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at first-order phase transitions
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We propose (in d =2) a modified form of the droplet model studied by Langer and Fisher.

We solve this model exactly and with the renormalization group. Both methods obtain an

essential singularity of the form proposed by Klein, Wallace, and Zia; however, the renormaliza-

tion group misses an additional singularity identical to that of the standard droplet model. We

discuss the implications of this result for Ising models in &l = 2. Higher dimensions are also

discussed.

I. INTRODUCTION

One of the most interesting and challenging prob-
lems in the study of condensed matter is to develop a
theory of the metastable state. The problem is im-

portant from the materials point of view since many
important substances are metastable. It is also im-

portant from the point of view of fundamental statis-
tical mechanics as no underlying formalism equivalent
to the ensemble theory of equilibrium statistical
mechanics is available for the study of metastability.

One idea for treating metastability inspired by
mean-field theories, is to assume that the functions
of interest (e.g. , equations of state or thermodynamic
potentials) can be analytically continued through the
transition point (Fig. 1) and that this analytic con-
tinuation describes the metastable state. This as-
sumption of analytic continuation has been ques-
tioned by various workers in the field. ' Although
most agree that analytic continuation through the
point of the first-order transition is impossible (i.e.,

FIG. 1. Magnetization as a function of magnetic field for
T ( T, . Dotted lines represent analytic continuation of the

isotherm to represent the metastable state.

there exists a very weak singularity at the transition
point (in addition to the step function jump in the or-
der parameter) there remains disagreement as to
whether analytic continuation arourtd the transition
point in the complex H (:or p) plane can correctly
describe the rnetastable state. Two approaches which
reach opposite conclusions on this point are the
droplet-model approximation pursued originally by
Langer' and Fisher' and the renormalization-group
(RG) work of Klein, Wallace, and Zia (KWZ). This
difference is somewhat surprising since many of the
conclusions in KWZ are based on considerations
similar to those employed in the droplet model.
Moreover, both approaches have been criticized"
The droplet model for ignoring possibly important
classes of fluctuations' and the RG approach for cer-
tain apparent inconsistencies.

The purpose of this paper is twofold. First, we

modify the standard droplet model in a way which
makes it (we believe) physically more reasonable.
With this modification the model is still solvable ex-
actly on two dimensions. In the second part of our
program we analyze the model in two dimensions
with the RG technique employed by Klein, Wallace,
and Zia and clarify certain misconceptions about this
approach. We also investigate the possible analytic
continuation of our modified droplet model and find
that it cannot describe a metastable state.

This paper is structured as follows. In Sec. II we
briefly review the droplet model and the RG ap-
proach of Klein, Wallace, and Zia. In Sec. III we in-
troduce the modified droplet model and discuss its
applicability to Ising models in two dimensions, and
we solve the model exactly. In Sec. IV we present
the RG solution and in Sec. V we discuss higher di-
mensions. In the final section we discuss the impli-
cation of this work for theories of metastability and
for recent series analysis of the singular structure at
the first-order phase transition.
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II. DROPLET MODEL AND RG APPROACH

In this section we review briefly the properties of
the droplet model and the RG approach used by
Klein, Wallace, and Zia.

The droplet model- approximates the free energy
per site of an Ising like model by assuming that the
only important fluctuations are spherical droplets,
1.e.,

F(H, K) - Xexp( —Hl~ —kl~ ')
I~O

(2.1)

If we restrict ourselves to two dimensions and de-
fine r = (H/K)/we can convert Eq. (2.1) into'

F(H K) =—t p ««&«'-+'&yr
H&o

in the limit H 0. This integral can be done by
completing the square and we find

(2.2)

1

K~
F(H, K) =(JH ) 'exp erfc . (2.3)

2 H

In the limit H 0 the singular structure of Eq.
(2.3) is the same as that of Eq. (2.1). F(H, K) has
an infinitely differentiable singularity9 at H -0. In
addition, there is a branch cut along the negative H
axis which introduces a discontinuity in the imaginary
part of

2J(IHI)'"1 'exp( —K'/4IHI) . (2.4)

The interpretation of this result is that in the drop-
let model one cannot analytically continue through
the point of the first-order transition (i.e., H -0) to
obtain a description of the metastable phase, however
one can analytically continue around H 0 in the
complex H plane (Fig. 2) and obtain such a descrip-
tion. The real part of the continued free energy is
the free energy of the metastable phase, and the

is a valid description of the magnetization per spin
for large enough H. Here K is the coupling constant
and c the coordination number. From considerations
similar to those employed in the droplet model, H
should be large enough so that the damping of the
droplet fluctuations should be dominated by the
volume term; i.e.,

aK/H =1 (2.6)

Here a is a constant (dependent on the dimension
d) which would be determined in a complete theory.
Since the singularity occurs for values of the coupling
constant K and magnetic field H such that H 0 and
K/H ~ we must find a relation between H, K and
H, K. This is accomplished via the RG. For Hsuffi-
ciently small and K )K, (the critical value of the
coupling constant) RG flow lines approach the neigh-
borhood of the H =0, K = ~ fixed point (Fig. 3). In
this neighborhood the recursion relations are (in d =2)

discontinuity in the imaginary part is inversely related
to the lifetime of that phase. This model, if applica-
ble to real systems, would mean that the metastable
phase is capable of being described by analytic con-
tinuation of the stable phase functions although in a
different and more subtle way than envisioned in the
mean-field theories. Evidence for a weak singularity
at H 0 for T ( T, has been found5, 6, s in the Is,ng
model. The droplet model, however, has ignored a

large class of fluctuations the inclusion of which may
be important.

Klein, Wallace, and Zia investigated the possibility
of finding such a weak singularity in the Ising model
with the aid of the renorrnalization group. The basis
of the approach is the following assumption: For
large enough magnetic field H the dropletlike fluc-
tuations which cause the singularity will be sufficient-
ly damped to allow truncation of the low-temperature
expansion for the free energy per spin. That is

M(H, K) =1+e '" '"+--

COMPLEX H

H' = b~H, K' = bK (2.7)

I i I I I I / I / I I I.~

I I I I I I I I I I I I

FIG. 2. Location of singularities of the free energy of the
droplet model in the complex H plane. There is an infinitely
differentiable singularity at H =0 and a branch cut along the
negative real axis.

FIG. 3. Schematic representation of the renormalization-
group flow lines for the Ising model in d =2. Restriction to
two scaling fields was imposed for simplicity.
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We now renormalize J times until

H=b H (2.8)

K=b K, oK=H (2.9)

From Eqs. (2.5), (2.8), and (2.9) we have that the
singular part of M ( H, K) is given by

M(HK) =exp[ —2(a +ca)K /h[ (2.10)

There are many unanswered questions about this
result which, if correct, strongly suggests that no ana-
lytic continuation to a metastable state is possible in

d =2. This is rather puzzling as the RG method
depends heavily on droplet-model ideas and the drop-
let model does allo~ such an analytic continuation.
Another confusing feature of this method is that in-

stead of renormalizing until aK/H = i one could just
as plausibly have renormalized until

H=A (2.»)
where the equation

M(H, K) =1+e-'"-""'+ {2.12)

in a valid description. Using Eqs. (2.8), (2.11), and
(2.12) gives the singular function

Ms(H, K) =exp( 2cK/Hd ' —d)

In the next section we modify the droplet model in

order to begin to take into account fluctuations which

are not dropletlike. We shall see that this modified
droplet model has a singularity which is a linear com-
bination of a usual droplet-model singularity [i.e. , Eq.
{2.3)] and a term similar to Eq. (2.10). We shall also
see that the RG approach of KWZ correctly obtains
the latter but misses the former. Moreover many of
the puzzling aspects of the KWZ approach mentioned
above will be clarified.

III. MODIFIED DROPLET MODEL

Hl" &) Kl (3.1)

The main assumption of the droplet-model approx-
imation is that the dominant fluctuations are droplet-
like; i.e., the surface to volume ratio is I" '/ld. The
basis of this hypothesis is that for very low-

temperature entropy considerations should be secon-
dary and the structure of important fluctuations
should be determined by energy considerations. That
is, dominant fluctuations are those for which the e»-

erpy difference resulting from a fluctuation, e.g. , of
overturned spins is minimized.

This minimal energy difference is clearly realized
by droplet configurations.

The basis of our modification is the observation
that for a fluctuation of size l such that

the energy difference generated by a fluctuation is

dominated by the volume contribution and the sur-

face contribution is negligible. Since the energy con-
tribution from the surface is negligible the fluctua-
tions can lower the free energy difference by assum-

ing more ramified shapes to increase entropy. How-

ever, droplets are not uniform. There also exists
internal surfaces which can increase entropy by

becoming more numerous and ramified. This
mechanism might allow the fluctuations to remain as

compact droplets. The lower the dimension, howev-

er, the less likely this will occur. (We will discuss
higher dimensions in Sec. VI.) We find support for
this point of view from global flow diagrams in RG
calculations.

Consider the RG flow for the Ising model in two

dimensions (Fig. 3). For unrenormalized H small

but nonzero and unrenormalized K ) K, the stable
fixed point is at infinite temperature. ' We interpret
this in the following way. The renormalized free en-

ergy includes only the ei"fects of fluctuations with a

linear dimension greater than b" where b is the re-

scaling length and» is the number of times we have
renormalized. For large enough» the renormalized
temperature is high. We can then ask what kind of
fluctuations occur for systems in high magnetic fields
and high temperatures. Although (as far as we

know) no calculations or simulations have been per-

formed to answer this question, qualitatively we

would conclude that due to the high temperature the
dominant fluctuations would not be spherical droplets
but more ramified shapes.

Conversely, in the percolation problem where we

know" that large clusters are droplets independent of
the value of the magnetic field, like variable h (ghost
field), the RG flows indicate that the stable fixed
point is h = ~, p =1, wh'ere p is a temperaturelike
variable (Fig. 4) and p =1 corresponds to T =0. Re-
turning to the RG flow for the d =2 Ising model we

can see from approximate calculations that in the

neighborhood of the H =0, K = ~ the renormalized

coupling constant K grows upon renormalization and

pc

FIG. 4. Schematic representation of the renormalization-
group flo~ lines for percolation in rI =2. The probability p
that a site is occupied is the temperaturelike variable and h,

the ghost field, is analogous to the magnetic field.
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continues to grow until K " —H "'. For H~"' )K "'
the renorrnalized K decreases. (For the sake of sim-
plicity we are restricting ourselves to two scaling
fields. )

The character of these RG flows and the physical
arguments discussed above lead us to propose that a

more realistic approximation to Ising behavior for
small Tin d =2 is

I
max

F(K H) $ p Hl kl+ -X -p Hl —K-l (3 2)

axis. Consequently, if this modified droplet model
correctly describes the physics in two dimensions
then analytic continuation around H =0 in the com-
plex H plane is not a correct method for describing
the rnetastable state.

We have also investigated the effect of smoothing
the cutoff in Eq. (3.2). We have considered

OO

e
—Hl —KL2

F (K,H) =
l 0 1+exp[(HI" —KI" ' —SK"/H" ') ]

I 0 l~l
max (3.8)

where

I,„=aK/H, u & 1 (3.3)

and a. &1, 7 ~2. The second sum in Eq. (3.2) is
clearly not a representation of the system for droplet
sizes up to infinity but is only meant to represent a

possible first-order correction to the standard droplet
model. We will not concern ourselves very much
with this term. We will however, argue (Appendix
B) that it's singular behavior is different from the
first term, and hence, cannot cancel singularities ob-
tained from the first term in Eq. (3.2).

Consider then only the first term in Eq. (3.2):
aK/H

F(K H) X p Hl Kl--
I 0

(3.4)

F(K H) e-{,K /H)(f +f) dt
H

K
~ e ~K/ )(t+t dtH»

p-(K)IH)(t +() dl
H

(3.5)

Completing the square we have
O ( O '1

F(K,H) = exp erfc1 K K

As in Sec. II we can convert this sum into an integral
in the limit H 0

where 5= o."—u" '. If we were to take limp
we would retrieve Eq. (3.4). It can be shown (see
Appendix A and Sec. IV) that F (K,H) given by Eq.
(3.8) has the same asymptotic behavior as F(K, H)
[given by Eq. (3.4)] if n & 2. That is, if the damping
for large droplets (i.e. , I & aK/H) is stronger than
that of the standard droplet model an essential singu-
larity of the form given in Eq. (3.7) is introduced.

IV. RENORMALIZATION GROUP

In this section we apply the RG technique emoo

ployed by KWZ to the modified droplet mode1. We
use the block-spin ideas of Neimeijer and Van
Leeuwen" and Kadanoff. "

Consider Eq. (3.4):
aK/H

F'( K H) X p Hl Kl-—
l 0

The summand in this series, gives the probability
of finding a cluster of size I in the droplet-model ap-

-Hl2-Kl .
proximation. ' Ne "' 'is the number of such clusoo

ters. After renormalization clusters with I & b

(where b is the rescaling length) renormalize into
clusters of size I' = I/O Clearly the n. umber of clus-
ters of size I' must be equal to the number of clus-
ters of size I & b. This implies that in terms of re-
normalized variables H', K', and N'= N/b', the
number of clusters of size l(nl) is given by

O )

1 K)
exp erfc (a+ —) . (3.6)K

~here

—I(ttl'b2e —H l —K'l'
(4.i)

The first term in Eq. (3.6) is identical to the free
energy for the usual droplet model [Eq. (2.3)]. The
second term however behaves asymptotically as

H'=b H, K'=bK

From the equation"

(4.2)

[(a+—')K] 'exp[ —(a +a)K /Hl (3.7) F{K, H) =g ( K, H) + (1/b') F{K', H'}, (4.3)

The effect of the cutoff at I,„=uK/H is to gen-
erate an essential singularity. The primary impor-
tance of this term is that it cannot be analytically con-
tinued to describe the metastable state. The difficuloo

ty arises from the fact that the analytic continuation
of Eq. (3.6) diverges as H 0 along the negative real

which is a fundamental equation of position space
RG we see that after renormalization

4RK/H aK /H
pH)Kl g(KH)+gpH(K l

I 0 I 1

(4.4)

where H' and K' are given above and g (K,H) (the
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inhomogeneous term) has the information about
droplets with I'(1. As we can see from Eq. (4.4) as
we renormalize, the cutoff uK'/H'= uK/bH is re-
duced by a factor b. We now renormalize until

In order to have the number of droplets of size
I' —I/b equal to the number of size I we must have
the summand invariant under renormalization. This
imposes the choice 5' = 5 and

nK'"/H'" = I (4.S) p'=b" 'p . (4.I2)

where

(4.6a)

(4.6b)

F(g' ', g' ') =e "
From Eqs. (4.5) and (4.6) we have that

In(a K/H)
lnb

(4.7)

(4.8)

So that from Eqs. (4.5), {4.7), and (4.8) we have a

singularity of the form

F {IIIt, ) e-(a +a)K /H (4.9)

Comparing with Eq. (3.7) we find that apart from
an amplitude the RG procedure correctly produces
the essential singularity of the droplet model modi-
fied with a cutoff.

It is also clear from Eq. (3.6) that this RG pro-
cedure has completely missed a singularity identical
to that of the standard droplet model. From this we

are forced to conclude that KWZ in their treatment
of the Ising model may also have missed such a

singularity. We discuss this point again in Sec. VI.
However, we will point out here that the presence of
a term similar to that in Eq. (4.9) makes the real part
of the analytic continuation of the stable state free
energy diverge as H 0 from the negative real side.
Hence, this continuation is not a proper description
of the metastable state. The RG also allows us to in-

vestigate in a rather simple way the behavior of the
smoothed cutoff model [Eq. (3.8)]. From Eqs. (3.8)
and (4.2) we have

For these values of the renormalized coupling con-
stants the renormalized free energy in Eq. (4.3) is re-
duced to (after J renormalizations)

From Eq. (4.12) we see that for r~ ) 2 (since as
H 0 we renormalize an infinite number of times)
the renormalized p will diverge and we recover the
sharp cutoff model as far as the singular behavior is
concerned. This will be shown rigorously in Appen-
dix A.

One important question concerning the RG pro-
cedure is the justification for stopping the RG flow at
uK' '/O' ' =I [Eq. (4.5)]. Clearly one cannot apply
the above method if one renormalizes until aK' '/
H' ' ( 1. Since at this point the renormalized free
energy vanishes and all of the information resides in

the inhomogeneous term in Eq. (4.4).
In order to understand why we cannot stop at

nK'J'/H'~'=2 (for example) we must reexamine Eq.
{4.4) in more detail.

In order for Eq. (4.4) to be correct the sum

aK IH

e -rr I —K I
r I2 I I

{4.I3)

cannot be restricted to just interger values of I' but
must be over all I « I' ~ +K'/H'(I'=I/b). If not
then we ~ould leave droplets of various sizes out of
the sum. This would not be dangerous if aK'"/H'"

~ since the singular behavior would not be affect-
ed. However, the method we have used requires that
we renormalize until aK' '/H' ' is finite. In the limit
H 0 a finite uK' '/H' ' requires an infinite number
of renormalizations. Consequently if we stop our re-
normalization at nK'J'/H' ' =B ) I then we have (in
the limit H-0) an infinite number of terms in the
series for the renormalized free energy and we could
not apply our method. We can only stop renormaliz-
ing where there is finite number of terms in the re-
normalized free energy series [Eq. {4.13)j, i.e. , when

K'"/H'" = I.

where p' and 5' will be determined belo~.
Expressing the summand in terms of the unrenor-

malized variables we have

2
e -H/ -KI

I + xp[(eH/" —Kl" ' —8'K"/H" ')p'/b" '] (4.»)

F (I-I', ~')
OO —rrr —Krr I2 I I

e

I +exp[(H'I'" —K'I'" ' —8'K'"/H'" ')p']
r ]

(4.10)

V. DIMENSION GREATER THAN TWO

The main evidence we have used to argue for a
droplet model with a cutoff rather than the standard
droplet model is the RG flows. These flows are well
studied in d =2 but little information is available for
d &2.

Preliminary studies with two cell clusters indicate
that the flows in d =3 are substantially the same as
for the two-dimensional case. If this result is sub-
stantiated by more thorough studies then we would
conclude that in d =3 the droplet model with a cutoff
retains the essential physics of the d =3 Ising model



21 DROPLET MODELS, RENORMALIZATION GROUP, AND. . . 5259

below T, . The method of KWZ would again predict
an essential singularity of the form

—K /H (5.I)
at the phase boundary rather than the weaker singu-
larity predicted by the standard droplet model. A two
cell calculation in four dimensions is presently being
carried out. '
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Vl. CONCLUSION

We have shown that within the context of a strong
cutoff droplet model that the result of Klein, Wal-

lace, and Zia is correct in that it obtains exactly
(within a constant) a part of the singularity. Howev-
er the KWZ method does miss a part of the singulari-

ty identical to that of the standard droplet model ~

This is an important point to consider when designing
a test to determine which of the two models (if ei-
ther) properly describes the physics near the first-
order transition. An investigation of the derivatives
of the free energy with respect to H has (in d =2)
been carried out by Nienhuis. ' He showed that
dF"/dH" ~ as n ~ which leads him to rule out
the singularity proposed by KWZ in favor of one
similar to the standard droplet model. In light of the
work presented in this paper we must conclude that
the results of Nienhuis do not rule out the existence
of a singularity such as that proposed in the present
work.

We have also argued that the droplet model with a
cutoff is a more physical model than the standard
droplet model in low dimensions. This was based
primarily on the form of the RG flows. However,
other tests can be employed to investigate the validity
of this model. One possibility is to simulate Ising
systems in the spirit of Binder' in order to ascertain
whether the dominant fluctuations for I & aK/H are
indeed nondropletlike.

APPENDIX A

In this appendix we prove that the dominant
singular behavior of

IRI

e
—Hl -Kl2

F (H, K) =
I a 1+exp[(HI" —Kl" ' —SK"/H" ') p]

(A1)

is identical to that of
aK/H

F(HK)= X e
I 0

for n ) 2 and K, H real and positive.
We convert Eq. (Al) to an integral which has the

same singular behavior as H 0

Equation {A3) can be written as

(A3)

OO —HI —KI2

F (H, K) =
1+exp[(HI" Kl" ' —SK"/H—" ')p]

aK/H
F (H, K) =

r

HI2 Kl Hl2 —Kl —exp [ ( Hl-" K-l" ' SK"/H" —' )p ] —
( )

1 + exp[( Hl" —Kl" ' —SK "/H" ' )p ]
{A4)

where

i0, I &aK/H,0()='
1

The first term in Eq. (A4) is identical to the sharp cutoff free energy [Eq. (3.5)].
We now show that the second integral in Eq. (A4), namely,

f Hi xl exp[(HI" Kl" ' —SK"/H"—') ] —O(l) dl
I +exp[(HI" —KI" ' —5K"H" ') p ]

(AS)

is bounded in the limit H 0 by gee '" H" + 'where A is a constant and ~ is arbitrarily small but finite. We
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begin by dividing the range of integration of Eq. (AS) into three parts (0, rxK/H—,~), (r)rK/H —e. rrrK/H + e),
and (nK/H +e, ~).

We consider the range ((2K/H +e, ~) first. In this range Eq. (AS) becomes

OO e Ht -Kt2

K///+n 1+exp[(HI" —Ki" ' —5K"/'H" ')p]

Equation (A6) is bounded by

&
-H ( aK/H+e) -K ( aK/H+a)fdt

«K/"+' 1+exp[(HI" —Kl" ' —SK"H" ') p ]

In the integral in Eq. (A7) we make the transformation )v = I —(2K/H and obtain

dw

1+exp {[H(w+(r(K/H)" —K(rv +aK/H)" ' —SK "/H" ']p)

(A6)

(A7)

(A8)

The integral is uniformly convergent in H in the neighborhood of H =0 so that we can take the limit H 0 in-

side the integral. Since the integrand vanishes as H 0 we have that Eq. (A'7) goes to zero faster than

e -(a +a) K /H2 2

Next we consider the interval (r)rK/H —e. rnK/H +~). Equation (AS) becomes

aKIH+n
&

Hl Klex-[(-Hin Kin-I gKn/Hn-) ) ]di «KI)(+n
e

~ 2 ~
e xp

~ ~
~

~ ~
l»

~
~

~ ~ ~
i» p e

—Hl -Kl d(
1+exp[(HI" Ki" ' —S—K "/H" ') p]

Defining w = I —r2K/H Eq. (A9) becomes

(A9)

e
—(k /H)(a +a)

n e Hiw +2a(K/H-) w)-Kwexp [[H ( + K/H ) n K ( & + K/H )n —1 gKn/Hn-1] p]d)v

1+exp {[H(w +(2K/H)" —K ( w + nK/H )" ' —FiK "/H" ']p {

e-(K /H)(a +a) e
—H[w +2a(K/H)w]-KwdW

0
(Alo)

Both integrands in Eq. (A10) are bounded over the range of integration so that the contribution from Eq.

(A10) is bounded by Cee '" "" + ', where C is independent of e and ~ is arbitrarily small.

Finally, we consider the range (0, nK/H —e). In this range Eq. (AS) becomes

K a n'H/K e
—(K /H)(r +r) exp {[( Kn/Hn ') ( rn tn )g)p ]]—-

H 1+exp{[(K"/H" ')(l" /" ' —g)—p])

where / =IK/H
Equation (Al 1) is bounded by

a—eH/KK —(K2/H ) (t2+t) (K "/H" )(t tt—t tt —[ 6)pe dt
H

(A11)

(A12)

Since n ) 2, as H 0 the maximum value of this integrand will be that value of t for which t"—t" ' —5 is

closest to zero. That value is clearly t =a —~H/K. For this value the integrand becomes (in the limit H 0)

e
—(K /H)(a +a)e(2anK+nK ) eX { (Kn-I/Hn-2) [H

n-1 ( & 1 ) n —2][

Therefore the integral (Al 1) goes to zero faster than

e ' "" + ' as H 0. Collecting the contributions
of the three ranges of integration we find that as

H 0 Eq. (AS) is bounded by 3 ee ' + ' ", where
A is independent of ~ and e is arbitrarily small but
finite. This implies that the free energy given by Eq.
(Al) in the limit H 0 is virtually the same as the
free energy given by Eq. (3.6). The only possible
modification is a small change to the constant
[(a+

2
)k] ' in Eq. (3.6). Since ~ is arbitrarily small

the new constant cannot be zero.

APPENDIX B

In this appendix we argue that the term

(B1)—Hl -Kle
I aK/H

in Eq. (3.2) will not have singular terms which cancel
those from the first term in Eq. (3.2). To see this we

rewrite Eq. (Bl) as
oo aK/H

—H('-PCi -Ht'-Kt (B2)
I-0 I 0
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The second term in Eq. (82) can be handled using

the KWZ method with RG recursion relations given

by

plus a term which cancels the contribution of

-Hl -Kle
I 0

(BS)

H'=8'H, K'=b g

This produces a singularity of the form

exp] —(a+1)(aK/H) ~' 'K]

(B3)

(B4)

Equation (B5) is the droplet model as modified by

Fisher and solved by him.
The above result holds as long as 7. ) cr. When

~ = o- the singular behavior can be obtained by
conversion to an integral and performing the integral
directly.
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