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Solid and fluid phases in smectic layers with tilted molecules
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A recent theory of two-dimensional melting is applied to freely suspended liquid-crystal films

with a tilt degree of freedom. As many as seven distinct phases are possible, including those we

identify with smectic-A, -B, -C, and -H liquid crystals. Some of these phases may survive when

stacked to form bulk smectics.

I ~ INTRODUCTION

A. Purpose

There has been considerable progress recently in

understanding the mechanism of dislocation-medi-
ated melting in two dimensions proposed by Koster-
litz and Thouless. " Although dislocations have long
been suggested as a mechanism for three-dimensional
melting, ' only in two dimensions has substantial
analytical progress been made. A study of a simpli-
fied model of interacting dislocations was followed

by detailed analyses' of dislocation-unbinding transi-
tions in more realistic situations. In Ref. 5 it was
found that dislocations drive a transition into a kind
of liquid-crystal phase, with persistent correlations in

the orientation of "bond angles. " Since triangular lat-

tices melt into a phase with persistent sixfold orienta-
tional order, this new phase might be called a "hexa-
tic liquid crystal. " A second disclination unbinding
transition is necessary to complete the transition to
an isotropic liquid,

Recent molecular-dynamics simulations by Frenkel
and McTague' support this picture of two-dimen-
sional melting as a two-stage process. Some evidence
that dislocations were important had been obtained
previously by Cotterill and Pedersen. ' A computer
simulation by Morf suggests that the two-
dimensional electron crystal observed by Grimes and
Adams' melts at a temperature consistent with the
dislocatipn-unbinding picture, provided the renormal-
ization of the shear modulus is taken into account.

Free-standing smectic liquid-crystal films"' may
provide particularly interesting experimental tests of
two-dimensional melting theories. One might plausi-
bly associate a thin smectic-B film with a two-
dimensional solid, and smectic-A films with two-
dimensional hexatic or liquid phases. Birgeneau and
Litster, "on the other hand, have suggested that the
bulk smectic-8 phases may be understood as three-
dimensional analogues of the hexatic phase, with
long-range orientational order and short-range trans-
lational order. If this conjecture were correct,
smectic-8 films would be examples of hexatic liquid

crystals rather than two-dimensional solids. X-ray
diffaction measurements by Moncton and Pindak, '

and related work by Pershan et al. ,
"however, indi-

cate that the bulk smectic-8 phase of
butoxybenzylidene-octylaniline (BBOA) possesses
very long-range translational correlations. Infinite-
range translational order would contradict the
Birgeneau-Litster hypothesis.

Whichever interpretation is correct, it seems irn-

portant to extend the theory of two-dimensional

/

8

/

(b)

FIG. 1. Degrees of freedom and singularities necessary to

describe fluid phases in smectic layers. (a) Tilted liquid-

crystal molecule with polar angle y and orientation angle @.
(b) "Bonds" (dashed lines) joining a central atom to its six
nearest neighbors. Each such bond makes a bond angle &

with the x axis. (c) Vortex in the orientation angle field $.
The vectors are given by sin y(r) [cos @(r), sin @(r)j. (d)
Fivefold disclination imbedded in a square lattice with bond
angles shown as dashed lines.
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melting to a variety of experimentally relevant situa-
tions. Here we generalize the theory to consider sys-
tems in which there is a two-dimensional vector order
parameter, coupled to the order parameters that
characterize melting of a triangular solid. Our work
should apply in particular to thin films of materials
which exhibit (in bulk) a smectic-Cand/or a
smectic-0 phase in which there is a molecular axis
tilted relative to smectic layers. Here, one must in-

troduce an order parameter 4( r ) = (sin y)
x exp[i/( r ) ], which describes the projection of the
tilt axis in the xy plane [see Fig. 1(a)]. Interesting
effects arise from the coupling between 4( r ) and
the parameters P(r) =exp[6iH( r )] and po( r )
= exp[i G u ( r ) ] describing bond-angle orienta-
tions and translational order in the material [see Fig.
1(b) for a definition of the bond-orientation field].

Although we shall concentrate on applications to
freely suspended films, parts of the theory may also
have relevance to magnetic or orientational transi-
tions in adsorbed films. We do not consider any
electric dipolar forces associated with the molecular
tilts; this is correct in a suspended film with nonchiral
molecules, and may be a valid approximation in other
cases if the induced dipole moment is small (cf. Refs.
11, 12, and 20).

B. Fluid phases

Couplings between orientational order and tilt de-
grees of freedom lead to a rich variety of possible
phases and phase diagrams. Tilted and untilted ver-
sions of the hexatic and liquid phases may be under-
stood in terms of an effective Harniltonian functional
of the bond-angle field 8(r) and tilt-phase-angle field

P(r), namely,

C6(r ) —= (exp(6i[8( r )—H(0)]})

Ct( r ) —= (exp [1[&( r )-P(0 ) ]])
(1.2a)

(1.2b)

We summarize here the results of our analysis,
whose details are given in Secs. II and III below.
One possible phase diagram is sho~n in Fig. 2, as a
function of the inverse "bare" Frank constants Ki '

and K6, with g and h small and fixed. The quanti-
ties Ki ' and K6 ' should both be monotonically in-

creasing functions of temperature, so that a given
material will trace a path from lower left to upper
right in the figure, as temperature is increased. The
solid phases shown in this diagram, in which K6 = ~,
will be discussed later.

K)

transitions by unbinding from a state containing
bound pairs only. The "bare" constants in Eq. (1.1)
will themselves have an analytic dependence on tem-
perature due to the effects of fluctuations on the
atomic length scale.

The constant K6 in Eq. (1.11) is related to the
Frank constant K~ used in previous papers, '

by
K6=K&/ksT The . subscripts 6 and 1, which we use
in the present paper to indicate quantities referring to
the angles 8 and $, respectively, were chosen because
the bond orientation 8 is defined modulo 6 m, while

the tilt orientation $ is defined on the entire range
from 0 to 2m.

A variety of possible phases follow from this
model, which may be distinguished by the large-
distance behavior of the correlation functions

REGULAR
TRIANGULAR SOLID

8
HEXATIC

A

ISOTROPIC
LIQUID

+2g(&&) (&g)l

—h drcos 6 0 —$

The quantity Ki is a stiffness constant for fluctua-
tions in the tilt orientations, while K6 is the Frank
constant for fluctuations in the bond orientation. '

The term proportional to h occurs because both 8( r )
and P( r ) feel a sixfold symmetric potential when ro-
tated with the other field held fixed. The gradient
cross-coupling, proportional to g, is generated by the
renormalization group discussed in Sec. II even if it is
initially absent. "Vortices" in the tilt-angle field and
"disclinations" in the bond-orientation-angle fluctua-
tions fsee Figs. 1(c) and 1(d)] will also be taken into
account. These excitations renormalize the elastic
constants at large distances, and can also drive phase

UNIAXIAL

SOLID

H

(cp)
LOCKED TILTED HEXATIC

c

K6

FIG. 2. Phase diagram for smectic liquid-crystal layers, as
a function of the inverse temperature-dependent Frank coef-
ficients Ki ' ( 8 and K6 ' ( 5. Both solid and fluid phases
are shown, and these can be either tilted or untilted. The
Frank constant K is infinite in the solid phases. Experi-
ments vrith varying temperature might trace a path from the
lower-left to the upper-right portion of the figure, with in-

creasing temperatures.
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Four fluid phases are indicated in the diagram, la-

beled A, A', C, and C'. Phase A' is identical to the
hexatic phase of Ref. 5, with algebraic decay of
C6( r ) and exponential decay of Ct( r ),

with

18(K6 +Ktn +2gtr)
rr(K6"K, —g„')

C6(r) =r, Ct(r) =e ' . (13)

[We shall use the term "quasi-long-range order" for
correlations such as C6( r ) in Eq. (1.3) which decay
to zero as power laws. ]

Phase 3, in Fig. 2, is an isotropic liquid phase,
where both Ct( r ) and C6( r ) decay exponentially at
large r. The remaining fluid phases, C and C', have
quasi-long-range order for both tilt and bond orienta-
tions; i.e. , for large r we have

C6(r) =r

C|(r) =r"
(1.4)

(1.5)

18q6=36q] =
mK+

(i.6)

Phase C is an "unlocked" tilted hexatic phase, in

which long-wavelength fluctuations in $ and 0 are in-

dependent. This phase has three renormalized Frank
constants, K(', K6a, and gn, corresponding to the con-
stants in Eq. (1.1), and there is no simple relation
between q~ and q6

18K)
rr(K6"Kt gn)—

KR

27r(K6Kt" gtt)

(1.7a)

(1.7b)

Phase C is a "locked" tilted hexatic phase in which
long-wave-length fluctuations in Q are tied to fluctua-
tions in H. The phase is characterized by a single re-
normalized (i.e. , macroscopic) Frank constant K~+

which describes the increase in energy caused by

equal gradients in 8 and $. (Roughly one has

K+ = KI+K6+2g). In this phase, the exponents q]
and q6 are related by

In phase C, the locked tilted state, the correlation
function Cq( r ) tends exponentially towards a con-
stant value at large r.

The unlocked phase C' is found to be present in
the phase diagram when the bare coupling constant h

is small, but the state may not exist when h is large.
Some necessary conditions for stability of the C'
phase are

v)g) 4

K," &2/n

KP &72/~ .

(1.12)

(1.13)

(1.14)

It should be noted that quasi-long-range order in
tilt orientation always induces algebraically decaying
correlations of bond orientation. Thus, phases with
short-range bond qrder but quasi-long-range tilt order
are impossible. We expect that short-range bond
orientational order will also be incompatible with
long-range tilt-angle order in bulk smectic liquid crys-
tals.

In the right-hand portion of the C phase, labeled
C] in Fig. 2, one is in a region where there would be
no bond order if the molecules were not tilted. The
correlation function C6( r ) has algebraic decay at
long distances only because of the coupling h

between tilt and bond angles, and the amplitude of
the correlations should be proportional to h'. In the
left-hand portion of the C phase (labeled Cq), the
bond angles would tend to order, (forming a hexatic
phase) even in the absence of tilt. The amplitude of
C6( r ) will be independerrt of h in this region, and
hence much larger than in the region C]. Since there
is no change in symmetry, there is no necessity for a
sharp phase transition between the regions C] and
C~. However, there may be a first-order transition in
some cases. '

Further insight into the difference between the
phases C and C' may be obtained by examining the
correlation function

C (r) —= (&(r)&'(0)) (i.8)

h(r ) =exp(6i[0( r )—Q( r )]]

In the unlocked state C, we find the large-distance
behavior

Cq(r) —(const) +r "~, (1.10)

where 5( r ) is a variable which measures the relative
orientation of the bond and tilt axes,

C. Solid phases

In addition to the fluid phases described above,
there are two solid phases (B and H) indicated in
Fig. 2. These phases have true long-range order in
the bond orientation, '

(e"') =(const)e 'W0, (i.is)

where 00 is the orientation of the crystal axis in the
xy plane. The Frank constant K6 entering Eq. (1.1)
should be considered infinite in the solid phases;
however, we must now take into account coupling of
the tilt orientation to the strain field of the crystal.
Possible solid phases may then be understood in
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terms of the effective Hamiltonian

kaT
= —Jt d r [2p, u& +)(u~

+2(v(u(j
p ij kk) i j)

—h drcos 6 r —~p

+ —', K, Jtd'r (rrd )',
where the strain tensor u„"(r ) is the symmetric
derivative of the displacement field u( r )

(1.16)

] BQ; 8Q~.
u,g

—— +

((i. and )( are the (bare) Lame elastic constants, and

(1.17)

(cia( r )) ~ 0 (1.19)

We find, however, that the anharrnonic coupling
between phonons and s destabilizes the intermediate
phase (ii) above. Presumably, this instability leads to
a tilted anisotropic solid identical to (iii). One would
then expect the line of phase transitions directly from
a regular triangular untilted solid (labeled 8) to an
anisotropic solid with tilt (labeled H), as shown in

Fig. 2.

D. Discussion

Phase boundaries shown as light solid lines in Fig.
2 are "Kosterlitz-Thouless"-type phase transitions,
with unobservable essential singularities in the specif-
ic heat, but with jumps in appropriate stiffness con-
stants. The double lines represent transitions whose
character has not been analyzed.

On the line connecting locked tilted hexatic phase
C to the isotropic liquid (this may be considered as a
line of smectic-A to smectic-C phase transitions), one
has q~ = 4, as discussed by Nelson and Kosterlitz '

and Pelcovits and Halperin. It follows from Eq.
22

(1.6) that F6=9 on this line. On the line joining the
hexatic and isotropic liquid phases, one finds q6= 4,
as discussed in Ref. 5. In contrast, gi, q6, and q~ are
nonuniversal and subject to only mild restrictions on
the boundaries of the unlocked tilted hexatic phase
(see Sec. II B).

1

cos (@—Hp) (1.18)sin (it —Ho)
(

If the coupling proportional to (v in Eq. (1.16) were
neglected, one could apply the analysis of Jose et al. 2p

to the tilt degrees of freedom and find three solid
phases: (i) a regular triangular solid with short-range
order in tilt angles; (ii) a regular triangular solid with
quasi-long-range tilt-angle order; and (iii) an aniso-
tropic solid with genuine long-range order in it ( r ),
i.e.,

The complicated array of phases and phase transi-

tions described above is interesting for a number of
reasons. First, the phases with quasi-long-range or
long-range order in the tilt angle should be optically
active and accessible to light-scattering studies.
Orientational order in the hexagonal bond fields,
which cannot be directly probed by optical methods,
can thus be studied indirectly through its coupling to
the tilt angle. Second, one might hope our results
have some relevance to bulk smectic liquids crystals.
The labels A and C in Fig. 2 were chosen because the
corresponding phases have the properties of an isolat-
ed layer of the bulk phases known as smectic A and
smectic C, respectively. Similarly, phases Band H
correspond to the most commonly accepted descrip-
tion of the bulk smectic-B and -8 phases, in which
the smectic layers are believed to be two-dimensional
solids. A stack of two-dimensional solids with any
finite coupling between the layers would be expected
to form (in thermal equilibrium) a three-dimensional
solid, with conventional long-range translational or-
der in all directions. Recent x-ray measurements on
the smectic-B phase of the compound BBOA support
this description. ""

As pointed out by Birgeneau and Litster, ' a stack
of weakly coupled hexatic layers (the A' phase)
would form a bulk liquid-crystal phase, with short-
range translational order parallel to the layers, but
long-range order in the bond-angle field, ((Ii) 40.
Experimental identification of such a phase has not
been reported, however.

The unlocked tilted hexatic C' should not have

any analog in three dimensions. If the tilt orienta-
tion has true long-range order, it will always be
locked to 8.

In Sec. II, below, we shall discuss the fluid phases
A, A', C, and C', in the limits of both weak and
strong coupling between bond and tilt orientations.
The effect of tilt on two-dimensional solids is

described in Sec. III ~ Derivations of renormal-
ization-group recursion relations are contained in an

Appendix A, and the behavior of a correlation func-
tion is worked out in Appendix B.

II. HEXATIC AND LIQUID PHASES WITH TILT

A. Weak-coupling Hamiltonian

As discussed in the Introduction, a reduced effec-
tive Hamiltonian describing hexatic and liquid phases
with tilt is'

—H —= = — d2r [K6(VH) +K(('7g)
AT

+2g(VH) ( 7y)]

—h d'rcos p 8 —@)
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where we have generalized Eq. (1.1) to allow for a

pfold symmetric coupling between 8( r ) and &t)( r ).
The probability of a given configuration of bond and
tilt orientation angles is proportional to exp H, and
the partition function corresponding to Eq. (2.1) is

given by a functional integral over 0 and $,

gest that one can integrate freely provided the discli-
nation and vortex singularities allowed by Eq. (2.4)
are taken into account explicitly.

These textural singularities can be included in Eq.
(2.1) for small h as follows. At every point in space,
the exponentiated periodic potential can be expanded
in a Fourier series,

Z = DH D@exp H (2.2) exp (h cos[p[H( r ) —)t)( r )]))

g2 & K6K] (2.3)

in Eq. (2.1) for stability.
Strictly speaking, all terms in Eq. (2, 1) should be

periodic under the transformation

0(r) 0(r)+ m(r), m(r) =0, +1,. . .
p

(2.4a)

)t) ( r ) —)t) ( r ) +2rr n ( r ), n ( r ) = 0, + I, . . .

(2.4b)

and the functional integrals in Eq. (2.2) need only be
carried out over the range

(2.Sa)

Although we shall focus primarily on the case

p =6, other values of p are possible. Square lattices
should melt into "tetratic" liquid-crystal phases, -' in

which p =4 would be appropriate. One can use the
model with p =3 to describe symmetric molecules

1

tilted completely into the plane of the film [y = , rr-
in Fig. 1(a)], provided one redefines tl and $ to be
twice the angle between the x axis and the bond or
molecular orientation. (If 0 and $ are not redefined
in this way, one has p =6, but then half-integer vor-
tices in the 0 field must be considered. ") Here we

consider only integral vortices in P, but allow for a

pfold symmetric 9 f'ield. Our analysis can easily be

extended to completely general situations.
In the limit of infinite K6, the 0 field is locked to

some constant value, and Eq. (2.1) reduces to a

model where rotational invariance in $ is broken by a

pfold symmetric "crystal field. " With vortices taken
into account, this is the "cospQ" model of xy magne-
tism studied extensively by Jose ef a/. ' Our conclu-
sions should reduce to the known results for this sys-
tem in the limit K6 —~ (see below). In the limit

K] ~, the $ field is locked, and one is left with a

pfold-symmetric field 8 subject to a cosp0 perturba-
tion. Since this situation is like an xy model in a

magnetic field, one expects no phase transition with

varying K6 in this limit. Note that one must have

A, (h) exp [ips( r ) [8( r ) —@( r )])
s(r )-—~

It can readily be shown that, for small h,

~,(h) =(—,'h)', .=0, +1

(2.6)

(2.7)

and A, (h) is negligible for large s. More generally,
one can take

A, (h) =—Aoexp[(lny„)s']

~here Eq. (2.7) is recovered if we take

1yg=
2

h, Ao=l

(2.8)

(2.9)

H =- -' d" K, Ve) 2+ K, (Vy)'

+ 2g ('7e). ('V)t ) ]

+ip d r s(r) H(r) —(t) r)

+(lny&) d p'$ (r) (2.11)

As h tends to zero, 1nyq becomes large and nega-
tive, and excitations with s(r) nonzero at some point
become very unlikely. "Vortices" and "disclinations"
can then be defined as solutions of

K6'7'0+g'7 Q =0

K, 7'y+g'7'O =0,
(2.12a)

subject to conditions on contour integrals taken
around isolated points r,

Inserting the decomposition (2.6) into Eq. (2.2), one
finds that the partition sum acquires a sum over an
integer-valued field [s( r )),

z= g J+ej'+ye"e)ee))e) )~), ) ))), )2 io)
(~& f ))

with

—~~y(r) ~~ (2.5b)
78 d 1 = m(r), m(r) =0, +1,...

p

This periodicity reflects the invariance of the systems
to discrete local rotations of 0 and @, with angles in

other regions of space held fixed. In practice, howev-
er, studies of the two-dimensional xy model20' sug-

'7 d) "d l = 2 rr n ( r ), n ( r ) = O, + I, .. .

(2.13a)

(2.13b)
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Expanding 8(r) and $(r) about disclination and vor-
tex complexions described by (m ( r ) ) and (n ( r ) }

amounts to making the substitutions

d(r) =Sy(r)+ $ n(r')G(r, r')
~lf W f

(2.14b)

and then integrating freely over 5@ and 5$. The
summations in Eq. (2.14) cover a lattice of possible
sites for disclinations and vortices. This same lattice

g(r) =58(r) +— X m( r ')G(r, r'), (2.14a)

G(r, r') =tan '

1

X X
(2.15)

where r =(x,y) and r'=(x', y').
Upon making the replacements (2.14) in Eq.

(2.11), one easily carries out the functional integra-
tions over 58 and 5@ to find

can be used to provide an ultraviolet cutoff of order
the inverse core diameter a ' for the functional in-
tegrations in Eq. (2.2). It has no further physical sig-
nificance. For large separations (r —r ') and far
from boundaries, the Green function G( r, r ) is

Z=(const) X
'

X
' g 'exp[H((s), (m}, (n))]

{g( f )} {m(r)} {n(r)}

where 0 is expressible in terms of three coupled Coulomb-gas Hamiltonians

(2.16)

T
'I

I

H=H(Kr„yq, (s})+H, ,y6, (m) +H(K~,yt, [n})+i X s( r )m(r') tan '

p X X

—ip X s( r )n(r')tan ', + g X m(r)n(r') ln, y-y' 2~g
~l x —x p ar&r

(2.17)

The Hamiltonian H, is the usual'4 scalar Coulomb gas,

H, (Ky, (m)) —= rrK X m( r )m( r')ln +Iny gm2(r)(r —r'}
afar

(2.1g)

The disclination and vortex fugacities y6 and y& are Far from boundaries and for large ( r —r '), one has

y6= exp( —CK6lp'), yt =exp( —C'Kt), (2.19) G(r, r ) =In(} r —r (/a) +2srC (2.24)

where C and C' are cutoff-dependent constants.
The strength K~ of the logarithmic interaction
between the (s(r) ) generated by integrating over 8
and 43{5 is

p'(K, +K, +2g)
4m2(K6Kt —g2)

(2.20)

and the corresponding fugacity is given by Eq. (2.9).
The primes on the summations over the three integer
fields in Eq. (2.16) mean they are subject to the con-
straints

Xs( r ) =Xm( r ) =pm( r ) =0 (2.21)

'72G(r, r ) =2sr5(r —r') (2.23)

In deriving Eq. (2.17), it is helpful to use the identity

['VG(r, r')]'=[OG(r, r')]' (2.22)

where G(r, r') is the harmonic conjugate of G(r, r')
and satisfies

If we take the limit K6 ~ or K~ ~ in Eq.
(2.17), so that either disclination or vortex pair exci-
tations are unlikely, then one can safely set either all
m ( r ) or all n ( r ) to zero. In this case, the Hamil-
tonian (2.17) reduces to an expression derived by Ka-
danoff" for the xy models with cosp8 perturbations
using a different method.

B. Weak-coupling phase diagram

The statistical mechanics of the interacting disclina-
tions, vortices, and "periodic excitations" (s ( r ) )

described by Eq. (2.17) can be studied by a triple ex-
pansion in the fugacities y6, y~, and y~. Experience
with the xy model ' suggests that such perturbation
series will either diverge, or instead give only small
corrections to the behavior obtained in the absence of
disclinations, vortices, or periodic couplings. The
corresponding fugacities will be "relevant" or "ir-

relevant" variables depending on the magnitudes of
K6, K~, and g. If it is known that vortices and the yl,
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coupling can be neglected, for example, then the cru-
cial integral which determines the importance of dis-
clinations is

2m r m r)m 0 dr

3-2~I( 6/p'= —4vry6 dr r . (2 25)

Disclinations, vortices, and the h coupling term are
irrelevant inside the trapezoid, and the long-
wavelength properties of the resulting state (C'
phase) should be describable by an effective Hamil-
tonian

d2~ KR (~g)2+ KR (~@)2

The corresponding renormalization-group eigenvalue
for the fugacity y6 is

lt, = 2 —rr K6/p', (2.26)

where the sign of A6 determines the convergence of
the integral in Eq. (2.25). Similar considerations lead
to the eigenvalues for yt and yh, namely,

P] =2 —vrK]

~g =2 —7rKp,

(2.27)

f2.28)

E
QQ

it

]
K)

D A

&%&&&%&% WK K

K6

+

;I gH
00

FIG. 3. Schematic renormalization-group flows describing
different smectic fluid phases. Asterisks indicate fixed
points. In addition to isolated fixed points, there are fixed
lines JEand FH, and fixed surface ABCD.

where Kq is given by Eq. (2.20). [More precisely, for
large length scales we must use the renormalized
elastic constants in Eqs. (2.26) —(2.28).]

A more detailed derivation of these results, togeth-
er with more complete renormalization-group recur-
sion relations (see Appendix A), will be given in Sec.
II C. A crude, but qualitatively correct phase di-

agram, however, follows from considering regions
with different stability properities determined by the
eigenvalues quoted above. For example, for p =6,
there is a region in the space of K] ', K6 ', and g in

which all three fugacity eigenvalues are negative. In
Fig. 3, which illustrates the plane g =0, the region is

the trapezoid ABCD. Although the figure is drawn
for g =0, it is qualitatively similar for finite g. The
trapezoid becomes a triangle for p & 4, and vanishes
altogether for slightly smaller p's.

+2gR('70) ('7p) j (2.29)

Hp =
2

d r K6('t79) (2.30)

Disclinations must still be included in the 0 field. '
On the line segment JE, disclinations are bound in

pairs and may be neglected at large length scales. At
point E, however, disclination unbind, driving an

where K6, K~t, and g are renorrnalized versions of
the couplings appearing in Eqs. (1.1) and (2.1). The
inequalities (1.12)—(1.14) follow directly from the
conditions that X], A6, and A. q be negative.

Since correlations can be determined by integrating
freely over 0 and @ in this phase, it is easy to verify
the results (1.7a) and (1.7b) quoted in the introduc-
tion. All three stiffness constants in Eq. (2.29)
could, in principle, be determined by measuring the
algebraic falloff of correlations indicated in Eq. (1.4),
together with the decay of the four-point function Cz
discussed in the introduction.

The cross correlation function, C„(1)
=(exp[6ig(r) —6ig(0)]), is more complicated. If
C„is evaluated at the fixed point, when h =0, we
simply find C„=O,since the Hamiltonian then con-
tains no term which depends on the overall phase
difference between @ and 0. Nevertheless, at any
finite length scale, the renormalized value of h is fin-
ite, and we expect to find a nonzero result. The
evaluation of C„in this phase is carried out in Ap-
pendix B.

In analogy to the universal jump prediction for the
stiffness in the xy model, " we expect that K6" =2/w
just inside the line AB of Fig. 3, and that Kf, =2/rr
just inside BC. These stiffnesses should approach
their universal values with square-root cusp singulari-
ties. ' Such conditions are not enough to completely
determine q] and q6, if gq is unspecified, so these
exponents should be nonuniversal on these lines.
The exponent q& equals —on BC. The stiffness K6
is infinite on CD, while K~ varies smoothly from
9/27r at C to 2/rr at D on this line.

The arrows in Fig. 3 show schematically our expec-
tations for renormalization-group flows in K6 ' and
K] ' outside the stable tr" pezoid. Flows immediately
above AD, which is a locus of vortex-unbinding tran-
sitions, should tend toward a fixed line JE at K] =0.
The physics on this fixed line is just that discussed
for the hexatic phase in Ref. 5; correlations in the
0( r ) should be describable by a Hamiltonian of the
form



21 SOLID AND FLUID PHASES IN SMECTIC LAYERS WITH. . . 5319

C6(r) = (exp[6i[8(r) 8(0)]—})y, (2.33)

instability into a liquid phase described by the fixed
point G. The domain of attraction of the fixed line
JE determines an untilted hexatic phase, with the
properties (1.3) quoted in the Introduction.

Unstable flows immediately to the right of AB are
triggered by a disclination unbinding, and should tend
toward the fixed line FH at K~ =0. This fixed line
describes smectic-C liquid-crystal films, with power-
law decay in tilt-angle correlations, and a vortex-
unbinding transition at F. In an analogy to Eq.
(2.30), we expect that correlations in the 8( r ) are
given by a Hamiltonian

Hp=
2

d2r Ki V$ 2 (2.31)

provided vortices are also taken into account.
There is, however, induced quasi-long-range order

in bond-angle correlations in the C phase. To
describe bond-angle order, we must add the periodic
coupling between the 8 and $ fields to Eq. (2.31)

Hp H=Hp+h J dtrcos[68(r) —6$(r)] . (2.32)

This addition has no effect on tilt-angle correlations,
since the periodic term disappears when integrated
over 8( r ). In the language of renormalization
theory, h is a "redundant" coupling. Consider,
though, 8+(r ) =cx8(r ) +P@(r )

8 (r)=8(r) —$(r)
(2.39a)

(2.39b)

thing analogous to Eq. (2.32). There are no induced
tilt-angle correlations, however, since one now finds
a result like Eq. (2.34) for Ct, with Eq. (2.35) re-
placed by a quantity which vanishes identically,

A'(h) =

n/6

d$exp(iQ) exp(h cos6$)
=0 . (2.38)

Jt dgexp(h cos6$)

This result is consistent with the exponential decay of
Ci( r ) quoted in the Introduction for the hexatic
phase.

Finally, we discuss the unstable flows just below
CB in Fig. 3, which are triggered by an unbinding of
the periodic excitations in Eq. (2.17). As discussed
in Sec. II A, the line IH at Ki = ~ is like the xy
model in a magnetic field, with fixed points at K6=0
and K6= ~. Indeed, the flows immediately belo~
CB may ultimately tend toward the fixed line FH,
and the phase below this line could just be part of the
smectic- C phase discussed above.

To study this point further, consider the Hamil-
tonian (2.1) in the absence of disclinations and vor-
tices. This should be a good approximation near CB.
Equation (2.1) then simplifies upon defining fields
8+(r ),

where ( ) p means an average evaluated in the en-

semble specified by H. One finds immediately after a

simple change of variables that

where

~=(I-p) = K6+g
K6+ Ki +2g

(2.40)

~/6
d8 exp(6i8) exp(h cos68)

A(h) =
w/6

J d8exp(h cos68)

(2.35)

C6( r ) = A2(h) (exp (6i[$( r )—$( 0 ) ]})g, (2.34)

where

H= ,
' Jtd" (K+I&8—I'+KI&8 I')

+h d rcos pH (2.41)

In terms of the 8+( r ), the Hamiltonian breaks into a
sum of a Gaussian in 78+ and "sine-Gordon" Hamil-
tonian in 8,

C6(r) =A'(h)r (2.36)

Below F, where vortices can be neglected, one finds
immediately from Eqs. (2.34) and (2.31) that

with

K+ = K6+ Ki +2g

K = (KtK6 g')/K+=9/rr2KI—,

(2.42a)

(2.42b)
where 7it is defined by Eq. (1.4). Similar manipula-
tions suffice to show that

C„(r ) = (exp (6i [8(r)—4(0) ]})= A (h) r

(2.37)

so one has q6 = q =36qi, as claimed in the Intro-
duction. This property of induced order in bond an-

gle correlations should be a quite general feature of
smetic-C liquid crystals in two and three dimensions.

In principle, the Hamiltonian (2.30) appropriate to
the hexatic phase should also be replaced with some-

We can now determine bond- and tilt-angle corre-
lations using the known properties of the "sine-
Gordon" problem. p 6 In particular, one expects
long-range order in exp[iq8 ( r ) ], where q is
arbitrary, provided K is large enough so that we are
below the line CB in Fig. 3,

lim(exp[iq8 ( r )] exp[ iq8 (0)])=—const WO
g ~oo

(2.43)

Correlations in exp[iq8+( r )], on the other hand,
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@(r)=e+(r) —ue (r)
e(r)=e, (r)+pe (r),

(2.44a)

(2.44b)

are always algebraic in these regions. Since Eqs.
(2.39) can be inverted to read

Hamiltonian like Eq. (2.46a), but with renormalized
couplings K6(l), y6(l), K]((), y]((), and g(l).
These couplings are solutions of differential recursion
relations, which, to leading order in y6(l) and y[(l),
read

rt6 ——rt„=36rt t
——18/7r K+ (2.45)

Since this is also the behavior we associated with the
fixed line FH, this phase may be indentical with the
C phase described above. On the other hand, we
cannot rule out a first-order transition, separating C]
and C2 phases with the same symmetry.

it is straightforward to determine C6( r ), C~ ( r ), and

C, ( r ) at large distances using the properties quoted
above. Below the line CB all these correlations decay
as power laws, with

dy6 vr K6

d(
——2 —,y

p

dK]
dl

dy]

dl
=(2 —~K])y],

4~'
4~ K 2y 2 g2y 2

p
2

=0dg

dl

dK6 —4~ 2 2 3

dl p2
K6y6 —4m g y] (2.47a)

(2.47b)

(2.47c)

(2.47d)

(2.47e)

C. Weak-coupling recursion relations

We now study the neighborhood of the special
points A and B in Fig. 3, using renormalization equa-
tions constructed as expansions in the fugacities y6,
y], and yh. Since only two of these fugacities become
relevant near A and B (for p )4), we shall supress
one "irrelevant" set of excitations. One is left with

two coupled scalar Coulomb gases. (Away from 3
and B, and in particular near the lines AD, AB, and
BC, at most one set of excitations is important, and
one can then take over the results of Kosterlitz24 for
a single scalar Coulomb gas. )

Consider first recursion relations valid near the
point A of Fig. 3. The coupling y~ may be set equal
to zero in this region, and the Hamiltonian (2.17)
simplifies to

Note that, with y~ set to zero, g(l) remains fixed at
its initial value to this order.

To study the system (2.47) near K, = 2p'/rr and
K~ ——2/rr, it is helpful to study deviations x, (l) and

xt, (l) defined by

K6 ' ( I) =—,[ I +x. ( l) ],
2p

K )
' ( I) —=

q
rr [ I + xb ( I) ]

as well as rescaled fugacities

y,'(I) —= 8''y6' (l)

yb2 ( () = 8 77 2y 2 ( ()

(2.48a)

(2.48b)

(2.48c)

To lowest order in these variables, the recursions re-
lations (2.47a) —(2.47d) become

H=H, ~,y6, [m) +H, (K~,y~, In))
, p

2rrg y ( ) ( )i )
f t'

(2.46a)

dx,

d(
=y +'Yy

dy,

d(

dxb
=yb +'Vy

(2.49a)

(2.49b)

(2.49c)

The corresponding partition sum is

Z=(const) $ ' $ 'e
(m( r ) j (n( r ) I

(2.46b) with
dl

= 2xbyb

~2g2/2pt

(2.49d)

(2.49e)
The couplings K6, y6, K], y], and g are altered slight-
ly from their values in Eq. (2.17) by the supressed
[s( r )) excitations. In particular, the (s( r )) gen-
erate a nonzero value of g even if this coupling is ini-

tially zero.
Recursion formulas appropriate to Eq. (2.46a) are

constructed in Appendix A, using the method of Kos-
terlitz' and of Anderson and Yuval. Upon scaling
up the core diameters of disclinations and vortices
from a to ae' in Eq. (2.46), we find an effective

C —= 2x, (l) +2x (l) —4yx, (()x,(()
—(1 —y') [y.'(l) +yP(1) 1

is invariant along the trajectories,

dC
dl

(2.50)

(2.S1)

Although the flows generated by the system (2.49)
are complicated, it is easily checked that the quantity
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C =2x,'(~) (2.52a)

where x, (~) =limi „x,(l). Similarly, the require-
ment

Since C is entirely determined by Eq. (2.50) evaluat-
ed at I =0, it is an analytic function of the initial con-
ditions.

The detailed phase diagram near A in Fig. 3 sug-
gested by these recursion relations is shown in Fig. 4.
Both y, (l) and yb(l) ultimately tend to zero in the
shaded unlocked-tilted-hexatic phase. A line AD of
vortex unbindings is determined by a locus of initial
conditions such that y, (l) -0, yb(l) -0, and
xb(l} 0 as I tends to infinity. In this case, we have
from Eq. (2.50) the requirement

m(q) = /exp(i q r )m( r ) (2.53a)

n(q) = Xexp(i q r )m( r ) (2.53b)

the Hamiltonian (2.46a) becomes
1

4m~it 6H= — — +Bb m(q)m( —q)2
Q q2p2

1

4m Ki +B) ri(q)ri ( —q)2
Q q2

ical value. In terms of the Fourier-transformed in-

teger fields

C =2xb'(~) (2.52b)
4m~

m q n —q +m —q)n( —q)

determines a line of disclination unbindings AB.
These two lines intersect at A, where

x, (~) =xb(~) =0 . (2.52c)

HEXATIC
E

LI QU I D

TILTED
HEXATIC

LOCKED TILTED
HEXATIC

According to the recursion formulas (2.47a) and
(2.47c), both Kb(i) and Kt (I) are destabilized and

pushed toward smaller values when yb(l) starts to
grow. This happens whenever Kb & 2p'/n. Since
this double instability also occurs when yt(l) be-
comes unstable, we expect a portion A iAAq of the
unlocked-tilted-hexatic phase boundary when discli-
nations and vortices unbind simultaneously. In the
limit g =0, this region shrinks to a point.

The hexatic-liquid phase boundary A i E can be
determined as follows. Assume initial conditions in

the hexatic phase just above A iD, so that vortices
have unbound. The recursion relations can then be
integrated until one is far enough from A iD, to treat
the unbound vortices using a "Debye-Huckel" ap-
proximation': the vortex degrees of freedom must be
sufficiently excited to allow one to integrate rather
than sum over the integers (n} in Eq. (2.46b).

Let us assume that this condition is satisfied when
I = I" such that K~(l') equals, say, tr ', twice its crit-

4 'SC'"
+ff JI +Bb + o(q') m(q)m( —q)2 g q2p2

(2.55a}

with

Kb" = Eb(l') —g'/K, ( I") (2.55b)

and a similar expression for 86 . Rewriting Eq.
(2.55) in terms of the (m( r ) }, we find a Coulomb
gas like Eq. (2.18) with K =Kb""/p and an effective
fugacity y6". The disclinations will unbind when
Kb =2/mp~, a requirement which determines the
line AiE.

Evidently, the effect of the cross coupling g is to
depress the disclination unbinding temperature. Phys-
ically, we can imagine oppositely charged "red" and
"blue" vortices coexisting with bound disclination
pairs. Because of the logarithmic interaction propor-
tional to g in Eq. (2.46a), plus disclinations will be
screened by a cloud of, say, red vortices, and minus
disclinations screened by a cloud of blue ones. This
reduces the strength of the logarithmic interaction
between disclination pairs, and lowers T, .

A very similar treatment applies to the unstable
flows to the right of the line AB in Fig. 4. Integrating
now until E6(l ) equals, say, twice its critical value,
and treating disclinations in the Debye-Huckel ap-
proximation, one obtains an effective Coulomb gas
for vortex excitations with

(2.54)

where B6 and Bi are constants depending on the
fugacities y6 and yi, and on the cutoff. Integrating
freely over the vortex field n ( q ) when I = I', we
find an effective Hamiltonian for disclinations of the
form

Kt'n = K) ( I') —g'/p'Kb( I') (2.56)
FIG. 4. More detailed version of the region surrounding

the point A in Fig. 3. Four possible fluid phases are indicated. Vortices will unbind when Kb"' = 2/w (this deter-
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mines the line A~F), and the transition temperatures
are again reduced due to vortex-disclination interac-
tions.

It is interesting to consider the behavior of the sus-
ceptibilities

Finally, we consider briefly recursion relations near
the point B in Fig. 3. Here, we can neglect vortices,
and Eq. (2.17) can be replaced by

1

H = H, (Kt„yt„[s})+H, , y6, [m)

X6—= d r C6(r)

d'r Cl r

(2.57a)

(2.57b)

I

+i $ s( r )m(r') tan ' y
~l X —X

(2.61)

2

Xl=(+ ' (2.58)

where rt 1 is the exponent defined by Eq. (1.4) at the
point being crossed. The correlation length (+( T) has
the temperature dependence found by Kosterlitz, ~4

when approaching the different transition lines in Fig.
4. Results can be extracted in a straightforward
manner from our recursion relations using the
method of Kosterlitz. ' Although X6 may be difficult
to measure, Xl can be probed directly in light-

scattering experiments. When the lines AD or AA&

are approached in the hexatic or liquid phases, one
finds

dK6

dl

4m'
&

K6ys +p pP
P
1

(2.62a)

dy6 n K6

dl p~

de, 3

dl
= —4~ Kgb +~y6

dye = (2 —7rKt, )yt,

(2.62b)

(2.62c)

(2.62d)

with slightly altered parameters K~, y~, K6, and y6.
According to Appendix A, the recursion relations for
this problem are

(+( T) = ex p ( 6/t' ~') (2.59)

where t is the deviation from the critical temperature,
t = ( T —T, ) IT, The suscep. tibility X6 is infinite in

the hexatic phase, but upon crossing AAl or AB from
the liquid or unlocked-tilted-hexatic phases, one has
for the singular part of X6,

(2.6O)

where q6 is the exponent of the point being crossed.
Even though C6gecays algebraically to zero in the C
phase, X6 is finite then, provided q6 = 36' l & 2. Both
susceptibilities are infinite in the unlocked-tilted-
hexatic phase. The quantity X6 diverges like (~+'

upon crossing A lE from the liquid side, while Xl
remains finite. Similarly, xl behaves like (l upon
crossing AqF, while X6 remains finite. As usual,
there are only experimentally undetectable essential
singularities in the specific heat on all the above tran-
sition lines.

These formulas may be analyzed near Bjust as was
done for the recursion near A. One recovers the
transition lines BCand BA, and finds that X6 diverges
as in Eq. (2.60). The quantity Xl is infinite in both
tilted hexatic phases.

The Debye-Huckel approximation is more difficult
to carry out here, because of subtleties associated
with the invariance of the inverse tangent part of e"
to transformations like s(r) s(r ) +27r and
m(r ) m(r ) +2rr.

D. Strong coupling

There is one remaining limit in which the Hamil-
tonian (2.1) simplifies: the limit of infinite h. To
study this situation, we rewrite Eq. (2.1) in a form
which makes manifest its periodicity as a function of
Hand @,

H =, $ cos[pH(r ) pH(r ')]—+Kt X cos[$(r ) —P(r ')]
(r r') (r, r )

+ — $ sin[pit( r ) —p8( r ') ] sin[/( r ) —P( r ') ] + h gcos[p8( r ) —pP( r ) ]
I'

(2.63)

where g, denotes a sum over nearest-neighbor sites on, say, a square lattice. This expression reduces to(r, r')
Eq. (2.1) in the continuum limit, and displays particularly simple periodic interactions between adjacent lattice
sites.
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When h is infinite the functional integrals in Eq. (2.2) become restricted to complexions such that

tt(r) =g(r)+2vrs(r)/p (2.64)

where s( r ) is an integer which can vary from site to site. The partition sum is then

Z = (nonce) f DO s

where

(2.65a)

s

H = g, cos[pg( r ) —pg( r ') ] +Kt cos[g( r ) —P( r ') ] + + sin[p$( r ) —pg(r ') ] sin[d ( r ) —
d ( r ') ]

«t) p p

(2.65b)

y(r) =d0+ t(r)
p

(2.66)

)t-t
K)

HEXATIC
OPIC
ID

A

LOCKED

TILTED HEX

6

FIG. 5. Possible fluid phase diagram in the strong-
coupling (h = ~) limit. The unlocked tilted phase, which is
not shown, may not exist in this limit.

and the dependence on the [s( r ) ) has dropped out.
This Hamiltonian can be thought of as representing
an xy model of magnetism, with a particularly compli-
cated periodic interaction between nearest neighbors.

Although we have not studied Eq. (2.65b) in detail
(this could be done using the Migdal approximate re-
cursion formula, ' for example), a qualitatively
correct phase diagram follows from considering dif-
ferent limiting cases. For sufficiently small K6 and

Kt, both C6( r ) and Ct( r ) should decay exponen-
tially in an isotropic fluid phase. In the limit K~ 0,
g must also tend to zero if, for simplicity, we impose
the restriction (2.3). Equation (2.65b) then exhibits
an unbinding of

6
- integer vortices in the 0 field, by

virtue of Eq. (2.64), For small K6 ', we expect a
hexatic phase, with power-law decay of C6( r ), and
exponential decay of Ct( r ). If K6=0, however, in-

teger vortices unbind for large enough K~ '. For K~ '

small, it is easily shown that correlations exhibit the
locked algebraic decay (with rt6 = q„=36')twe iden-
tified earlier with a locked-tilted-hexatic (smectic-Q
phase.

Finally, consider the limit K6 ~. One then has

I

where t(r) is an integer field, and the partition sum
becomes

Z = (const) $ exp Kt g cos 2trt(r ) 2nt(r')
lf( f }l (~ «r} p p

(2.67)
This is the p-state clock model considered by Jose
et al. ' The Migdal recursion formula and perturba-
tive renormalization-group analysis' suggest that
these models have two phase transitions for p greater
than a critical value p, . Although p, =4 in a weak-
coupling approximation, this critical value is not
known precisely for the Hamiltonian (2.67). For
p = 6, there could be a single phase transition from a
phase with exponential decay of C]( r ) to a phase
with long-range order (exp [i 8 ( r ) ] ) A 0, and locked
long-range order in exp[6itt( r ) ]. For any finite K6,
long-range order in exp[i/( r )] and exp[6itt( r )] is
impossible.

A tentative phase diagram consistent with these
observations is shown in Fig. 5. Hexatic, liquid, and
locked-tilted-hexatic phases are shown. Although the
unlocked-tilted-hexatic phase is absent, we cannot be
positive that this is indeed the case in the strong-
coupling limit.

III. SOLID PHASES

The starting Hamiltonian for investigation of the
solid phases is Eq. (1.16) above. We shall assume
that the elastic constants are sufficiently large so that
dislocations are bound, and shall investigate the pos-
sibilities for the tilt orientation parameter, 4( r )
= ( sin y) e'@' . For a rigid lattice, u~ = 0, and we
need only consider the coupling h of @ to the hexago-
nal asymmetry, plus the effects of vortices in the $
field, which have not been written explicitly in Eq.
(1.16). As discussed in Ref. 20, three phases are
possible for this system, at least if the bare value of h

is not too large. At intermediate temperatures, an
xy-like phase occurs, with quasi-long-range order in
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the correlation function C1(r ). For the phase to be
stable, the exponent q1 must lie in the range

1 1(q1& 4
(3.1)

1
At high temperatures, where q1 exceeds 4, the sys-

tem is unstable to vortex formation, and a paramag-
netic phase results, with exponential decay of Ci( r ).

1
For low temperatures, where q1 is less that 9, the

coupling h becomes a "relevant perturbation", and the
order parameter is locked to one of the six easy axes,
(e'4) &0. The three phases of the tilted molecules
on a rigid lattice are indicated in Fig. 6.

We now show that for a nonrigid lattice this inter-
mediate phase is destabilized by the 'magnetoelastic"
term in Eq. (1.16). To see this, consider the renor-
malized elastic constants determined from the Hamil-
tonian appropriate to the intermediate phase,

H, = —', J(ds ~ i2uu„'+Susie fd' (u,, —,'SS;; e)s ;s—s
2r(~y)2 (3.2)

in terms of which HI becomes

HI = (const) + —, d. r (2p, u» + A. uki)
1 2 2 2

+ —K1 d2r '7$ 2

The elastic tensor is then

(3.6)

U;, = d r u„r,S»= d rs(r)s(r) (3.8)

Substituting Eq. (3.8) into Eq. (3.7), it is now
straightforward to evaluate the averages in Eq. (3.13)
and find

( CR )jikl ( gikhjl + gilgjk) gijgkl
4jk

' ' ' '
4y, (jk+j )

W+ I(K1) (Aik~) (+~i(~jk ~ij~kl)
4 2

W
(CR ')

sjki
= " +

2 ( (SJSki) —(Sj) (Ski) )
4p, 2A

(3.7)
where

The inverse tensor of renormalized elastic constant
may be written

(Ck )jikl ((UijUil) (Uij) (Uki) )/dt, (3.3)

where

(A', iS=f d' ie ule di i —S diOill {3.io)

where Although the elastic part of the bulk modulus is

unaffected,
UJ = d r u/J(r (3.4)

(pR +~R) (CR )ijij (p +~) (3.»)
and A is the area of the system. Terms linear in u„
in HI may be eliminated upon defining a new strain
field,

the magnetoelastic coupling does alter the shear
modulus,

W 1

usJ usJ + ( sisj 5j)s
2p,

(3.S) jkR' = (Ck ')..., —
—,
'

(Ck ')..., = —[1+w'l(Ki) ]
P

(3.i2)

REGULAR
TRIANGULAR

SOLID

XY
TRIANGULAR

SOLI D

-1
K1

HEXATIC

UNLOCKED
TILTED HEXATIC

Since one readily finds that

where

(3.l3)

(3.i4)rt2=2/srKi =4sti (1
the renormalization of p, R' is infinite.

Thus, p, R vanishes, and the intermediate xy-like

phase in Fig. 6 is unstable to shear distortions. In
the language of the renormalization group the eigen-
value of w is

UNIAX I AL
SOLID

LOCK E D

TILTED HEXATIC

K6 0 K 6

FIG. 6. Solid and fluid phases when the coupling w of the
orientational order parameter to the elastic degrees of free-
dom is negligible. The xy triangular solid phase is unstable
when this coupling in nonzero.

(3.iS)

(uj) = ( (s;) (sj) —
z

5 jl( s ) I )
jtL

(3.16)

which is relevant (positive) in the intermediate phase.
The shear instability of the xy-like phase, leads,

presumably, to a distorted lattice, in which there is a
nonzero value of (e'~), as well as a uniform shear
strain



21 SOLID AND FLUID PHASES IN SMECTIC LAYERS WITH. . . 5325

Of course, the same phase would have resulted if we
had added the coupling to lattice distortions directly
to the low-temperature ordered phase of Fig. 6. Thus,
on the nonrigid lattice, the two lower phases of Fig. 6
will be replaced by a single uniaxial phase, labeled H
in Fig. 2. Although this is the simplest possible situ-
ation, we cannot, of course, rule out a first-order
phase transition between uniaxial phases with the
same symmetry.

To investigate the stability of the long-range tilt-

angle order in the H phase against fluctuations in $,
we return to the full solid-phase free energy (1.16),
and expand u„"about its minimum (3.16). We as-
sume for convenience that 80 =0, that h is positive,
and the tilt axis has aligned itself along the x axis, so
that (rt &

=0. We work, for simplicity, at sufficiently
low temperatures so that 1(s )1 can be replaced by
unity. Substituting Eq. (3.16) into Eq. (1.16), and
expanding in $, we find, to quadratic order in u„and

Wd'r 2izu; +h. ukk+ —'K, (V t)r'r+36h tr+r—$'+2wu Jf)r 0.17)

Upon Fourier transforming and using Eq. (1.17), this becomes

(2iz+X) lq;u;(q)1 +iz(q 5;, —q;qj)u;(q)uj( —q)
kgT 2 e

+ K,q'+36h + $(q) $(—q) +2iw [q„u,(q) + qru„(q)]$(—q)
p

(3.18)

It follows that
1

({re(q)1'& = K q'+36h+
y(2p, + Z) q'

(3.19)

I

tions used in the text. Consider first recursion rela-
tions valid near the point B in Fig. 4. %'e shall dis-
cuss a generalization of the Hamiltonian (2.61),
namely,

I7 = H, (K„y„{m})+H, (Kt„yl„{n})
Fluctuations in rtr(r) may be calculated by taking the
Fourier transform of Eq. (3.19)

&ld(r)l'&=JI
( '), &ld(q)l'& (3.20)

Note that the integral converges, even if h =0.
Thus, if the renormalized value of w'/iz is of order
unity or larger, fluctuations in $(r) will be of order
unity or smaller, and we expect that (e'a& 40. The
resulting phase is a uniaxial solid, labeled H in Fig. 2.

The nature of the transitions between the uniaxial
solid phase H and the various adjacent phases in Fig.
2 (B, C, or C') has not been determined.

r

I

+iq X m( r )n(r) tan '

X X
r

(Al)

z = )'Z'r"

then has the self-duality property

(A2)

where q is an integer. With q =1, K, = K6/p2,

y, =y6, Kb=K~, and yb=y~, this reduces to Eq.
(2.61). For K, =q'/4w'Kt, ———K, however, it reduces
to a representation of an xy model with vortices and a
cos(p8) crystal field obtained by Kadanoff. " The
partition sum
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(where the proportionality constant is a smooth func-
tion of K), discussed by Jose er r2l. Our recursion
formulas should agree with the known results in
this special case.

Following Kosterlitz and Anderson and Yuval, '
we restrict our attention to excitations with charges
+1, and expand Z in a power series in y, and yb

APPENDIX A: DERIVATION
OF SCALING EQUATIONS

r r

yP ZM. n
1 1

MW NW
(A4)

In this appendix, we-outline a derivation of the
renormalization-group or "scaling" recursion equa-

lt will be convenient in what follows to call the {m}
and {n } excitations green and white "vortices, "
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2M r 2NZ„„=tt f O
„ tt

i ] j~]
I l

(ASa)

respectively. The quantity ZM N is then the config-
urational partition sum for 2M green and 2% white
vortices,

G( r ) = In (( r )/a) (A6)

tices each obey charge neutrality. Each integration in

Eq. (A5) is excluded from circles of radius a about
all others vortices, and the functions G( r ) and
G ( r ) are harmonic conjugates,

with

HM~ ——2rrK, g G( r, —r, )m( r, )m( r, )
G(r ) =tan '

X X
(A7)

+27rK& $ G(R, —R, ) n(R;) n (R, )

+2iti $ G( r, —R, ) m( r, ) ot(R, ), (ASb)

and where the (r ) denote 2M green vortices, and the

(R, ) signif'y 2% white ones. The green and white vor-

A renormalization transformation can now be con-
structed by integrating over those configurations
where two oppositely charged vortices of the same
color approach each other with separations between a
and aes, with 5 small. Breaking up in integrations in

Eq. (A5) in this way, we can write, to leading order
in 5

2N r — 2M ) 2N
2 MNtt f d'R, "-'= rt d'; tt d'R;

j~] i 1 j~]
I 't

M M 2M ) 2N 8

+XX tt f d
„ tt f OR, fd" f O d."""

k]l ] i ]
i Wk, /

t d

1

+X X ttf d', . tt f O' R, f O'Rf d'd ""+O(ll')
f ] t 1 i 1 j-]

,j Wt, s

(As)

where the integrals are excluded from circles of
radii ae~ around all other vortices, and

X= fk r/

y =-,'(rk+ rl) .

(A9)

(A1O)

X =Rs-Rr

Y= —, (R, +R, )

(A11)

(A12)

The second term of Eq. (A8) sums over pairs of op-
positely charged green vortices at rk and r/, while

the third term sums over white charge-neutral pairs
at R, and R, . These pairs must be within ae~ of each

other. The integrations over y and Y are restricted
to annuli of width 5, while the x and X integrations
are essentially unrestricted. Other possible pairings
of vortices, neglected in Eq. (A8), generate +2
charged green and white vortices, and hybrid green-
white ones. The corresponding fugacities turn out to
be irrelevant variables in range of couplings we are in-

terested in, so we can neglect these effects.
To implement the renormalization procedure, we

want to carry out explicitly only the integrals over x,
y, X, and Y, and leave the remaining integrations in-

tact. Separating out the parts of HMN which depend
on rk and r/, or R, and R„wemust consider

M

I„,=f d2x d y exp 2rrK, g m(r;)[G(r; —r„)—G(r; —ro)]
i 1

i Wk, /

N

exp 2irt gn(R, )[ G(R, —rk) —G(R, —r&)]
j~]

(A13)

and

8 N Mt„=f d X d Yexp 2mKk g n(R, )[G(RO —R, ) —G(rd —R, )] exp 2iq gm(r, )[G(r, —R, ) —G(r, —R, )]
j 1 i 1j As, t

t

(A14)
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In writing Eqs. (A13) and (A14), we have set m( rb)
= —m(ri) =+1, and n(R, ) = n(—R, ) =1. These
expressions simplify upon using Eqs. (A9) —(A12)
to eliminate rk, ri, R„and R„and then expanding
inyand Y

duce a Hamiltonian of the same form as Eq. (A1).
Upon iterating this procedure until the effective
core diameter is increased from a to ae', we find re-

normalized couplings K, (l), y, (t), Kb(l), and yb(l)
which are solutions of

G(rj —r„)—G( r; —r () = (y 0,) G( r; —x)
(A1S)

G(RJ —rb) —G(R, —r, ) = (y'7„)G(R, —x)
(A16)

G(RJ —R, ) —G(RJ —R, ) = (Y'7r) G(R, —X )
(A17)

G(r; —R, ) —G(r; —R, ) = (Y'7x) G(r, —X)

dK, = —4& K~yy + 7Tq yb

dye = (2 —~K.)y. ,
dl

dKb = —4m'Kb'y'+ n q'y'
dI

dyb

6II
= (2 —rrKb) yb

(A23)

(A24)

(A25)

(A26)

('7G)~= ('7G)' (A19)

An integration by parts then allows us to use the re-

lation

'7'G(r ) =2vrs( r ) (A20)

to eliminate the integrations over x and X, After
manipulations of this kind, and taking the limit of
small 5, we find results which are independent of k,

I, s, and i, namely,

(A18)

Upon expanding the exponentials to second order in

y and Y, and averaging over orientations of these
variable, we can eliminate G in favor of G by exploit-

ing the identity

As a check on these results, we set K, = q'/4m'Kb
=—K initially, and find that this self-duality condition
is preserved under our renormalization transforrna-

tion

—K, (l) —, =06 q
di

'
4rr2Kb(/)

as it should be. Indeed, in this limit we recover the
results of Jose et al. ' Recursion relations for this
special self-dual problem have also been derived us-

ing the Kosterlitz method by Elitzur et al. Upon
setting q =1, Kb/p, y, =yb, Kb = Kb, and yb =yb, we
find the results (2.62) quoted in the text.

Recursion formulas for the Hamiltonian (2.46a)
appropriate near A in Fig. 4 can be found in the same
way provided we make the replacement

l„,=2wga A —2n K, a g m( r )m(r')G(r —r')
iqG ( r — ') — G ( r —r ')

P
(A2g)

+ —,mq'a' X n( r )n(r')G(r —r')

(A21)

l„=2nga A —2n3Kba2 g n( r )n(r')G(r —r')
~lrWr

t

+ mq2a2 g m—( r )m(r ')G(r —r ')
~lrWr

in Eq. (Al), and in subsequent equations. Since
there is now a logarithmic interaction between green
and white vortices, one expects that configurations of,
say (+) green and (—) white pairs will be favored in

addition to (+) green and (+) white pairings. These
new complexions generate hybrid vortex-disclinations
like the one shown in Fig. 7. It is easily checked

(A22)

~here A is the area of the system. The summations
are over pairs of the remaining (M —2) green and
(N —2) white vortices.

Inserting Eqs. (A21) and (A22) into Eqs, (A8) and
(A5b), we see that terms proportional to the area re-
normalize the charge-independent part of H. Since
there are now two fewer vortices, the remaining
terms in Eqs. (A21) and (A22) give O(y, ') and

O(yb ) renormalizations of the logarithmic interaction
in H. Proceeding exactly as in the Appendix of the
paper by Kosterlitz, ' we can rescale y, and yb to pro-

~~ ~V P(

FKJ. 7. Hybrid "vortex disclination" on a square lattice.
Excitations of' this kind are shown to be irrelevant in the
text.
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however, that the fugacity of such hybrids has the

eigenvalue

~hybrid 2 7 Ka ~~b (A29)

which is negative (irrelevant) for K, ) 2/rr. Ignoring
these irrelevant hybrids, and setting q = —t rrg/p,

K, = K6/p, y, =y~, Kt, = K t t and yq =y t t we recover
the recursion relations (2.47) quoted in Sec. II C.

APPENDIX B: EVALUATION OF C„(r )

We now evaluate the cross-correlation function
C„(r),defined in Sec. II B, in the unlocked phase
C'. For this purpose we may ignore vortices and dis-

clinations; ho~ever, we cannot set h =0, even
though h is formally an "irrelevant variable. " As we

shall see, C, (r) is itself of order h. To first order in

h, we have

c„(r)= (exp[6~ e( r ) ] exp[ —6id ( 0 ) ]

x exp(h d r'cos[6H ( r ') ])

=h d r' exp[6i8{ r )]exp —6i@(0)]

xcos[6e(r')])g p (B1)

where the expectation values on the right-hand side
of Eq. (Bl) are taken with h =0, as indicated. After
expressing 0 and $ in terms of the variables 0+ and

8, defined in Sec. II B, we find

C„(r ) = h (exp [6i [e ( r ) —e+(0) ]) ) I,~
d'r' exp 6i [nH (0) + pe ( r )

—e-(r ')]])hw (B2)

The expectation values may be evaluated using Eq.
(2.41) with h =—0. Making use of the relation
n+ P = 1, which implies that

-~P[e (r) —e (0)]', (B3)

[~e (o)+pe (r)-e (r')]'
=~[e (r') —e (0)]'+P[e ( r '} —e (r)]'

we find
' g+-aPq~ ' ay& '

Cx(r) =h—1
d

1

where

+p(1 u)q~ = q6 (B6)

The value of the constant in Eq. (B5) depends on the
nature of the short-distance cutoff, and of course,
this will be modified if we include the effects of
dislocations and vortices. However, the dependence
on r is correct, for sufficiently large r, provided we

use the renormalized value of q, .
In principle, if g is large, there can be a region of

the C' phase where P & a, or equivalently a region
where q6 & 36rt]. In this case, the integral (B4) will

be dominated by the region i r
' —r i

= 0, and the ex-
ponent q, will be equal to 36']. It should be noted,
however, that the analysis used here to calculate the
cross-correlation function C&(r) will also lead to a

36')
]term in Cr, (r) proportional to h'(I/r) '. This term

will actually dominate at large distances if we have

q6 & 36']. In this case, the leading terms in the
long-distance behavior of the correlation function
would have the same form as in the lo(. ked tilted
phase C, and the C' phase would be distinguished
only by the behavior of corrections to the leading
power law.

In the limit r —0, the correlation function C„(r}
becomes the expectation value (5(0) ), where 5 is

defined by Eq. (1.9). Clearly (5) is nonzero, and is

proportional to h for small h, in the C' phase. The
constant term in Eq. (1.10), for the large distance
behavior or Ca( r ) is of course equal to i (5) ~'-. The
second term in Eq. (1.10} can be obtained by the
methods of Sec. II B, with h =0 for convenience.

(B4)

where rt+ =18/rrK+ and rta is given by Eq. (1.11).
In the C' phase, we necessarily have q& & 4, so

that the integral (B4) is convergent at large distances.
If the gradient-coupling constant p is not too large,
then the inequalities (1.13) and (1.14) imply that

Pqz & 2 and hence ~qq & 2. Thus, the integral is

formally divergent at r '=0, and the major contribu-
tion to the integral comes from the region where r' is

close to the short-distance cutof'f.
We therefore find

C„(r)= (const) hr
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