ' near two dimensions. Using the
identity (AB) =kT([AB]) one may ,show that

(Sq S q) 2kT X(J J )(S S )
I
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and we have for nearest-neighbor interactions J~ =2J cosq,

(S~ S,) =4JkT(1 —cos qa) (S; S;+t) =4JS'kT(1 —cosqa) (IS)

The numerator in Eq. (15), using Eqs. (3) and (12)

I (tat -os ) f

iS N ' X[1'(O, O, q) —I'(O, q, , q&)][1'(O, O, q) —T(O, qt'q2)](8S, S,+8S S+)e

Using Eq. (4) to evaluate the average and the explicit expression for I', we have

i(kT)'S'N ' X[(JD—J,)' —(J, —J, )')'(J0 —J, ) '(J0 —J, ) 'cos(cv, —a&, )t8(q —
q~

—qt) (20)

For nearest-neighbor interactions, this reduces to

16(JSkT)'sin~
z qN ' X(cos—,q +cosq')'cos[4JS sin( —,q) sinq't] (21)

Utilizing Eq. (18), we have, setting a = I henceforth

(JS) y~ t(t) =i2JkTsin' , qN ' X(—cos—,q+cosq')'cos(4JS sin —,q sinq't)
I

e

(22)

which vanishes at q 0 as predicted. The right-hand side may be expressed in terms of Bessel functions, and we
have

y, t(t) =i 8 sin' —,
' q[Jt(r)/r +Jtt(r) cos' —,

'
q) (23)

where r -4JS sinq/2t. Equation (23) agrees with the results obtained previously by other methods, and is the
exact result for y, (t). It is in fact this agreement that serves to justify the spin-wave theory for the dynamics,

as we have not yet attempted to justify the validity of the spin-wave theory from within the theory itself. The ar-
guments presented at the outset, coupled with the correct prediction of results known to be exact from more
complicated arguments, seem strong enough grounds to extend the theory to calculations ~here there are no oth-
er results to compare with.

III. ONE-DIMENSIONAL FERROMAGNET

One such region is the ferromagnet in one dimension for q &K, where the leading term in the temperature ex-
pansion y~ t(t), because of the q dependence is not in fact the dominant term, but is supplanted by y~ t(t)

As already mentioned, it is only in the limit that q 0 that y, 2(I) can be calculated readily from the lowest-
order theory. This is, however, the most interesting limit since it allows us to calculate the diffusion coefficient.

The long wavelengths q « w/a are the significant ones in the sum in Eq. (16) for our purposes, and we will

evaluate the matrix elements for this case. Using Eqs. (3) and (4) the definition of I', (S, S,)
= 2J2S ( tea ) (qa ) we find

lim ya(t) -2J S (tra) 'a N ' Xqt'qt2q32[(S~ (t)S+, ) + (S+(t)S:, )]ra~

(Sr (t)S+q ) (Sq+ (t)S:q )8(qt+q2+q3) (24)

Utilizing Eqs. (5) and (13), we find for the limiting spin current damping

ya(at) = JS(Ka) ya'2(cu) w16J S (tra) N X[8(cu —cur —cur +cur )+8(cu+u)q —
cuq +cuq )]8(q)+q&+q3)
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With the quadratic approximation for the spin-wave
frequencies, co, =JS(qa)', one sees that the integral
is logarithmically divergent at small q, for small ~.
This result demonstrates that the expansion (14) is

breaking down, and ya't(0) which our procedure cal-
culates accurately, is not finite. This implies already
that the dynamical scaling hypothesis is violated in

this system.
From Eq. (11) and cuJ- JS(~a)'(qa)' for q && K,

the characteristic decay frequency for long-wave-
length modes is JS(~a)'(qa )'/ya'(ru 0). The
dynamical scaling hypothesis requires that this fre-
quency scale with ~ as some characteristic power of
K, for fixed values of the ratio q/x. Since the spin-
wave frequency is proportional to q'-~'(q/~)', this
characteristic exponent z = 2. Consequently
yo'(cu-0), which we can write as yo'(f 0)v„ thus
defining r„must be proportional to (Ka)'. Since

yo'(t -0) is proportional to (Ka)', ~, must be finite
and independent of ~ for small ~ if the hypothesis is
to hold. In fact, as we have seen, this is not the case.
To see what actually happens to yo'(ao) requires go-
ing beyond the lowest-order spin-wave theory. The
lowest-order contribution from a renormalized theory
presumably corresponds to replacing the correlation
functions in Eq. (24) by their exact values. The time
dependence at long wavelengths q~q2q3 & K would
have to be calculated self-consistently. This is not
necessary to obtain the behavior of the divergence in
the relaxation time of yo(t). The divergence is
present even if one includes only those modes in the
intermediate states for which lq~. qt, q3I & pK, p && 1.
The time dependence of these modes contains a
damping' JS(Ka)(qa) and the static correlations are
given accurately by Eq. (5). We find then

"(0) 16JS( )' K(lqtl+ lq2I+ lqi+qzl)
a i~&~~~" lr2~~~" 4qtqt +K (Iqtl + Iq21+ Iqi+q21)'

q, dq (26)

The integral in Eq. (17) is ~ lln(Ka ) I and hence
ya'(0) ~ JS(~a)'I in~a

I
'. The characteristic decay

rate for the modes with q « ~ is therefore ~ (qa )'
x

I lnxa I
'. One easily convinces oneself that if one

assumes diffusive behavior for q ( K, with D
&r lln(~a ) I

', that the hydrodynamic modes also con-

I i I I I ii

3.0

I

tribute a term ~ lln(Ka) I. Furthermore, the same
logarithmic behavior has been obtained by a different
method, which essentially cuts off the divergence by
replacing the equilibrium averages of pairs of spins
given by the spin-wave theory Eq. (5), by the exact
value Eq. (6).' In this case, the coefficient of the
logarithm is rather easy to calculate. We show in Fig.
1 a comparison of that result with the numerical
simulations of Heller. " What is being plotted is the
characteristic relaxation time for spin diffusion divid-
ed by (Ka)'. If scaling were valid, this would be a
constant. The logarithmic dependence is very clear,
and remarkably the coefficient is in agreement with
that calculated in Ref. 7,

2.0—

I.O

0
O.OI O. I

e4

FIG. 1. Comparison of the value of the characteristic
time, for the spin current damping function y&(t) with the
results of computer simulations of Heller. The coefficient of
the logarithmic dependence on temperature is uncertain and
depends upon the assumptions made in cutting off the
divergence. The coefficient shown is due to the procedure
of Ref. 7.

IV. TWO-DIMENSIONAL FERROMAGNET

In two dimensions calculations that employ a spin-
wave theory to calculate the generators of the renor-
malization group' have shown that there is no transi-
tion in the two-dimensional Heisenberg model for
any temperature, although the coherence length
diverges as T 0. The physical situation at low tem-
peratures and short distances is therefore analogous
to the situation in one dimension.

Equations (17) and (19) are valid here as well; the
summations over wave vector being taken in two di-
mensions. We will consider again the nearest-neigh-
bor model with equal exchange strength in both
directions on the square lattice.
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'[Ate find for the leading term
[q4 {q2

q
2 )2]2

ltmyq(r) - I'2(kT) JN ' X
' ' cosJS(qtt —

q j)&8(q —
q&

—q&)T-0 '
from which we obtain

[q' —(q t' —q2 )']'
limy,"(co)- rrkTJN ' X [8(cu JS(—qt' —qt')) +8(~+JS(qt —q j ))]8(q —qi —qt)T-0 ' q2q 2q 2

which, with a change of variables, reduces to
' 2'2

rrkTJ 4 ru,
X

[8(ca —2JSq q )+8(~+2JSq q')]
(q/2+ q )'(q/2 —q')'

Choosing the q„axis along the direction of q and doing the q„ integration
'2 2 I

2rrkTJ 4 c«1 1 I'd [q —(cu/JS)']t + [q +(co/JS)'] t+
q' JS 2JSq (2w)' " 16q4 2q'

(27)

(28)

(29)

{30)

y,", t (cu) = —,
'

~

ru' —( JSqt)'(/JSq' (31)

and the result is valid when (q' —~co/JS ~)q
' (( l. If

the spin-wave frequency were not shifted, the damp-

ing (kT/S) y,"t(co,) would vanish. In fact, there is a

shift linear in the temperature due both to the real

We are particularly interested in y,"(~,); i.e.,
(g)/ JS -q'. At this value, the integral is divergent for
small q~. Near this value, the dominant term in the
integral is due to small values of q~, and we can
neglect q~' in evaluating it. %e then obtain

part of y~ and the shift in the second moment, and
so the damping at the corrected spin-wave frequency
is proportional to JSq'(kT/JS')' Since y, .t(ru) is in-

dependent of q for small q, the damping arising from
the second term in the series Eq. (13) dominates the
contribution from the first, and y, (co) may be ap-
proximated by JS(kT/JS')'y, , t(~).

It suffices to evaluate y, t(ru) at q -0 and ru-0
since it turns out to vary continuously in both vari-
ables, and it is therefore the limiting value that deter-
mines the spin-wave lifetimes as q 0, and the spin
diffusion coefficient. Using Eqs. (3), (4), and (12),
the definition of I', we find for q 0

3 6

limy, (r) =
4kTS2q2 X(q qtq3'+q q3qt')(q qtq3'+q qIqt')

x ([S~ (r)S+, +S~+(r)S, ]8(S,, (r)S+(r))8(S,S+, ))8(qt+qt+q3)8(qI+ q tq+I)

At ao 0,

li "(0) ( ) q q 8( + — )8( + + )
( . 2+ . 2)2

T-0 S q
imp~ 2 2 2 qi+ q2+ q3

(32)

(33)

The integral is convergent, and upon eliminating the 8 functions and doing the angular integrations, we find that
it reduces to

limyo'(0) (JS) J J (q3 —qt ) '
q3dq3dqt

Tm JS
(34)

The dominant contribution to the integral actually
comes from large wave vectors, and in fact the upper
cutoff, q', determines the value of the integral. To
evaluate it exactly requires that the long-wavelength
approximation not be used, but we can conclude that
limr~ya'(0) -AJS(kT/JS')', with A of order unity,

and lattice dependent. To summarize then,

limy,"(cu) -AJS [I +0(q')]
T-0 ' JS2

[

for ~ close to the spin-wave frequency; i.e.,

(35)
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UNDERDAMPED

kT

JS o

/ OVERDAMPED

/
-2wJS /kT -[

DIFFUSIVE

kT/JS

FIG. 2. Schematic diagram of the various regions of qK
plane for which the dynamics are qualitatively different. Re-
gion I: Frequency —JSq, damping —JS(kT/JS ) . Re-
gion II: Linewidth —JSq /(kT/JS ) . Region III: Line-

width Dq2, D tx (kT/JS2)-2eMm J$ JkT2

In one dimension

2K
P 2

K

and we have

(K'+ q') [K'+ (q —q')'j [q'+ (q —q')'I

tx K (40)

tion. If we express the correlation function as'

q" =i (S,S,) [z —@,(z) ] '

then if we assume that as q 0, eo 0,
fq (z) —i Dq', the mode-coupling result for D is

given by

D'=limq ' X [(J,—J,)'
q~

x p,p, /p, [ q +( q —q )') '}

(37)

where p, is the normalized static correlation function

p, =(S, S,)/N '$(S, S,)

~cu
—JSq'~/q && l, where the 0(q') term contains

small corrections due to y, ~(ca), as well as finite q

and ru corrections to the value of ya'(0) that we have
calculated.

This result contradicts the dynamical scaling hy-

pothesis. Inasmuch as the spin-wave frequencies are
co, = JS(qa )' the spin waves will be well defined
when q » kT/JS'a, with a linewidth —, yo'(0) and

overdamped when q « kT/JS'a The evidence.
from the renormalization group calculations is that

—2w J$2)k Tthe inverse coherence length Ka ~ e ' . The
linewidth evidently does not scale as (Ka)'f (q/K).
Using the renorrnalization group" results for the sus-
ceptibility to calculate coq, we find that the region of
overdamped spin waves having essentially Lorentzian
line shapes with a width 2JSq4/yo'(0) when q » K,

goes over to a diffusive regime with a diffusion coef-
ficient D ~ ya'(0) ' exp 4rrJS'/kT, when —

q && K.

The situation is shown graphically in Fig. 2.

2 InK
Pq=

K +q
(41)

This result follows from the dynamical spherical
model theory as well as from renormalization group
calculations. '

K and the temperature are related by
kT ~lnK. %e have then

D'- q-'K'lnK
(~~)2

(q')'+( q —q
')'

Asq 0

x ,
dq'

K2+q'2 K2+(q q')2

(42)

Then D would be a constant in the mode-coupling
theory. This corresponds to ya'(0) being proportion-
al to K, but as we have seen, it is actually propor-
tional to K'~lnK~ and D actually vanishes as ~lnK~ '.
In two dimensions, for small q

V. COMPARISON WITH MODE-COUPLING THEORY
D crlnK (43)

The violations of scaling discussed here contradict
the prediction of the mode-coupling theory, in both
one and two dimensions, and in fact, the mode-
coupling theory is really not valid for the Heisenberg
model in one and two dimensions. This has been
discussed extensively for the case of one dimen-
sion, ' and we will limit ourselves here to a compari-
son of the characteristic exponents for the diffusion
coefficient, estimated from the lowest-order calcula-

We have then the rather interesting result that
D ~ (lnK)' '. The prediction of the mode-coupling
theory is therefore in disagreement with the predic-
tion of the dynamical scaling hypothesis, which re-
quires, since z =2, that D ~ K, as well as in disagree-
ment with the results for the Heisenberg model, in
which D ~ K (InK)'. The disagreement in this situa-
tion is about as severe as it could be, since the
mode-coupling theory predicts the diffusion coeffi-
cient diverges at T -0, the scaling hypothesis
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predicts it should be a constant, and the actual result
for the Heisenberg model is that it vanishes.

The proper interpretation of these results requires
that one observe that the mode-coupling theory is ac-
tually the exact result, term by term in an expansion
of Q~(z) in renormalized skeleton diagrams, for the
dynamical spherical model, that is, for a model with
the same equations of motion as the Heisenberg
model but with the fixed length constraint for the
spins replaced by the requirement that the average
length of the spins be fixed. Relaxing this constraint
eliminates the well-defined spin waves characteristic
of the Heisenberg model in one and two dimensions,
as may be seen in Ref. 16. In one dimension, the
singularity in the two spin-wave density of states
leads to the scaling violations in both the ferromagnet
and the antiferromagnet. This is particularly clear in
the derivation employed in Ref. 7 for the ferromag-
net, while in the present work the scaling violation
appears as due to a singularity in the three spin-wave
density of states. The point is the same in either
case. If the spin waves were not well defined at
T -0, there would be no such singularities, and no
scaling violations. In one dimension, then, it is clear
that the relaxation of the constraint is an essential
difference between the Heisenberg and dynamical
spherical models, we should not expect the results of
the two models to agree, and hence, the mode-
coupling theory is not applicable to the Heisenberg
model. That the Heisenberg model should violate
the scaling hypothesis is also a consequence of the
singularity in the density of states. It leads to long-
time tails (r '~') in the decay of the spin current
damping rate correlation function that are not antici-
pated in the intuition underlying the scaling hypothesis.

In two dimensions it is again the difference in the
fluctuation spectrum at T =0 that is the essential
difference between the dynamical spherical model
and the Heisenberg model, and there is, therefore,
no reason to expect the mode-coupling calculation to
be applicable. As we have seen there are contribu-
tions to the spin current damping rate from wave
vectors throughout the zone, in the Heisenberg
model, even for q -0 and again, one of the essential

intuitive arguments underlying the dynamical scaling
hypothesis, the notion that the critical modes interact
predominantly with themselves, the effect of short-
wavelength fluctuations being unimportant, is violated.

It is rather interesting that the dynamical spherical
model also does not appear to satisfy the dynamical
scaling hypothesis in two dimensions, even though
the previous abjection is not applicable here, since it
is indeed the long-wavelength modes that are signifi-
cant in the integral defining D . This result has been
obtained by a rather cavalier treatment of the
lowest-order diagram (the same treatment usually ap-
plied in three dimensions), and it is possible that a
more careful treatment of the model will eliminate
this feature. We think that will probably not be the
case, that the scaling violation is a real feature of the
model, and that it is tied up with the nonanalytic re-
lation between the scaling length and the temperature.

We note that Trimper has argued that dynamical
scaling holds in 2+ e dimensions. He shows that au~

scales correctly, using Nattermann's' expressions for
(S, S,). However, this does not suffice, since one
must also show that the damping scales properly,
which as we have seen, it does not do in two dimen-
sions.

Note that one cannot argue this difficulty away by
asserting that the damping is irrelevant in the renor-
malization group sense, since its value is much larger
than the value it would have if scaling held, i.e.,
(In Ka)' )) (~a ), and in fact, the boundary q = K

determines only the region in which the diffusive
behavior changes over to an overdamped mode
whose width is proportional to q~ (see Fig. 2).
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