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A computer simulation of the distribution of the magnetic moment in one, two, and three di-
mensions was carried out for singlet-singlet systems with a single impurity, both for short-range
(nearest-neighbor) and long-range interactions, using a molecular-field-theory approach. The
case of a magnetic host (J/A > 1) with a nonmagnetic impurity (J/A < 1), and of a magnetic
impurity in a nonmagnetic host at 7 =0 were treated. From the case of the single impurity, and
using an extension of the Edwards-Mathon-Wohlfarth model (used in transition-metal alloys)
for the case of rare-earth alloys, a Ginzburg-Landau equation was derived from first principles.
A solution was thus obtained for the spatial distribution of the magnetic moment, in good

agreement with the computer simulation.

I. INTRODUCTION

There has been considerable interest, since the ear-
ly 1960’s, on systems that have a singlet crystal-field
ground state. Particularly, systems with two singlet
levels have been studied extensively by means of dif-
ferent techniques. These two-singlet-level systems
have a singlet ground state, and the only excited state
is a singlet at an energy A above the ground state.
For such systems, all magnetic moments present are
of induced type; i.e., they result from polarization or
mixing effects of the states for zero magnetic field.
The model Hamiltonian considered was the following:

H=zVc1+§.<gUT/'Tj'“gl-LBHIEJiz , (1)
i i®j i

which has a crystal-field term, an exchange term, and
a Zeeman term corresponding to the presence of an
applied magnetic field.

In the molecular-field picture, one can think of the
molecular field as mixing some of the zero-field
singlet excited state into the zero-field singlet ground
state to give a polarized ground state with a magnetic
moment. But also, the existence of such a polarized
ground state is necessary in order to have a molecular
field. Therefore, there is a kind of self-consistent
condition that says that the ratio of exchange interac-
tion to crystal-field splitting must be greater than
some critical value in order to get magnetic ordering
even at zero temperature. In 1963, Bleaney' looked
at this threshold by calculating, in the molecular-field
approximation, the susceptibility. The crystal-field-
only inverse susceptibility is

1/x=(A/2g°uda?) (1/tanhA/2T)

where a = (0|J,1) is the matrix element of J,
between the two singlets. The presence of the ex-

change interaction corresponds to a shift in this ex pres-
sion; i.e., 1/tanh (A/27)becomes 1/tanh(A/27T) — A,
where 4 =4J(0)a?/A, and §(k) = 3 g,
xexplik-(T,—T,)] gives the expression of the
Fourier transform of the exchange interaction.

For ferromagnetic exchange, the 1/X vs T curve
shifts rigidly downwards until the critical value of the
exchange, 4 =1, is reached. At this value, the sus-
ceptibility diverges at zero temperature, indicating the
onset of magnetic ordering. For values of the ex-
change greater than the threshold, we have a sudden
increase of the ordering temperature, which becomes
a linear increase for larger values of the exchange.

Trammell? was one of the first to arouse interest in
singlet ground-state magnetism in his work published
in 1963. Later, Grover?® derived the excitation spec-
trum for ferro- and antiferromagnets, and he applied
it to Pr3* and Eu®* in cubic and hexagonal environ-
ments. The molecular-field theory can be used in
calculations involving the full crystal-field level
scheme. Such a theory was quite successful in ac-
counting for the behavior of the antiferromagnet
Tb,Y,_,Sb, in a work of Cooper and Vogt* in 1970, in
good agreement with experiments. There has been a
great deal of work on fcc Pr metal by Bucher er al.’
and Chu et al.® on the Pr;T1 compound,’ which
agree over all with the magnetic behavior predicted
by molecular-field theory.

A related method of approach to the single-singlet
system is the pseudospin representation. It was in-
troduced by Wang and Cooper®® and by Pink.'® In
the paramagnetic regime, the molecular-field states
are identical to the crystal-field-only states. In that
case, the pseudospin Hamiltonian is formally identical
to the Hamiltonian for the Ising problem in a
transverse field, where the crystal-field formally takes
the role of the applied field. One can then derive the
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equations of motion for the Fourier-transformed
pseudospin generating operations S*(k) and S™(k).
The simplest decoupling scheme for the equations of
motion is the random-phase approximation (RPA),
where at T =0 one replaces the S by its ground-state
expectation value (S?). The RPA takes account of
the fact that the true ground state of the system
differs from the molecular-field ground state, indicat-
ing the admixture of the molecular-field excited state
into the true ground state: (S?) measures that
difference. The RPA can be generalized to finite
temperatures.!! Within the approximation, one then
gets an expression which is self-consistent for the
(S8?) and thus the magnetization, viz.,

2

(J) a==2(S7) L ()]

1
1_lz(sm

where (J) = magnetization, a=(1|/;]0), and

A =49(0)a?/A. At finite temperatures, for an ex-
change slightly larger than the critical value for fer-
romagnetism at 7 =0, the Curie temperature is equal
to 0.1 of the crystal-field splitting. As T/A increases
from zero, the k =0 mode energy drops to zero. The
rate of decrease is slow until T is near the Curie tem-
perature, where the § =0 mode frequency goes to
zero very rapidly. For T > T, this mode frequency
rises again. From the self-consistent determination
of the collective excitations one can also find the
temperature dependence of the magnetization. The
main feature is the sharp falloff in magnetization
near Tc. As T¢/A increases, the RPA magnetization
shows double value behavior at high T in the ordered
regime. This indicates that there is a first-order
phase transition at 7. Wang and Cooper showed
that it occurs for T¢/A > 0.1. The discontinuity in
magnetization is very significant for T¢c/A=1. As
Tc/A still decreases further in the RPA, the size of
the discontinuity decreases, while the discontinuity in
magnetization persists. The magnetization is seen to
approach molecular-field behavior.

Elliot and Wood!? and Pfeuty and Elliott!? studied
in the singlet-singlet system the transition tempera-
ture 7¢. By assuming a second-order transition and
finding the temperature at which the susceptibility
diverges, they find a critical value of 4 =1.16 at
T =0 for a simple cubic lattice with nearest-neighbor
exchange. Here, a second-order transition was as-
sumed for (S?) and not for (J); i.e., it is the case of
an Ising transverse field system and not a physical
singlet-singlet problem. Nevertheless, this critical
value of 4 found by Elliott is exactly the same as that
found by Wang and Cooper.’

Hsieh and Blume'* and Hsieh!*''¢ have studied the
excitation spectrum, the susceptibility and the self-
consistent magnetization at 7 =0 in a large variety of
crystal-field schemes, using a method first introduced
by Pink of a (wo-pseudospins-'; system; the calcula-

tions were carried out in the molecular-field approxi-
mation and within the RPA.

On the other hand, a certain amount of experimen-
tal evidence has corroborated the theoretical predic-
tions for the singlet ground-state system. Most ex-
periments were connected to understanding collective
excitations, i.e., the magnetic exciton. The first neu-
tron scattering experiments in singlet ground-state
systems were those of Rainford and Houmann in
1971'7 on single crystal double hcp (dhep) Pr, and of
Holden et al.'® on TbSb. The greatest amount of ex-
perimental evidence comes from the study of Pr;TI
by Birgeneau, Als-Nielsen, and Bucher'® % and Bir-
geneau.!

As far as theoretical work in induced moments sys-
tems containing impurities is concerned, success has
been somewhat restricted. Wang and Shiles?% 23
presented a theory of such a system, both in the
paramagnetic phase and for the case of vacancy im-
purities. The level scheme they treated was that of a
singlet ground state and a singlet excited state, for
ions in a simple cubic lattice and with only nearest-
neighbor exchange interaction. They calculated the
energies of the impurity modes, the temperature-
dependent self-consistent magnetization at the single
impurity site and the local susceptibility. In order to
deal with the case of finite concentrations of impuri-
ties, they introduce scaling factors ¢ and (1 —¢) for
the impurities and host correspondingly when writing
the usual molecular-field expressions. In 1974,
Shiles, Taggart, and Tahir-Kheli?* treated the singlet-
singlet system and the singlet-triplet system using a
mean-field model for what they call a "two-compo-
nent system" rather than impure. They were able to
show a difference between the magnetization calcu-
lated with their model and with simple mean-field
theory; but their theory breaks down for large con-
centrations of impurities and away from the critical
region. In 1975, Lebech, McEwen, and Lindgard?
presented a molecular-field theory for the PrNd and
PrTb alloys, which was also worked out independent-
ly by the present author,2® who, considered the first
excited states of both Tb and Nd in Pr surroundings,
achieving a good fit with the experimental values of
Lebech, McEwen, and Lindgard.?® A generalization
of the molecular-field approach was published by Lin-
gard in 1977.%

In this paper, we intend to study the behavior of
the magnetization in singlet-singlet systems contain-
ing impurities, starting from the case of the induced
magnetization of a system with a single impurity.
Within molecular-field theory, we derive a self-
consistent expression for the magnetization at the im-
purity site or at a pure lattice site. This assumes the
form of a Landau expansion in powers of the self-
consistent magnetization. The cases of T =0 and fin-
ite T are considered. A computer simulation was
then carried out from that expression of the self-
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consistent magnetization to study how the said quan-
tity spreads from the impurity site into the pure lat-
tice sites, as far as the fourth neighbor. The calcula-
tion, the details of which will be given below, was
carried out using an interation procedure to give
self-consistent values for the magnetization at all
sites. This was done for the following cases: a one-
dimensional chain of atoms, a two-dimensional
square lattice, and a three-dimensional crystal (simple
cubic and bec). In all cases we considered the situa-
tion of a nonmagnetic impurity in a magnetic host
and a magnetic impurity in a nonmagnetic host. The
case of a long-range exchange interaction (simulated
by a 1/r? exchange) was considered for a square lat-
tice so as to compare those results with the usual
nearest-neighbor exchange and thus give a better ap-
proximation for the case of the exchange in a real
metal. Equivalent results are to be found with this
exchange interaction in the case of a three-dimen-
sional crystal. The variation of the magnetization
from the impurity site allowed us to consider the ex-
tension of the Landau expansion to the continuum
limit, for the values of the J/A ratio which will be
specified. This in turn leads us to a Ginzburg-
Landau equation for the magnetization. One then
finds a Schrodinger-like differential equation for the
distribution of the magnetization in space. A theory
for the finite concentration case is proposed, using a
model similar to that used by Edwards, Mathon, and
Wohlfarth? for transition-metal alloys, especially Pd-
Ni alloys. The results given by the model are then
compared to those given by the computer simulation.

II. MOLECULAR-FIELD THEORY OF
SINGLET-SINGLET SYSTEMS

We discuss first the case of a pure singlet-singlet
system in order to arrive to an expression for the
self-consistent magnetization, and then the case will
be specified for a single impurity at site / =0. We
shall use the molecular-field Hamiltonian in the pseu-
dospin formalism, H .y, viz.,

H (i) =A;S7+ SF E-]ij<5f> . (3)
J

where A, is the crystal-field splitting of the ith atom,
J; the exchange interaction between two atoms at
sites i and j, and here (S}) being the order parame-
ter will lead to the self-consistent expression of the
magnetization. We can picture this Hamiltonian in a
two-dimensional set of coordinates S*, S?. From this
picture, calling A=A, as it is still the same for all
atoms of the pure crystal,

A

3, 9,(55) @

coth =

and

H o= A+

za,<s;>]2]'/z . ©)

Then one has the usual relationship for singlet-singlet
systems

(S.), =7 tanh(Ho/2kT) (6)

where r is either the x or z component. Using Eq.
(5), this is

[A2+( E,&j(sf))zll/z
2kT

(S,-),=-;-tanh[ ] .m

With this we can write an expression for (S7), viz.,

[A2 +( Zj&j<sf>)2]1/2

kT sind . (8)

(57) =%tanh

If we take (Sf) to be small, we can then expand the
argument of the tanh, and using the relationship
tanh(A4 + B) = (tanhA4 +tanhB)/(1 +tanhA tanhB)
with A =A/2kT and

_ 1 (39557

B
2 (A247)

As B is small compared to 4, tanhB = B, so that
tanh(A4 + B) = (tanhA4 + B)/(1 + BtanhA4). There-
fore, tanh(A4 + B) =tanhA4 + B (1 —tanh?4) + terms
of order B%. If we substitute this expression into Eq.
(8), bearing in mind that in this approximation 6 is
small and sin =tanf == 6, and also recalling what A4
and B stand for, we obtain the self-consistent expres-
sion for the magnetization

oIS A
(S,)—IZ_ A Stanh KT
1 IS a
RO N el BT ©)

This has the form of an expansion in powers of (S}),
in which appear only the linear and cubic terms.

For a pure system, (S7) = (SF) because all sites
are equivalent. The ordering temperature is given by
the first-order term in Eq. (9); i.e.,

Ej‘gij <SIX> 1

(SF) = A 5 tanh(A/2kT)

which readily gives us the expression for the ordering
temperature as

—9-]234=1 . (10)
J

1
> tanh KT A

In we now call M; = (S7), the magnetization at any
site i of the pure crystal, we get the self-consistent
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expression
M,=M, z‘fllt h(A/2kT)
i= ij A2 an
1 (Ejtgij)lM,-} 2
+—————7—I[1—tanh*(A/2k7)] . 11
2 " arakry | tanh(8/2kD)] an

This self-consistent expression for M; assumes the
form of a Landau expansion in powers of the mag-
netization M; where only the odd powers of M, ap-
pear (up to the third power of M; in this approxima-
tion).

Let us now consider a crystal with a single impuri-
ty. In this case, (S*) # (Sf) at the impurity site. If
we include this impurity now in our system, we can
rewrite the general expession for the magnetization
as

x\ =1 _A_l_ gij <Sf>
(S1) =5 tanh[zkrl jz'__Ai

CAC Ik

1
. _,2 kT(Ai)2 a2

- 2
[1 tanh 7% T]
Here, A; = A for i =0 (impurity site), and A; = A,
for i #0 (host crystal sites). Let us call M, the mag-
netization at the impurity site (site i =0) and M;,
with / #0, the magnetization at any pure crystal site,
i.e., withi=1, ..., n. We will calculate M, and see
how this magnetization spreads away from the impur-
ity site, as far as the fourth neighbor of that impurity.
This will give us an indication of how fast or slow the
variation is from the value at the impurity site (and
whether a rise or a falloff, according to the case of a
magnetic impurity in a nonmagnetic crystal or a non-
magnetic impurity in a magnetic crystal). These
results will in turn tell us whether we have to adopt a
discrete or a continuum type of solution.

In order to carry out this calculation, we pro-
grammed an iteration cycle which will be cut at the
fourth neighbor to the impurity site. That is, we will
calculate My, M, M,, M;, M, moments at the im-
purity site and first, second, third, and fourth neigh-
bor, respectively; we first assume a value for M,
(which can be My=0.5, the maximum value that the
moment can take), and then, that value is to be used
to calculate M, M,, M3, M,, and finally a "calculated
M,." We set up a convenient convergence factor,
and when the difference between the calculated M,
and the "assumed M;" is smaller than the conver-
gence factor, the iteration will stop. We will thus ob-
tain the values of all the moments in a self-consistent
way.

The calculation was performed for the case of
T =0; although the finite 7 does not pose any princi-
pal problem because it would only involve an extra
factor which contains the temperature dependence
[see Eq. (6)], and we have preferred to carry out the

calculation for 7 =0 for simplicity. At 7 =0, our ex-
pression for the self-consistent magnetization is the

same as Hsieh’s, 516 viz.,
H;
T 2aT+ HO 3
with
H,- = 2 Mj(g,‘j .
J

As the exchange interaction is a function of the
two atoms involved, we have two different types of
exchange: between the impurity atom and any of the
host crystal atoms, and between any two host atoms.
We are left with two parameters mainly in our calcu-
lation: J/A (Jexchange between the impurity atom
and any host atom, A crystal-field splitting of the im-
purity), this being J/A > 1 for a magnetic impurity
and < 1 for a nonmagnetic or vacancy impurity; and
J'/A'(J' exchange between any two host atoms and
A’ crystal-field splitting of the host atom), this also
beingJ’'/A’ > 1 for a magnetic host and < 1 for a
nonmagnetic host crystal. We will see that it is also
important to specify in each case the ratios J/J’ and
A/A’, i.e., ratios between the two exchange interac-
tions and between the two crystal-field splittings.

A. Linear chain of atoms

We consider here the case of nearest-neighbor in-
teraction only (short range). The effective fields are
thus

Hy=29M, ,

H,=gMy+Jd'M, ,

H,=J' (M, + M;) 14)
Hy=J (M, +M,) ,

Hy=d'M; ,

and the expressions for the moments are always
given by Eq. (13). The calculation was performed
both for the case of a magnetic impurity in a non-
magnetic host and for a nonmagnetic impurity in a
magnetic host. The following set of curves [Fig.
1(a)] shows the spread of the magnetization from the
impurity site down to its fourth neighbor, for the
case of a magnetic impurity in a nonmagnetic host.
The curves show the spread of the magnetization for
the values of g/A (impurity) = 1.1, 1.5, 2, and 3,
i.e., for increasingly magnetic impurity, as a function
of the parameter J'/A’ (host). The magnetic impuri-
ty is seen to strongly polarize the first and second
neighbors, even for J/A (impurity) being just above
the magnetic condition. For values of J'/A’ from
0.99 to 0.8, and even to 0.7 in the case of a strongly
magnetic impurity, there is still an appreciable mo-
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FIG. 1. Singlet-singlet systems, 1 impurity (7 =0). One-dimensional case. Nearest-neighbor interaction. (a) Magnetic im-
purity in nonmagnetic host: ® —J/A=1.1, A/A"=1,J/9 =1.1/099; x —J/A=1.1, A/A" =1, J/J =1.1/0.01; 0 —J/A =3,
A/A ' =1,9/9 =3/0.99; and A—J/A=3, A/A"=1,d/9=3/0.01. (b) Nonmagnetic impurity in magnetic host: ® —J'/A"=1.1,
A/A'=1,97/9=1.1/0.99;, x —=J'/A"=1.1, A/A"=1,9'/9=1.1/0.01, 0 =J' /A" =3, A/A" =1, 3'/J=3/0.99; and A—-J'/A" =3,
A/A"=1,9'/9=3/0.01. In all figures, the abcissa « indicates the distance from the impurity (at 0) to the first, second, third,
and fourth nearest neighbors (indicated as 1, 2, 3, and 4). M is in bohr magnetons/atom.

ment at all sites. But asd’/A’ decreases further, the
decay in the magnetization at the second-, third- and
fourth-neighbor sites is very rapid. FordJ'/A"'=0.5
down to values of 0.01, there is only an appreciable
moment at the impurity site and its first neighbor
due to the magnetic impurity strongly polarizing only
that site. This is consistent with our having assumed
a short-range interaction. Because of this, the varia-
tion of the moments is only slow for J'/A’ between
0.9 and 0.99. Therefore a continuum solution for the
moments is more suitable in this region, whereas a
discrete solution is more appropriate for values of
J'/A" <0.9. We will discuss the continuum solution
fully in the last section of the paper.

The next set of graphs [Fig. 1(b)] shows the mo-
ment distribution from the impurity site down to its
fourth neighbor, for the case of a nonmagnetic im-
purity in a magnetic host crystal. The curves show
the spread of the magnetization for the values of
J/A'=1.1, 1.5, 2, and 3, i.e., for an increasingly
magnetic host, as a function of J/A. We can see that
the magnetization increases as one moves away from
the impurity site towards host atoms. As the host
becomes increasingly magnetic, the nonmagnetic im-

purity tends to have less and less influence on the
bulk value (taken here as 0.5, i.e., the maximum
value that the moment can take in a singlet-singlet
system). While for d'/A’=1.1 the depolarizing effect
of the impurity is felt by all neighbors, for values of
J'/A’ corresponding to a strongly magnetic host the
effect of the impurity is very localized. Indeed, only
for J/A near the magnetic condition is the effect felt
by all other neighbors. As J/A decreases even fur-
ther from the value 1, i.e., the magnetic condition,
the hole created in the lattice becomes more local-
ized. We can see that the effect of the vacancy is
then only felt by the first neighbor. This is con-
sistent with our assumption of a short-range ex-
change interaction.

B. Case of a square lattice

We now study the case of a two-dimensional
square lattice. The study will be done again for a sin-
gle impurity, either magnetic or nonmagnetic, in a
host that is, respectively, nonmagnetic and magnetic.
The calculation of the moments was performed for
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T =0; the finite-temperature case introduces further
mathematical difficulties though the fundamental
physics is retained. The computer calculation follows
the same procedure as that used for the linear chain.
One then obtains self-consistent values for all the
moments. The equations that give us the effective
fields acting on the impurity and host atoms are the
following:

H0=43M1
Hl =3M0 +§'(2M2+M;)
H1=2J'(Ml+M4) , (]5)

H3=J'(M| +2M4) N
H4=JI(M2+M3)

The moments are given by Eq. (13), with A, =A for
i=0and A;=A'fori=1,...,4. Equation (15) cor-
responds to the nearest-neighbor (NN) exchange in-
teraction.

The calculation was carried out for two different
physical situations: (i) the case of an insulator, simu-
lated by a short-range exchange interaction between
an atom and its NN shell, (ii) the case of a metal,
this being simulated by a long-range exchange in-
teraction proportional to 1/r° between an atom and
its neighbors, as far as the fourth neighbor. We thus
obtain the moment distribution at the impurity site
and at its first, second, third, and fourth neighbors.

For the case of a magnetic impurity in a nonmag-
netic host, we obtain a falloff of the magnetic mo-
ment as one goes away from the impurity towards
outer shells of atoms. In the case of a nonmagnetic
impurity in a magnetic host, we see an increase of
the moment from its value at the impurity site up to
the maximum value it can reach, the bulk value being
M = % For all the situations described above, a dis-

cussion of the values of the moment distribution is
given not only in terms of the J/A and J'/A’ parame-
ters but also the ratios J/J and A/A’. It will be
shown that these two ratios must be taken into ac-
count in order to explain the different behaviors in
some of the curves. Figure 2(a) shows the decrease
of the moment from its value at the impurity site, as
one goes away from the impurity towards the atoms
of outer shells. Ford'/A’ small (i.e., < 0.5), the
magnetic impurity effect will be felt mainly by the
nearest-neighbor atom, which is consistent with our
having imposed a short-range interaction. In that re-
gion, the curves show a sharp decrease of the mo-
ments for atoms further away from the impurity.
This has the effect of depolarizing the impurity,
thereby reducing its moment and thus the moment at
its nearest neighbor.

As J/A is increased, the impurity moment in-
creases and its variation becomes almost negligible as
one reduces J'/A’. This shows that, as the impurity
becomes more strongly magnetic, the surrounding

"vacancies" have less and less of an effect on it. The
moments at the outer atoms will rapidly fall off as
the impurity will only polarize its nearest neighbor

in an appreciable way. For large values of J'/A’, we
can see that all moments still have an appreciable
value; this is increasingly so as J'/A’ approaches the
magnetic condition, i.e., the value 1. The outstand-
ing feature is that a single impurity with a J/A just
above the magnetic condition produces moments at
all sites for values of J'/A’ just below the critical ratio
1. In this region, the host atoms will not produce an
important depolarization of the impurity atom, so
that the effect of the magnetic impurity will be felt by
all atoms to the fourth neighbor. Thus, in this re-
gion, we have to give a continuum solution to the
problem, which will be given later when we discuss
the Ginzburg-Landau equation for the moment distri-
bution.

Let us now analyze the results of the special cases
in which we take the different possible combinations
of J/J', A/A’ which still allows us to have the same
values for J/A and for J'/A’ as those discussed in the
previous case. This is shown in the next set of
curves in Figs. 2(b) and 2(c).

For the case of A/A’=2, i.e., the impurity atom
having a greater crystal-field splitting between the
two singlet levels than that of the host atoms, we
must also increase by the same factor the parameter J
so that /A remains unchanged. The main effect is
that of the enhancement of the impurity and first-
neighbor moments, for all values of §'/A’. For
values of the latter near 1, we can see an interesting
effect on the nearest neighbor to the impurity in
Fig. 2(b). Asd’'/A" increases, M, grows rapidly and
can even become greater than M,, the moment at the
impurity site. Looking at the diagram of the square
lattice, we can see that the impurity atom has four
nearest neighbors, labeled 1. The first-nearest neigh-
bor has in turn, as nearest neighbors, the impurity
atom, two atoms of the second shell labeled 2, and
one atom of the third shell labeled 3. Therefore, H,,
the effective field acting on the impurity, can be
larger than H,, the effective field on the first-
neighbor atom. Equation (13) gives the value of the
magnetic moment at any site / in the case of M, the
denominator will be larger than the denominator for
the corresponding expression for M|, as A'=2A and
Hy > H,. Thus, for sufficiently large values of M,
and M;, i.e., for values of §'/A’ near the magnetic
condition, M, can be larger than M,. This will apply
to a very narrow range of values of J'/A’, since M,
and M; decrease rather rapidly.

If we increase the ratio J/J’ keeping A/A' =2, i.e.,
the impurity is now strongly magnetic and the
enhancement of My and M, is even more dramatic:
this can be clearly seen in Fig. 2(b). In this case, M,
cannot be larger than M, for values of §'/A’ near 1
as the effective field Hy is now very much greater
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FIG. 2. Singlet-singlet systems, 1 impurity (7 =0). Two-dimensional case. Nearest-neighbor interaction. (a) Magnetic im-
purity in nonmagnetic host:
o—J/A=1.1, A/A" =1, /J' =1.1/0.99; 0—J/A=1.1, A/A" =1, I/ =1.1/0.5; x —=J/A=1.1, A/A" =1, J/9 =1.1/0.01; A—
J/IA=3, A/A =1, 3/F =3/099, 01 —FJ/A=3, A/A" =1, J/F =3/0.5, and V—J/A=3, A/A"=1, J/F =3/0.01. (b) Magnetic im-
purity in nonmagnetic host: @ —d/A=1.1, 9/ =2.2/0.99, A/A"=2; x —J/A=1.1, 9/F =2.2/09, A/A"=2; A—-F/A=11,
J/g =2.2/0.5, A/A'=2; and O —=J/A=1.1, /3 =2.2/0.01, A/A"=2. (c) Magnetic impurity in nonmagnetic host: ®—
J/A=1.1, A/A'=0.5/1, §/J =0.55/0.99; x —J/A=1.1, A/A"=0.5/1, /9 =0.55/0.6; A—J/A=1.1, A/A"=0.5/1,
/I =0.55/0.5;: 0 —J/A=3, A/JA'=0.5/1, 9/ =1.5/0.99; V—-F/A=3, A/A'=0.5/1, 9/9' =1.5/0.5; and O—J/A =3,
A/A"=0.5/1, /9’ =1.5/0.01. (d) Nonmagnetic impurity in magnetic host: @ —J'/A’=1.1, A/A"=1,d'/9=1.1/0.99; x —
J/A =11, A/A' =1,9/9=1.1/0.5; A—F'/A"=1.1, A/A'=1,3'/9=1.1/0.01; O -F'/A" =3, A/A" =1, J'/§=3/0.99, O—
J/A =3, A/JA =1, 9 /I=3/0.5; and V-J'/A"=3, A/A" =1, §'/9=3/0.01. (e) Nonmagnetic impurity in magnetic host: ¥V —
J/A =11, A'/A=2,9/9=22/099; 0—-9'/A"=1.1, A'/A=2,9/9=2.2/08, 0-J'/A" =11, A'/A=2,9/9=2.2/0.6; x —
/A =11, A"/A=2,9/9=2.2/0.5, and A—=J'/A' =1.1, A’'/A =2, 9'/J=2.2/0.01.
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than H,, and although M, and M; have still appreci-
able values in that region, the value of M, cannot be
greater than M. The fact that the impurity has such
a strong moment will compensate the anomaly that
was to be observed in Fig. 2(b).

If we now reduce Jand A by %, thus leaving the

ratio J/A unchanged, we see another interesting ef-
fect for J/A just above the magnetic condition, i.e.,
for a not too strong magnetic impurity in [Fig. 2(c)].
The curve shows the abrupt falloff of all the mo-
ments, even the impurity moment, below a certain
value of J'/A’. Although J/A > 1, there exists a re-
gion for which § <J', i.e., the region of large values
of §'/A’. This results in a progressive depolarization
of the impurity atom, whose moment decreases as
J'/A’ decreases. We can establish the condition for
all moments to go to zero by means of an expansion,
for small values of the M,’s, of Egs. (13) and (15);
to first order in J/A or J'/A" we get

J’
My=2—(M,+M;) ,
4 2A’( 2 3)

M3=-—‘3,M. ,
2 (16)
gl
My=—M, ,
27!
2
Mo=_A<gM| y

but

IMo g M, + M)

M,=
ETN 24’

Therefore, if we substitute the expressions (16) into
the equation for M, we get the condition
J? 5 972 _

+5E- -1, 17
AN 4 A7 an

For a given J/A and a given A/A’ we can calculate
for what value of J'/A’ all moments go the zero.
There will be a certain value of J'/A’ for which J be-
comes greater that J’. At this point, the remaining
magnetization on the impurity atom will decrease rap-
idly as the host becomes strongly nonmagnetic, until
it vanishes according to Eq. (17). We can give an
upper limit for this particular situation to occur, i.e.,
there will be a value of J/A above which the mo-
ments will not fall to zero. Indeed, this further con-
dition is
1 AN >0 ,

otherwise there cannot be a solution for Eq. (17). In
the case of Fig. 2(c), this becomes J?>/A? < 2, or
J/A < 2. This means that for J/A > /2 this
behavior of the moments will cease.

This is clearly illustrated by Fig. 2(c), for /A =3,

withJd=1.5 and A=%A. The impurity is now
strongly magnetic and M, and M, still have finite
nonzero values for small values of J'A’. If we com-
pare this curve to that which had the same J/A but
instead a value of Jdouble than the one it has now,
i.e., with Fig. 2(b), the first neighbor feels a weaker
effect from the magnetic impurity than before, be-
cause J is now lower.

Let us now turn to the case of a nonmagnetic im-
purity in a magnetic host, always assuming a short-
range exchange imteraction between any pair of
atoms in a square lattice. The equations giving the
effective fields at each site i are similar to Eq. (15);
here, we have assumed that the atoms outside the
fourth-neighbor shell have a moment equal to l,
i.e., the bulk value. We thus expect the moments to
increase from the value at the impurity site towards
the maximum value % as one moves towards the
outer shells of atoms. The system of equations (15)
now becomes

H0=43M1 »
H] =3M0+J'(2M2+M3) ,
H,=2d' (M, +M,) , (18)

H3=JI(M|+2M4+17) »
H4=<-T(M2+M3+l) N

with the moments given by Eq. (13). The following
curves, i.e., Fig. 2(d), shows the results obtained
from the computer calculation.

We can see that My < M| < - - - < M, for all
values of /A <1 and §'/A" > 1. The effect of the
vacancy is to depolarize the four atoms of the first-
neighbor shell, thus lowering the value of M,. This
effect is also felt, to a lesser extent, by the atoms of
outer shells which consequently have larger moments
than M, but lower than the bulk value. The moment
M, at the vacancy site will be maximum for J/A near
the magnetic condition. As this parameter decreases,
the effect of the magnetic host atoms polarizing the
impurity becomes weaker, therefore M, decreases.
We see that asd'/A’ increases, M also increases.
The effect on the moments M,,. .., M4 will be of an
increase in their values, which will gradually tend to

%. The depolarization effect of the vacancy is felt by

the other atoms to a lesser extent as the main effect
is the polarization of the impurity atom by the
strongly magnetic host. A similar effect is achieved
for the same J'/A’ but now with J', A’ being twice the
values they had previously. The following curve
[Fig. 2(e)], shows the moment distribution for vari-
ous ratios of the parameters J, J', A, and A’. Figure
2(e) is an interesting physical situation: J'/A’ is still
greater than 1 but J, A are twice their values such
that the ratio J/A is unchanged, i.e., <1. Now,
J>J and A/A'=2. Here again, the main effect is
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seen on M. As J > Y, the effective field H, can be
very large, the more so the nearer J/A is from the
magnetic condition, as M, will be larger in that re-
gion. Therefore, we can have a range of values of d’,
A’for which M, > M, but still be smaller than the
bulk value % The moment M, is thus greater than
My, M3, M,, always being that M, > M3 > M, because
these atoms will not feel the effect of the impurity.
Only when =4’ does M, become smaller than M,,
Ms, and M,. 1If we decrease J/A further than that
value, we regain the picture of Fig. 2(d), i.e., the
moments increase monotonically from M, to My,
maximum value of all the moments and smaller than

1

7 As J'/A’ increases, the host becomes more

strongly magnetic and it reaches a value J' >, at
that point, for all values of J/A the condition
My< M, < --- < M, holds again.

If we reduce .J by one-half and A by the same
amount so that the ratio J/A is left unchanged, we
see very little change in M. But because J is now
weaker, M, will take slightly lower values because it
will feel the depolarization effect of the vacancy.
Again, the main effect is observed on M,, the other
moments showing very little change.

1. Simulation of a metal (long-range interaction)

We simulate now the case of a metal, always for a
square lattice at 7 =0. The exchange interaction is
now long range; i.e., it allows for interactions of an
atom with neighbors of up to the fourth-neighbor
shell. The exchange interaction is taken proportional
to 1/r3 in order to simulate the situation in a real
metal. The system of equations which gives the ef-
fective fields is now the following:

8M,
55

H0=g[4M1+\/§M2+§M3+

Hy=IMo+3J' 2M2+M3+—\172(M, +My)
+%(M1+2M4)4-—/\/’;L\/.2Ml
H2=§%+3'2(M2+M3)+%+i:i
+§L\/_2—(M|+M4)] . (19)
H3=3Ag° +g’ 2M4+M1+—A\%2+§1T2(M1+M4)]
H4=pﬂ% +J’ M2+M3+—2175(M1+M4)

1
+ (M + M) +——= (M, + M;)
F (Mt M)+ (M ’]

The following curves [Figs. 3(a) and 3(b)], show the
case of a magnetic impurity in a nonmagnetic host,
for the physical situation in which the exchange in-
teraction is long range. The curves show that the ef-
fect of the long-range interaction is that of increasing
all moments, as compared with their values in the
case of a short-range interaction. The polarization ef-
fect of the impurity is felt by all atoms within the
first four-neighbor shells that were considered. As
J'/A’ decreases, all moments decrease; but we can
see that M,, M;, and M, take values which are at
least two orders of magnitude higher than in the case
of the short-range interaction. As J/A increases, the
magnetic impurity has a stronger moment, and it
feels less the effect of the vacancies surrounding it;
indeed, the effect is that of a considerable enhance-
ment of all moments.

Consider now the case for which J/A is such that
& A have twice their values in the previous case [see
Fig. 3(b)], so that the ratio J/A is unchanged. This
results in an even stronger enhancement of all mo-
ments. If we consider the case of J’, A" having twice
their values of the previous case but still J'/A’
remains unchanged [Fig. 3(b)], we arrive at another
interesting physical situation for /A > 1. The strong
g’ will compete with the corresponding J, producing a
depolarization effect which will cause a gradual falloff
of all moments, though in a less abrupt fashion than
in the situation with short-range interaction. The ef-
fect is due to the two competing interactions: J, now
long range, slightly larger than the critical ratio 1, and
g’ greater than Juntil it reaches a value J'/A’ which
is equal to J/A. At this point, all moments fall rapid-
ly to zero. A condition for this to occur can be got
along similar lines to Eq. (17): For the case of the
long-range exchange, the expression becomes more
cumbersome than in the case of the short-range ex-
change because the effective fields have more com-
plicated expressions, as can be seen from Eq. (19).
We therefore present a curve [Fig. 3(b)], which
clearly shows the physical situations just described.
We now consider a nonmagnetic impurity in a mag-
netic host, for a long-range exchange interaction, al-
ways in a two-dimensional square lattice. Here again,
we have assumed that all the moments in the outer
shells have a value equal to the bulk value; i.e.,
M,»=% for all atoms outside the first four shells of

neighbors to the impurity. The most important effect
to be observed is that of the strong polarization of
the vacancy impurity by the host atoms. For all
values of J/A, given a certain J'/A’, we see that
My<M, < --- <M, The moment M, will be ac-
cordingly larger than corresponding to the short-range
interaction, and so all moments will be enhanced.
The moments M, ..., M, are now almost unaffected
by the vacancy for all values of J/A.

The case for which J A have twice their previous
values but still /A is unchanged is again an interest-



21 SPATIAL DISTRIBUTION OF THE MAGNETIC MOMENT IN . .. 5281

M
(c)
0.5
0.4
/
4
0.3
0.2
0.1
0
d [ 2 3 4 d
M
M
(d) o5 (e o5
' S [ . . s
L 1 t H
! Dechit Detait
Detail X a
0.4 P 0.4
|
i
i
|
0.3 0.3
4
0.2 0.2
0.1 0.1
[] 0
1 3 R} ¢ ] 3 i a ]

FIG. 3. Singlet-singlet systems, 1 impurity (7 =0). Two-dimensional case. 1/r3 interaction. (a) Magnetic impurity in non-
magnetic host: ® —/A=1.1, A/A"'=1, 9/ =1.1/0.99; x—J/A=1.1, A/A'=1,9/F' =1.1/05; 0-J/A=1.1, A/A' =1,
JI =11/0.01; A—J/A=3, A/A'=1, J/J' =3/0.99, 0—I/A=3, A/A' =1, I/F' =3/0.5; and V—-F/A=3, A/A' =1,
J/9' =3/0.01. (b) Magnetic impurity in nonmagnetic host: ® —J/A=1.5, A/A"=2, /9" =3/0.99; x—J/A=1.5, A/A' =2,
/T =3/0.5,0-J/A=1.5, A/A"=2, J/F' =3/0.01; A—J/A=1.1, A/A'=1/2, §/F' =1.1/1.98; 0—-F/A=1.1, A/A'=1/2,
9/F =1.1/1, V=d/A=1.1, A/A"=1/2, 3/F =1.1/0.6; and 0O—J/A=1.1, A/A"=1/2, 9/9'=1.1/0.4. (c) Nonmagnetic impurity
in magnetic host: ® —J'/A"'=1.1, A/A" =1, 3/9 =0.99/1.1, x-J'/A"=1.1, A/A' =1, §/F =0.3/1.1, 0 -F /A" =1.1, A/A" =1,
J/9 =001/1.1; A=J'/A" =3, A/JA'=1,9/ '=0.99/3; V—-9'/A" =3, A/A" =1,9/9" =0.3/3; and O=J'/A" =3, A/A' =1,
J/9' =0.01/3. (d) Nonmagnetic impurity in magnetic host: ® —J'/A"=1.1, A/A'=2,9/9' =1.98/1.1, x-d'/A"=1.1, A/A"' =2,
J/9 =14/1.10-9 /A =11, A/A'=2,9/F =1.2/1.1; A=F' /A =11, A/A' =2, 9/9 =1/1.1, V= /A =1.1, A/A' =2,
J/9' =0.4/1.1; and 0—-J'/A"=1.1, A/A' =2, 9/9 =0.02/1.1. (e) Nonmagnetic impurity in magnetic host: ® —J'/A"'=1.1,
A/A'=0.5/1, 9/ =0.495/1.1; x—J'/A'=1.1, A/A"=0.5/1, /9’ =0.475/1.1; and O —=J'/A"=1.1, A/A' =0.5/1, 9/F =0.1/1.1.
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ing one. Just as in the short-range situation, for
values of d >d’ and until /A becomes equal to
J'/A’, the moment M, can be greater than M,. As
we let Jdecrease, M, will gradually decrease and be-
come only greater than M,, and finally when J=4'
we regain the situation My < M, < - - - < M, [Figs.
3(c) and 3(d)]. The following curves, Figs. 3(c),
3(d), and 3(e), show graphically the cases just dis-
cussed.

C. Three-dimensional crystal

Let us now consider the case of a three-
dimensional crystal. For simplicity, we have only
considered nearest-neighbor interaction between any
pair of atoms in the lattice. The equations for the ef-
fective fields at each site will depend on the geome-
trical configuration of the lattice. If we take first a
simple cubic lattice, we get

Hy=69M,

Hi=IMy+3J' (4M, + M)
H,=2d' (M, +M;+M,) . (20)
Hy=3d'M,

Hy=J'M,

We have again assumed that all moments outside the
fourth-neighbor shell vanish. This is a good approxi-
mation for small values of /A", ie., /A" <0.5.
For larger values of this parameter, M, is no longer
small and we have to turn to the continuum expres-
sion and calculate down to which site the effect of
the magnetic impurity is still felt by the host. Alter-
natively, one can look for a value of J/A for which
the moments just form; in this case, a linear
Ginzburg-Landau equation can be used. The com-
puter calculation was done using the same iteration
procedure as for the linear-chain and the square-
lattice cases. For J/A greater than 1, and due to the
fact that the magnetic impurity has now six nearest
neighbors which will feel its effect, we can see that
the moments are considerably enhanced if we com-
pare them to their values in the two-dimensional
case. For J/A large, the impurity is strongly magnet-
ic and feels very little the effect of its nonmagnetic
surroundings; the impurity moment is thus nearly
unchanged for all values of J'/A’. We can see that
the general behavior of the moments is similar to the
behavior observed in the one- and two-dimensional
cases. This is clearly shown in the following set of
curves, Figs. 4(a) and 4(b).

If we now look at the case for which J/A is slightly
above the magnetic condition but J, A have values
equal to one-half of their previous values, we see
that for J <J' all moments decrease and after the
condition J=q' is reached, all moments fall to zero

very rapidly. We can again get a relationship, by
means of a small moment expansion, that will tell us,
for a given J/A, the value of J'/A’ for which all mo-
ments just vanish. We thus have, to first order in
og/A and PT/A/,

_Iu
MEYY
_3d'M,
=352
M
N
_39M,
oA

M;

M,

My

If we now substitute these into the expression for M,
we get the condition for all moments to vanish, viz.,

l_‘g_z_ + ls_ﬁ =1 (21)
2 AA 4 A" '
If we take §/A > 1 but let J, A have values equal to
twice their original values, we go back to the original
behavior of the system, i.e., a strong enhancement of
all moments due to the presence of the magnetic im-
purity. The main effect is clearly felt by the first-
neighbor shell, as we have assumed a short-range in-
teraction. We can see again the same outstanding
feature as before: In such a system, a single magnet-
ic impurity is enough to create strong moments, for
J'/A" near the magnetic condition and for values of
J/A just above the magnetic condition. The calcula-
tion shows that a value of J/A=1.01 is enough to
create nonzero moments in the system, for values of
J'/A’ near the critical ratio 1. We will make use of
this result when we treat the continuum solution.
The following curve, Fig. 4(b), shows the two situa-
tions discussed above.

Let us now turn to the case of a nonmagnetic im-
purity in a magnetic host, for the case of a simple cu-
bic lattice with nearest-neighbor interaction. We
have again assumed that all the moments outside the
fourth-neighbor shell are equal to the bulk value %
Accordingly, the equations for the effective fields be-
come

H0=6¢9M1
H] =,9M0 +J'(4M2 + M4)
H, =29 (M, +M;+M,) , (22)
Hy=39'M,+1.5
H4 =07’M1 +1.5
The magnetic host polarizes the vacancy impurity,
and all moments increase monotonically from the im-
purity value to the value at the fourth-neighbor shell.

As J'/A’ increases, and although the condition
My< M, < -+ < M,still holds, the values of M),
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FIG. 4. Singlet-singlet systems, 1 impurity (7 =0). Three-dimensional case. Nearest-neighbor interaction. (a) Simple cubic
lattice. Magnetic impurity in nonmagnetic host: ® —J/A=1.1, A/A'=1,8/9'=1.1/099;, x—J/A=1.1, A/A'=1, 9/9'=1.1/0.5;

o0—-d/A=1.1, A/A"=1, /9" =1.1/0.01; O —F/A =3, A/A" =1, /9" =3/0.99, A—F/A=3, A/A" =1, $/F =3/0.5; and V —

J/A=3, A/A"'=1, /9’ =3/0.01. (b) Magnetic impurity in nonmagnetic host: ® —J/A=0.55/0.5, A/A"'=0.5/1, /9" =0.55/0.99;

x —9/A=0.55/0.5, A/A'=0.5/1, J/g' =0.55/0.2; 0 —J/A =0.55/0.5, A/A"=0.5/1, 9/’ =0.55/0.3; and A—J/A=0.55/0.5,
A/A'=0.5/1, 9/9' =0.55/0.2. (c) Nonmagnetic impurity in magnetic host: ® —J'/A'=1.1, A/A"'=1,9'/9=1.1/0.99;

xJ'[A"=1.1, A/A" =1, 9'/9=1.1/0.3; 0—-F'/A" =11, A/A"=1,3"/9 =1.1/0.01; o—F'/A" =3, A/A'=1,9'/g =3/0.99; and A—
J'/A" =3, A/A"=1,9'/9=3/0.3. (d) Nonmagnetic impurity in magnetic host: ® —g'/A"'=1.1, A'/A=1/2,9'/9=1.1/1.98; x —

J'/A =11, A'/A=1/2,8'/9=1.1/1.8; 0T /A" =11, A'/A=1/2,8'/d=1.1/14,; A-F' /A" =11, A'/A=1/2,9'/J =1.1/1.2;

V-9'/A"=1.1, A'/A=1/2,9'/9 =1.1/0.4; and O—I'/A"=1.1, A’/A=1/2,9"9 =1.1/0.02.
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M,, M3, M, get very close to each other and tend to

the bulk value % We thus see that the effect of the

vacancy is too weak to affect the magnetic host. This
situation is clearly seen in Figs. 4(c) and 4(d).

If we let /A’ be just above the magnetic condi-
tion, and we take J, A equal to twice their values in
the previous cases still keeping the ratio J/A un-
changed, i.e., d/A < 1, We have again the situation
encountered in the case of the two-dimensional lat-
tice. Namely, M, can be larger than M, for all
values of J/A for which §>J’. When one gets to
the point where d=4J’, one comes back to the condi-
tion My < M, < --- < M,. Figure 4(d) shows this

situation. Another interesting configuration is that of

a bee crystal. We discuss this case again assuming
nearest-neighbor interaction for simplicity.

In the case of a magnetic impurity in a nonmagnet-
ic host, we write the effective fields assuming that
the moments outside the fourth-neighbor shell are
zero. This will be seen to be valid again for
J'/A"<0.5; for /A’ near the magnetic condition,
where all moments will be seen to be large even for

(a)

by M

J/A just above the magnetic condition, we will have
to use the continuum expression. We thus have

Hy=B8M,
H1=JM0+(\9,(3M2+4M3) ’
I‘,2=4071(M1+M4) , (23)

Hy=2J(M,+2M,)
il4=(gl(2M3+Mz)

The following curve, i.e., Fig. 5(a), shows the mo-
ment distribution in space, from the impurity site
down to the fourth-neighbor shell of atoms. The
behavior is very similar to the simple cubic lattice
case; in the bee, the moments My and M, are larger
as there are now more neighbors that are going to
contribute to achieve the enhancement.

In the case of a nonmagnetic impurity in a magnet-
ic crystal, we have again assumed that all moments
outside the fourth-neighbor shell are equal to the
bulk value % The corresponding expression for the

0.5 Py .
s 1 H [
b
L T I
| Detail Detail De::n
4 ¢ e
0 Detail g ‘-:
x K o
g
:
0.3 A\ 4
0.2
0.1
1
0
2 3 4 d

FIG. 5. Singlet-singlet systems, 1 impurity (7 =0). Three-dimensional case. Nearest-neighbor interaction. (a) bcc lattice.
Magnetic impurity in nonmagnetic host: @ —g/A=1.1, A'/A=1, J/J =1.1/099;, x—J/A=1.1, A'/A=1, Jig' =1.1/0.5: O —
J/A=1.1, A'/A=1, J/J' =1.1/0.01; A—g/A =3, A'/A=1, JkJ' =3/0.99, V—-J/A=3, A’/a=1, J/g' =3/0.5; and O—g/A =3,
A'/A=1, /g =3/0.01. (b) Nonmagnetic impurity in magnetic host: A—J'/A'=1.1, A/A =1, I/ =0.99/1.1; 0—=g'/A’ =1.1,
A/A =1, /g =0.5/1.1, V=g'/A" =11, A/A" =1, J/g' =0.01/1.1, @ —J'/A' =3, A/A" =1, JiJ =0.99/3; x—g'/A" =3, A/A" =1,

J/J' =0.5/3; and 0 —g'/A" =3, A/A" =1, JAJ' =0.01/3.
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effective fields becomes

H0=8¢-(JM| ’
H| =JM0+J'(3M2+4M3) »
H;=49' (M, +M,) , (24)

Hy=J QM +4M+1) ,
H4=07’(M2+2M3 +25) .

The following curve, Fig. 5(b), shows that the
behavior My < M| < - - - < M, still holds, although
the values of My, ..., M, are somewhat higher than
in the case of the simple cubic crystal. As the host
becomes more strongly magnetic, we can see that the
effect of the vacancy is very weak; i.e., it is hardly
felt by the neighbors, and the moments M,, . . ., M,
have values very close to the bulk value %

D. Conclusions from the computer simulation

We have studied the moment distribution for the
one-, two-, and three-dimensional lattices, both for
the case of a magnetic impurity placed in a nonmag-
netic host, and for a nonmagnetic impurity in a mag-
netic host. We have treated the case of a short-range
interaction (nearest neighbor) and that of a long-
range exchange («1/r3), in order to simulate, respec-
tively, the case of an insulator and that of a real met-
al.

The general behavior of the curves corresponding
to the case of a magnetic impurity in a nonmagnetic
host lattice is that of a decrease of the moment, from
the maximum value at the impurity site to the lowest
at the fourth-neighbor site. If the J/A parameter is
just above the magnetic condition, we have seen that
the presence of a single impurity is enough to create
moments at all sites, for values of /A’ near the crit-
ical value for magnetism. It is in this region that a
continuum expression should be used. A Ginzburg-
Landau equation will be used, in its linear form (i.e.,
for small moments, as will be explained below) for
values of J/A which just set moments on all sites.
The calculation has showed that a value of J/A equal
to 1.01 is sufficient to produce the formation of
nonzero moments. For values of J'/A’ smaller than
0.5, we will use discrete solutions, as given by the
equations corresponding to each case dealt with in
the previous sections.

The behavior of the curves corresponding to the
case of a nonmagnetic impurity in a magnetic-host
lattice is that of an increase of the moments from the
lowest value at the impurity site to the maximum
value at the fourth-neighbor site. Here again, for
values of J/A near the critical ratio 1 we will use the
continuum expression. But for lower values of that
parameter, we will use the discrete solutions by
means of the equations corresponding to each case.

IIIl. CONTINUUM REPRESENTATION

Bearing in mind the results of the computer simu-
lation, we can now go back to the general equation
for the singlet-singlet problem. We will show that
one can transform the discrete Landau expansion
into an integro-differential Ginzburg-Landau equa-
tion. We will get a self-consistent equation for
M (T) which involves such parameters as the ex-
change interaction J(T, T') and the crystal-field
A(T). The temperature dependence will also be in-
cluded in this expression.

We will then show the similarity between our ex-
pression for the Ginzburg-Landau equation deduced
from first principles, and that used by Edwards,
Mathon, and Wohlfarth?® in treating the Pd-Ni alloys.
We shall first treat the case of a single impurity of
the magnetic type in a nonmagnetic host. Using the
experimental results of Sarkissian®® for the Pr-Tb sus-
ceptibility, we will derive the value of the constant
that we need in order to proceed to the finite concen-
tration case. We then calculate the critical concentra-
tion for magnetism to occur. Although caution must
be applied to the results, we will finally give a com-
parison between this critical concentration and the
result found in the computer simulation.

We therefore start by transforming the discrete
Landau expansion into the continuum representation.
This expansion is then the following one:

A(T)
2kT

o emE) ar

M(T) = 1 tanh
2A(T)

1 —tanh?(A(T)/2kT)
4A(T)(2kT)

<[ [ [ec eomEyar 25)

The exchange interaction has been written as
J(T,T') and not as J( T — T ') because, due to the
presence of the impurity, the translational invariance
does not hold any more. We now have two different
types of exchange, that between host-host atoms and
that between host-impurity atoms. We also have two
different crystal fields, a A(T) for all host atoms
where r #0 if we take the impurity to be at the ori-
gin r =0, and A(r =0) for the impurity atom. We
write the equation for M (T), which is a Schro-
dinger-like differential equation, and then use an ef-
fective potential which allows us to deal with our
physical situation.

There are two ways of transforming an integro-
differential equation such as Eq. (25) into a differen-
tial equation. The first method uses a convolution
integral and the expansion of J(k), the Fourier
transform of the exchange interaction, for small k.
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The other method, a rather more sophisticated one,
was used by Werthamer.’® We shall here use the
first method.

We start then with Eq. (25) but we write the ex-
change as (T —T'); the fact that there is an impuri-

J

Jo-mmErar = far sl fexplif(r =719 aRi 51

We can commute the order of integration as

ty will be introduced later in the formalism when
solving the differential equation, and for the time be-
ing we can keep the translational invariance as if we
were dealing with a pure system.

The linear term in Eq. (25) can be written as

ISE fexp[if’-?']M(E") dx’ .

ﬁfdffdl_("fd?’exp[—i(l?—f')-?']exp[ii?]ﬂ(i)M(l—(")

Using the definition of the & function, in this case
8(k —k'), we get

fg(r—r')M(?')dr
JIEIME)exp(iK-7) d R

(2 )3

Assuming that we can expand J(K) around =0, we
get

2 8%
dk?

Calling 3'(0) = 82J/8k?| k=0, we get

J(x)=9(0) +«

k—0+

fJ(O)M(k)exp(lk T)dk

(2 )3
sy S KM @) eI R +
Going back to real space, this expression is
JOYM(T)-J"(0)VM(T)+ - - - . (26)

We can write explicitly J(0) as

J) = (2 3 fg(?—?')d?

As we are going to discuss only the paramagnetic re-
gime in these alloys, we can omit the term in M?> for
as being much smaller than the linear term. Using
Egs. (25) and (26), we get

-1 A(T)
M(T) = 25(T) tanh Y5
x [M(T)J0) =J"(0)VM(T)] . X))

The temperature-dependent coefficient in Eq. (27)
depends upon r because the crystal field is r depen-
dent. Thus we get, calling

A(T) = L tanh
2 )

A(T

A(T)
2kT

»

r
the expression
-J"(0)A(T) +Vim(T)

+14(T)J(0) —11M(T) =0
which can be written as

RV VT6 o J AL M(F)=0 .

g  g70)4(t)

(28)

Let us define a correlation length «~! which will give

an idea of how the magnetization varies in space.
Following Edwards, Mathon, and Wohlfarth,?® we
define

J0)A(T) -1

K_,=[ J'(0)A(¥) ]”’=
1) =1/4(F)

77(0) ]l/2 |

29

We are now going to introduce into the equation the
information about there being an impurity. We can
think of the coefficient of the linear term in Eq. (28)
as being composed of a constant value V, corre-
sponding to the host matrix, and a term V(T) which
is the effective potential around the impurity atom,
i.e., in a sphere of radius calculated from the atomic
volume of the host atom. If we call B=—1
+A4(T)J(0), then B=Vy+ V(T). Thus, for r > a,
V(T)=0. As our impurity will be taken to’ be mag-
netic, this will impose a condition on the coefficient
of the linear term. This coefficient is in fact k2, the
square of the correlation length previously defined.
The condition of the impurity being magnetic shows
that the fact of J/A being > 1 is consistent with a
positive value of k2, as it should be. We can pursue
the analogy with the Schrodinger equation in order to
solve Eq. (28), which has now the form

VM (T) +«*M(T) =0 . (30)

As Edwards, Mathon, and Wohlfarth, 2 point out, it
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is unreasonable to apply the Ginzburg-Landau equa-
tion within the atomic sphere that surrounds the im-
purity. Therefore, we are only interested in the exte-
rior solution of Eq. (30); i.e., we will calculate M (T)
for r > a. In that case,

a_[grwam |”
Vo '

Using the notation of Edwards, Mathon, and
Wohlfarth, 2® namely,

p=kryy=pM ,
Eq. (30) becomes

— 42
-dipz‘»‘i+¢=o : 31)

This equation must satisfy the boundary condition for
p =ka, i.e., it has to match the logarithmic derivative
(1/y)(dy/dp) at p=«ka must be finite for p — oo
and equal to a constant, which we call y. This is

/) (dYldp) poea =7 -

The solution is thus written as

expl—«(r—a)l
Kr

1 —vyka

_H
M(r)= Ty

1+
Ay

|

If we integrate M (r) over all space outside the
sphere of radius a, we get X, the susceptibility for
the single impurity:

® M(T) -
Xsi = J; Tdr .
We can write a relationship between Xpo and X, as

Xsi -1+ 3(1 —yka) (1 +«a)
a1 +y)

(33)

Xnost

We now use the experimental results of Sarkissian;?

the low-field susceptibility of Pr-Tb alloys for very
small concentrations of terbium is Xp;—1p =15 x 107
emu/g, which we will use as the value of our Xi;.

J

xalloy =1 3(1 —yxa)

dexpl—2k(b —a)] +1
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Koehler®! gives a value of
Xp,=15.5%10"* emu/g .

We can now use the simplified expression for ka
given by Shender in terms of the parameter J/A of
the magnetic impurity, viz., ka = (J/A —1)'2, and
using the result of our computer simulation that tells
us that the threshold value of J/A for which there is
just formation of moments is J/A=1.01, i.e., when
the moments are very small as they are just forming,
we find that ke =0.1. With these values, we find
that y =10, using Eq. (33). With this result, we can
now go to the finite-concentration case in order to get
the critical concentration for the onset of magnetism.
We use the same model as that of Edwards, Mathon,
and Wohlfarth?® which is to put the magnetic impuri-
ties in a lattice whose lattice constant is determined
by the concentration ¢. The boundary condition for
the Schrodinger-like equation, using a Wigner-Seitz
approximation, is then

1 dy
— =y for p=«a
Y dp P
=1/p for p=«b

where b is the radius of the Wigner-Seitz sphere.
The relationship between this radius and the concen-
tration is given by ¢ =100(a/b)3, where c is given in
percent. The solution of the Schrodinger-like equa-
tion for the magnetization is, fora <r < b

Aer Be—KI

1+4¢ 4
Kr Kr

M(r) = Ai (34)

0

where
4. dexp(—2kb) ,

(yka —1) exp(ka)

B
B=
3(1—y)expl—-2«k(b—a)] —(1+7y)

and
d3=(xkb+1)/(kb—-1) .

The susceptibility of the alloy can be calculated by in-
tegrating M (r) between r =a and r = b. This gives

ka +(yka —1)

Xhost Ka(b3"‘03)

The pole of X gives the condition for the phase tran-
sition and thus the value of the critical concentration
for the onset of magnetism. The condition is

[(kb+1)/(kb—1)]expl—2k(b—a)l=1+y/1—v .

We now use the values of k, y that we already ob-

dexpl—2k(b—a)1(1—y) =(1+y) | °

(39%)

r

tained from the single impurity problem and we final-
ly get ¢eii =3.2%. With this result, we can now go

back to the computer simulation and see whether this
critical concentration is comparable to that found nu-
merically. The critical ratio J/A for the formation of
moments was J/A =1.01; for the case of a simple cu-
bic lattice and taking account of neighbors down to



5288 EDUARDO BALANOVSKI 21

the fourth-neighbor shell from the impurity, having a
single impurity in such a lattice meant a concentra-
tion 1/30, i.e., ¢ =3.3%. This result has to be treat-
ed with great caution as we have only accounted for
nearest-neighbor interaction in the three-dimensional
lattice in our computer simulation, which is not the
most realistic model for a metal. Also, our calcula-
tion was done using mean-field theory (see Sec. II).
Nevertheless, the result of the critical concentration
found by means of the Ginzburg-Landau equation
gives a value which is comparable to that found nu-
merically. A more exact model should account for
interactions between the impurities and deal with the
disorder associated with these. Finally, the more
general Ginzburg-Landau equation which includes
the cubic term should be used to account for situa-
tions in which the moments are not necessarily small
and where that nonlinear term may become impor-
tant.

IV. GENERAL CONCLUSIONS

A computer simulation of the distribution of the
magnetic moments in one-, two-, three-dimensional
lattices was carried out for singlet-singlet systems
with a single impurity, using a molecular-field-theory

approach. A discrete solution for the value of the
moment was obtained, as a function of the parame-
ters J/A and J'/A’, ratio of the exchange to the crys-
tal field in the impurity and the host sites, respective-
ly. For the continuum solution, a linear Ginzburg-
Landau equation for the magnetic moment as a func-
tion of r was derived from first principles. Within the
limits of the theory, a solution was obtained for the
spatial distribution of the moment, and a value for
the critical concentration of impurities for the onset
of magnetism was calculated, the latter to be found in
good agreement with the computer simulation.
Although future studies should account for the vari-
ous approximations introduced in the model, we be-
lieve that the behavior of singlet-singlet systems con-
taining impurities has been found to be the correct
one.
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