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The dynamic properties of the compressible classical Heisenberg chain with bilinear coupling
are investigated. The sound velocity is calculated exactly. The Fourier-transformed
displacement-displacement correlation function is studied as a function of temperature, wave

vector, and the model parameters. For this calculation a continued-fraction approximation is

used.

I. INTRODUCTION

In the last years, a lot of work has been devoted to
the study of magnetic systems with translational de-
grees of freedom. The effect of the coupling of pho-
nons to spins on the static properties has been exam-
ined in one- and three-dimensional compressible spin
systems with Heisenberg or Ising interaction. As far
as we know, dynamic properties have only been in-

vestigated for three-dimensional systems, ' mostly
for temperatures below T,.

Recently, some studies have been made of a model
Hamiltonian for a compressible classical Heisenberg
chain. Starting from a Hamiltonian with nearest-
neighbor interaction and a bilinear coupling term, '
one is able to decouple the system into a pure pho-
non and a pure spin part, ' such that all static quan-
tities can be calculated exactly. " It is attractive to
study the dynamics of this model system because no

approximations for the statics have to be made. The
aim of the present work is to investigate the influ-
ence of the spin degrees of freedom on the phonon
dynamics.

We present a detailed study of the longitudinal dis-
placement fluctuations. The dynamic correlation
functions are calculated by means of a continued-
fraction representation. The frequency moments,
which determine the continued fraction completely,
can be expressed rigorously in terms of the eigen-
values of a transfer operator.

The plan of the paper is as follows. In Sec. II we
define our model. The principles of the calculation
of the static quantities are exposed and they are. used
to determine the sound velocity. In Sec. III we brief-
ly discuss the continued-fraction method. We show
which static correlation functions we need and evalu-
ate them in terms of eigenvalues of the transfer

operator defined in Sec. II. We then investigate all

possible limits as a function of the parameters of the
model. In Sec. IV we present plots and a discussion
of the results for the correlation functions. The con-
clusions of this work are summarized in Sec, V.

II. THE MODEL

A. Hamiltonian and static correlation functions

The model we will study is described by the Hamil-
tonian'

H =Hp+Hs+Hsp,
N 2 N-t

Hp= g ' + —,
' a X (x;~1 —x;)',

2m

N-t
Hs= —J XS; S;pl

(2.&a)

(2.1b)

(2.1c)

N-1

Hgp = E X (x;+~ —x;)S; S,+) (2.Id)

where u is an elastic constant and e characterizes the
strength of the spin-lattice interaction. The Hamil-
tonian clearly describes a chain of spins not fixed on
a rigid, but on an elastic lattice. Hp, Hs, and Hsp
stand for the pure harmonic phonon Hamiltonian,
the Heisenberg Hamiltonian, and the spin-phonon
coupling. The spins are assumed to be classical unit
vectors. If we define

E; =S; S;+) (2.2)

which is related to the local spin energy, it is clear
that in Hamiltonian (2.1) the displacements are bilin-
early coupled with the energy fluctuations. In Refs. 5
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and 6 it is shown how the Hamiltonian (2.1) results
if one assumes the exchange parameter J to depend
linearly on the atom-atom separation.

A basic property of our model Hamiltonian is the
possibility of its decoupling by means of a coordinate
transformation. ' ' We briefly recall the basic ele-
ments and give some comments.

Defining new coordinates u; by

system described by a Hamiltonian of the form

H = Xh(x;, x;~))
I

the transfer operator K is defined by

(Kg)(x) =„'tK(xy)$(y) dy

with

(2.7)

xg(= ul + $ SJ Sj+]
A g(l.

the Hamiltonian becomes

(2.3)

.2

H=x ' + &a/(u+t —u)t —JXS; S~~
m

K(x,y) =e s""" (2.8}

and P =1/ks T Kis p. ositive definite and symmetric
and so it has real eigenvalues. Any static quantity
can be expressed in terms of the eigenvalues and
eigenfunctions of K. In our case the transfer opera-
tor (2.8) is given by

X(S; S;+t)' (2.4) K(S;,S;+~) =(1/2m) exp(P[JS; S;+~

+(e'/2a)(S; S;~t)'] j
The Jacobian of this transformation is 1. An advan-
tage of the transformation (2.3) is that every pure
spin correlation function can be calculated using the
effective spin Hamiltonian

e~=-J XS,"S,„—' X(S, S„,)', (2.5)

A further consequence of the decoupling is

(2.9)

Because the transfer operator has spherical sym-
metry, it is obvious that the eigenfunctions are the
spherical harmonics. This makes it possible to find
analytic expressions for the spin correlation functions
in terms of the eigenvalues. In Ref. 9 it is shown
that

((x;+t —x;)f(S) ) =(e/a) (S; S;+tf(S)), (2.6) Jt K(St, S2) Yl~(S2) dS2=),( Yl~(S() (2.10)

where f(S) is a function of spins only. More gen-
erally, every correlation function of displacements
and spins can be written as a sum of correlation func-
tions of spins and the new variables u;. After the
decoupling, the pure spin correlation functions are
calculated using Hamiltonian (2.5) and the u-

correlation functions are that of a pure harmonic os-
cillator.

One has to realize that the transformation exploits
the classical nature of the spins and has no
quantum-mechanical analogue. Consequently, the
transformed Hamiltonian (2.4) will be used only to
calculate static expectation values. For all calcula-
tions of dynamic quantities such as cornmutators or
Poisson brackets we will use the Hamiltonian (2 ~ 1).

As a result of the transformation, all spin correla-
tion functions are those of a system with Hamiltonian
(2.5). Such systems are known to have an ordered
or disordered ground state depending on the value of
J and a'/a. Our system always has a'/a &0 and is
therefore ordered at T =0, because there is no com-
petition between ferromagnetic and antiferromagnetic
interactions.

In Ref. 9 it was shown how to obtain exact analyti-
cal results for the static spin correlation functions of
a system with Hamiltonian (2.5) by means of the
transfer operator method. We briefly recall the gen-
eral idea of this method. For any one-dimensional

with

p1
k~= J~ exp P Jx+ x~ Pl(x) dx-I 2' (2.11)

PI are the Legendre polynomials. The largest eigen-
value is Ao because K is positive and Po has no
nodes.

From here on, we will work with a new set of
parameters. We define

u =PJ

y = e'/aJ

g =J/(2i~ f)),
D =(a/m)'~' .

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.13)

These new parameters are of direct relevance to the
dynamics of the system. As can be seen from Eq.
(2.5), y measures the importance of the coupling. 0
is the frequency of a single harmonic oscillator, and 5
is a measure for the ratio of spin fluctuation energy
to the phonon energy. Finally, u compares thermal
energy with spin interaction energy.

It is possible to express all the eigenvalues in terms
of Xo. If one defines'

1 2n u fx+(y/2)x J dII f
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one has the recursion formula

yul„+~ = e""~ [e"+ (—1)"+'e "] —ul„—nl„

(2.14)

III. DYNAMIC CORRELATION FUNCTIONS

The Laplace-transformed displacement relaxation
function is defined by

Combining Eqs. (2.11)—(2.14) we find for the first
three reduced eigenvalues y„= h, „/h.«

P(z, q) = —i e'"(x(t);x)
q dt

2 „/2 shu 1
y~ = e~"'

uy Ap

3chu e"" 3P'& 3 1
3'2 =

yu Xp 2y 2yu 2

x&+
5 5

yu 3y

(2.15a)

(2.15b)

(2.15c)

z =co+IN, 6 )0 (3.1)

with

& (~,q ) = (—1/P) d "(~,q ) (3 ~ 2)

The dynamic structure factor S(cu, q) is related to
$(z, q) by

In order to determine our model completely, we

still have to choose the boundary conditions. Sali-
nas" pointed out that the Hamiltonian (2.1) exhibits
different properties under different constraints. It
turns out that periodic boundary conditions on x; and

S; result in an effective spin Hamiltonian with long-

range interactions. Then we cannot use the transfer
operator method to calculate the static correlation
functions exactly. Furthermore, periodic boundary
conditions on x; would suppress thermal expansion.
We impose periodic boundary conditions on u, and
the spins after the transformation (2.3). In this way

we avoid these problems.

y" (a), q ) = lim 1m'(=, q) (3.3)

We want to study the influence of the spin-lattice
coupling on the phonon dynamics in detail. An ap-
propriate way to do this is to use Mori's formal-
ism. " ' The Laplace-transformed relaxation func-
tion is then written as a continued fraction. The
coefficients of this expansion are combinations of
frequency moments of the relaxation function. The
frequency moments are static quantities and conse-
quently they can be computed by means of the
theory given in Sec. II. The normalized continued-
fraction representation is given by

B. Sound velocity

We are now able to calculate the longitudinal
sound velocity exactly. The starting point is the
well-known formula for the phonon frequency'

«),' = 1/m (x;x), (2.16)

d (z, q) = 1

5', (q)
522(q)

where (x;x), denotes the Fourier-transformed static
displacement-displacement susceptibility. In the clas-
sical limit, the static susceptibility is given by

a„',(q)
~ (3.4)

z —h„(q)$ " (z,q)

(A;8) =P((A "B)—(A')(B))
Using Eq. (2.3) and

(Sp'S]',S„'S„yt)= pg„«(1 3y& +2y2)

(2.17)

(2.18)

The first three coefficients b, „'(q) are

~2(q) = (~')q/(~'), (~'), . -
(3.Sa)

(3.sb)

QJq
C =—lim

q~p q

Cp

[1+—,yu(1 —3yt' +2y2')1'
(2.20)

where Cp = 0 denotes the sound velocity of the har-
monic phonon system.

we obtain

au~2 =602(1 —cosq)/[3+yu(1 —3yt +2y2)] . (2.19)

The sound velocity is then found to be
(cuz"), = (L"x;L"x),/(x;x), (3.6)

denote the frequency moments of the relaxation
function. The Liouville operator L is related to the
Hamiltonian by

L~ =[0~] . (3.7)

If we terminate the continued fraction at some stage,
the problem of calculating $(z, q) is reduced to the
problem of finding an approximation for P "'(z,q).

632(q) = ( (o)'), /(«)z), —((o'),'/(cu'), ')/hg(q), (3.5c)

where
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4 '"'(z, q) = [z + i r„'( q) ] ' (3.8)

Here the relaxation time r„(q) can again be written

as a function of the frequency moments and we have

r„'(q) = b „'(q) + 5„' )(q)

Here, we will use the approximation proposed in Ref.
15. It has the advantage that it is simple and sys-
tematic and $(z, q) satisfies as many sum rules as
possible. The result reads

(A;LB) = ([A',B])
we find for the first three moments

(3.10)

In Eq. (3.5) we wrote down the I z up to n =3. For
the computation of i4' we need (cu, ), but at the mo-
ment we are not able to calculate this quantity for
practical reasons. This means that we will not go fur-
ther than a four-pole expansion.

We now calculate the frequency moments as a
function of the reduced eigenvalues y„. Using the
formula"

(cu'), = 60'(1 —cosq)/[3 + yu (1 —3ytz + 2yz) ]

(cu"), =1204(1 —cosq)'/[3+ yu(1 —3y&' +2yz) ]

(co6), =240 (1 —cosq)'/[3+ yu(1 —3yt' +2yz)]

+1280 yg (1 —
cosq ) [ y[ z (1 —yz) ( z +yz) ——'

, y&( y&
—yz) cosq ]

(3.11a)

(3.11b)

+y ~ ( I —yz) ( I —cosq ) ]/[3 + yu ( I —3ytz + 2yz) ] (3.11c)

(3.12a)

(3.12b)

hzt = 6 0'(1 —cosq ) /[3 + y u (1 —3y t + 2yz) ]

yu(1 —3y& +2y2)
52 =20'(1 —cosq)

3 + y u (1 —3y,' + 2yz)

2 2 2 1 1 3 + yu ( I —3yt' + 2yz)
gq ——320 g [ —(1 —cosq)yt(1 —yz) + y[ —(1 —yz)( —+yz) ——y&(y& —ys) cosq] ]3 9 2 5 u (1 —3y] + 2y2)

(3.12c)

As (cu')„(cu ), involves spin expectation values only through the static structure factor (x;x)~. This is due to
the linear appearance of x in the spin-phonon coupling (2.ld). The second term of Eq. (3.11c) has been obtained
with the help of a computer program.

"
Combination of Eqs. (3.6) and (3.11) gives

y„(-u, -y) = (-1)"y„(u, y) (3.13)

it is clear from Eqs. (3.4) and (3.12) that the dynam-
ic displacement correlation functions are exactly the
same for a ferromagnetic as for an antiferromagnetic
interaction. From Eq. (3.12) we conclude that a
three-pole approximation for the relaxation function
is too simple because it does not depend on 5.

%e first investigate some limits that will be helpful
for the interpretation of the parameter dependence of
the dynamic structure factor.

For the low-temperature limit (u ~), one can
use the asymptotic expansion of A.o given in Ref. 7
and the recursion relations (2.15) to find

20 (1 —cosq)

622 0

320'5'(I + ]y~)'(1 —cosq)

(3.14a)

(3.14b)

(3.14c)

Consequently, for u = ~, the continued fraction is

Because the y only depend on u and y, the parame-
ters u, y, and 8 are sufficient to describe the dynam-
ics if we measure all frequencies in units of Q. Using

I

terminated at the second stage and the dynamic form
factor consists of two 8 functions at + the harmonic
frequency.

In the high-temperature limit, we have

yn ~no

and we obtain

20'(1 —cosq)

b220
&3~oo2

(3.15a)

(3.15b)

(3.15c)

1 2 tanhu
y~ = tanhu ——sech u + + ~ ~ ~

'y, u

yz-—1 —3/yu +
1

y3 = tanhu ——sech u +61 2 tanhu + ~ ~ ~

y, u

(3.16a)

(3.16b)

(3.16c)

Consequently, for u -0, the Fourier-transformed x-x
correlation function again consists of two 8 functions
at + the harmonic frequency.

In the strong-coupling limit (y oo), we obtain
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and consequently,

b, q ~20 (1 —cosq)

f3 ~ oo2

(3.17a)

(3.17b)

(3.»c)

O
qd

lo l

y=O. I y=0
/

n =0, 1, 2, 3 (3.19)

if 6„&0 for all n ~ 3. If, however, 5 =0 for some
0 & m & 3, the sum rules for n & m can be violated
because the continued fraction does not contain in-

formation about higher moments [see Eq. (3.4)]. In
fact, the continued fraction and the moment expan-
sion are not necessarily related anymore" if one of
the 5's is zero. Mathematically, this is connected
with the fact that the integrals in Eq. (3.19) are not
well defined in such a case. The limits given in Eqs.
(3.15) and (3.17) are examples of such cases, but, as
mentioned above, these limits are unphysical for our
model.

IV. RESULTS

In Fig. 1 the dependence of the sound velocity on
u and y is plotted. Note the minimum of c as a func-

The dynamic structure factor becomes a 5 function at
OJ =0.

Because 5 0 results in ~3 0, the correlation
function consists of a very narrow central peak and
two very narro~ peaks centered at + the harmonic
frequency. If 5 ~, b3 ~, and the dynamic form
factor is given by a pair of 5 functions at + (&u,')(r'.

The limits u 0 and y oo are unphysical. For
u 0 the displacements become infinitely large. It is
obvious that the model (2.1) breaks down. The limit

~ means that the coupling term is dominant.
%'e close this section with two remarks.
Of interest is the limiting case where both u and y

become very large. From Eqs. (3.14) and (3.17) it is

clear ordering is important if one takes the limits
u ~ and y ~. From Eqs. (3.16) we obtain

E =yu(l —3yt' +2y~} =3yu sech u, y && 1 (3.18)

and consequently
( I l

lim lim E =O~ lim lim E =~
y oo u oo Q» oo y~ oo

l (

If we compare Eq, (3.18) to Eqs. (3.12), this illus-

trates the origin of the difficulties. But the problem
is artificial in some sense. Indeed, our model allows

y to be very, but not infinitely large. Then we can

simply use Eq. (3.18}. It is important to note that E
vanishes much more quickly for large u than it in-

creases with increasing y.
The four-pole approximation given by Eqs. (3.4),

(3.8), and (3.9) satisfies the sum rules

( '(, =J d(q. ( "d /J q(q. )d

0.6

l0.0
0 4 L l t l J l 3 ( t d r t I

O. l 0.2 0.4 0.6 08 IQ

( l ( .q J rl. t rasJ
2 0 4.0 6.0 80 IO,O

FIG. 1. Semilogarithmic plots of the sound velocity as a
function of temperature and the coupling strength y. co is

the harmonic sound velocity (y =0).

tion of temperature and the fact that c co if u 0
or u ~. A minimum was also found in three-
dirnensional compressible magnetic systems below
T, .4 There, however, one has a discontinuity in the
derivative with respect to T. Because of Eq. (2.12),
Fig. 1 shows at the same time the dependence of the
static susceptibility on u and y. The wave-vector
dependence is that of the pure phonon system, as can
be seen from Eq. (2.19).

In Figs. 2 —6, we present plots for the normalized
Fourier-transformed dynamic correlation functions.
The normalization is such that

(4.1)

In each plot only one parameter is changed in order
to demonstrate the dependence on the various model
parameters.

Figure 2 shows the dependence on temperature.
To a good approximation, the peak position is given
by (a&'),'r' and therefore the temperature dependence
of the peak position is given by Eq. (2.19) and is
plotted in Fig. 1. The frequency is renormalized by a
factor independent of q. Hence, the relative frequen-
cy shift due to the coupling with the spins is frequen-
cy independent. Such a result was also found in

theoretical calculations for Ising systems an/ in corre-
sponding experiments. (See Ref. 1 and references
quoted therein. )

If a well-defined phonon excitation exists, the
linewidth can be associated with the spin-lattice relax-
ation time. The evolution of the linewidth as a func-
tion of temperature is understood considering the
limits investigated in Sec. III. The plot with

~
u

~

= 10
is very close to the harmonic oscillator, although

~y~ =10 is rather large, and this is understood using
Eq. (3.18). Large u dominates equally large y. Phys-
ically spoken, both the phonon and the spin system
are frozen in and this reduces the coupling seriously.
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20.0

15.0;

lyl = 10.0
161 = I 0

q = 9K/16

lul = O. l lu I =10.0

3

I

20.0

15.0 t-

lul = I.O

161 = I.O
q = 9K/16 Igl = O. l

lul =1.0 lvl=lo. o I y I =1.0

10.0— 10.0 t-

I"pl = 5.0

5.0— 5.0

0.5 1.0 2.0
4)/0

0.5 I.O 1.5 '

MH
2.0

FIG. 2. Fourier-transformed normalized displacement-
displacement correlation function for some values of lu I

and the other parameters fixed. &AH is the harmonic oscilla-

tor frequency. The temperature dependence of the peak po-
sition is the same as that of c (see Fig. 1). For low tempera-
ture (u -10), the harmonic oscillator is approached,
although y is large. Because the results are the same for a

ferromagnet and an antiferromagnet, only the absolute
value of the parameters is important.

Figure 3 shows the dependence of the line shape
on the coupling strength y. In this case, the excita-
tion frequency decreases with increasing y, but this is
not generally true (see, e.g. , Fig. 1 for large u). The
phonon system becomes a harmonic system for

0. Far y ~, one gets a 5 function at zero fre-
quency. Therefore, the height of the peak shows a
minimum or, equivalently, the linewidth has a max-
imum.

Figure 4 shows how the relaxation function
changes if only 5 is varied. If 5 is large, the energy
of the magnetic fluctuations is much larger than the
energy of the phonons. Consequently, the phonons
cannot transfer energy to the magnetic excitations.

In all but one case, the frequency is nearly exactly
given by (et )st~'. For 8=0.1, we find a completely
different structure. Both a central peak and a very
narrow one at the harmonic frequency are observed.
This can be explained by a physical argument. For
small 8, the frequency of the fluctuations of the mag-
netic energy density is much smaller than the phonon
frequency. Because in the Hamiltonian (2.1) E& and
x; are coupled bilinearly, we could use use the results

20.0

15.0

lul = I.O

h(l = 1.0
q = 9Tt;/16

161 =10.0
161 = I 0
161 = 0.5
161 = O. I

10.0

5.0

0.5 1.0 l.5 +H 2.0
(d/0

FIG. 4. FT correlation function for some values of S.
Except for 181 0.1, the peak positions are nearly exactly at
(cut)st~2. Note the central peak for 161=0.1.

FIG. 3. Fourier-transformed (FT) correlation function as
a function of the coupling strength y. Note that the height
of the peak has a minimum for 1 (lyl (10.
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3.0
3

I

lul = 2.0
Iyl = 5.0
I6I = O. l

2.5

2.0

q = 5Tt;/ l6

I.5
q = 3Tt;/4

I.O

0.5

0.5 I.5I.O 2.0 2.5

4)/0
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