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A discussion is presented on some of' the available evidence tor the shape ot' the local ett'ec-

tive potential f'or the hydrogen motion in KDP-type terroelectrics, particularly regarding the ex-

istence or nonexistence of'a central barrier in that potential. For this purpose a one-minimum

square-well potential model is considered and compared with the corresponding tunneling

model. The comparison of results so obtained for both models with available experimental data

on the isotope dependence of the critical temperature, Curie constant, and maximum spontane-

ous polarization at absolute zero leads to the conclusion that the accuracy ot the experimental

data together with the uncertainties on the theoretical calculations do not yet permit & discrimi-

nation in tavor ot'an order-disorder double-well character for these t'erroelectric crystals.

I. INTRODUCTION

The most outstanding feature of the KH2P04-type
ferroelectrics is the strong dependence of their elec-
tric and thermal properties on the replacement of the
protons by deuterium, namely the isotope effect. ' '

The crystals of the KDP family are all uniaxial
tetragonal in the paraelectric phase. In the polarized
state the spontaneous electric polarization occurs
along the c axis, whereas the Bacon and Pease (BP)
neutron-diffraction experiments have shown that the
hydrogen motion is almost completely restricted to
the a-b plane' along the 0—H —0 bond. Apparently,
this is a curious result in view of the strong isotope
effect known to exist in these materials. In the case
of KDP, the assumption of valence K'+ and P ions,
in addition to the use of observed equilibrium dis-
placements of these ions along the c axis led Bacon
and Pease to an estimate of the saturation polariza-
tion close to the observed value. According to Jona
and Shirane' (JS), the charge assignment suggested
in BP produces the wrong sign for the electric polari-
zation if use is made of the observed K and P dis-
placements. For this reason they proposed instead
the assignment K'+, P +, and 0, obtaining for the
maximum spontaneous polarization, PM, at absolute
zero temperature, a magnitude still consistent with

experiments but with sign opposite to that obtained
by BP. As quoted by JS the configuration of KDP
displacements has been determined by means of the
anomalous dispersion of x rays by Unterleitner et al. '
with the result that the JS assignment is the one that
is consistent with experiments. In any event a clarifi-
cation of the appropriate charge assignment and the
corresponding ionic displacements from para- to ferro-
phase would be of importance in the theory for the
0—H —0 bond in KDP. An independent check on
the ionic charge state of K,P as well as 0 ions by oth-
er methods such as ultraviolet spectroscopy, electron

paramagnetic resonance (EPR), or nuclear quadru-
pole resonance (NQR} does not seem to be available
yet.

The strong deuteration dependence of the electric
and thermal properties makes it necessary to include
in the theory a coupling between the heavy-ion coor-
dinates and those of the hydrogens. If we recall that
the hydrogen mass i~~ appears in the ab i&~i(in Hamil-
tonian in the form (tt/2nt )(d/du)t it becomes clear
that the isotope effect is equivalent to the quantum
effect; in other words, the neglect of quantization
prevents one from describing the isotope effect. For
this reason it is convenient to call the KDP-type f'er-

roelectrics quantum ferroelectrics.
Another ingredient customarily employed in

microsCopic-model Hamiltonians for these ferroelec-
tric crystals is the inclusion of a one-particle local
symmetric potential I', (u) for the anharmonic mo-
tion of the hydrogen atom along the 0—H —0 bond.
The form of the local potential V, (u} has been con-
sidered of such a paramount importance in the litera-
ture that its shape has been taken to provide a cri-
terion for a classification of ferroelectric crystals in

two groups: displacive ferroelectrics and order-
disorder ferroelectrics; the former types requiring a

nearly harmonic one-minimum potential, and the
latter group requiring a central-barrier double-well
(DW) symmetric potential.

It is the purpose of the present paper to discuss
some of the available evidence on the shape of the
symmetric local potential, V, (u), in particular regard-
ing the existence or nonexistence of a central barrier
for the hydrogen motion along the 0—H —0 bond in

KDP. With this objective in mind, the most simple
one-minimum anharmonic potential, i.e., Pirenne
square-well (SW) potential, is considered. In Secs.
III and IV the isotope dependence of the critical tem-
perature T„ the Curie constant near the critical point
C„and PM is obtained. In Sec. V the corresponding
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P, ( j) =Z eu,

where P, ( j) is the c-axis electric dipole of KP ions in

molecule j, Z"e is a constant with dimension of an
electric charge, and u, is the hydrogen coordinate
along the bond measured from its center. (v) The
hydrogen atoms interact among themselves through
mediation of the direct, long-range, dipole-dipole in-
teraction existing between the KP electric dipoles,
resulting in a bilinear Ising-type coupling of the form
—g,. X,»,. J;,u;u, (see Appendix).

The model Hamiltonian in the presence of an uni-

form electric field E =Ez along the c axis of the crys-
tal is taken as

H= X ' + V(u, ) ——, QXJ;,uu,
2 p?

—Z'eE Xuj (1.2)

where the last term results from Eq. (1.1), and the
quantity E should be interpreted as the internal field.
The indices i and j refer to KDP molecule sites, that
is, j =R~, and the dimensionality of the lattice is
specified by the dimensionality of vector R,.; the dis-
placement operator u& is actually an infinite matrix

results for the double-well tunneling model' "are
listed. The comparison of both models with the ex-
perimental results is presented in Sec. VI.

In order to fix our ideas, it seems convenient to
specify the assumptions of the microscopic model
Hamiltonian, which may be considered to be the fol-
lowing: (i) The anharmonic hydrogen motion along

the 0—H —0 bond occurs only in the a-b plane, even
with the application of an electric field along the c
axis. Along these lines, the hydrogen coordinates
transverse to the bond are also ignored, or in other
words the assumption is made that the hydrogens do
not interact directly with the applied field and do not
contribute directly to the electric polarization. (ii) In
order to reduce the number of adjustable parameters
of the problem, the hydrogen mass should appear ex-
plicitly by means of the hydrogen kinetic energy
(tr'/2m)(d/du)'. In other words, an adequate
description of the isotope effect appears here as
directly connected with the appropriate account of
quantization. (iii) A strong short-range correlation is
assumed to exist among the four nearest-neighbor
hydrogen atoms leading to a reduction in the number
of hydrogen coordinates to one for each KH2P04
molecule. (iv) In the limit of strong short-range in-

teraction between the KP-dipole coordinate and its
associated hydrogen atom, the heavy-ion coordinates
may be ignored if use is made of a relation of type

with eigenvalues in the range ( —
2

a) ~ uj ~ ( 2
a ).1 1

A similar Hamiltonian has been considered by
Lines. '

In the above equation V, (u) is the so-called one-
particle local anharmonic symmetric potential for the
hydrogen motion along the 0—H —0 bond; V, (u) will

be the center of our discussion. The form of V, (u)
as well as its one-body or many-body character have
been a much-studied and -debated subject in the last
40 years. ' " It is shown in the present paper that,
as far as the quantum ferrolectrics are concerned, the
form and the nature of the hydrogen motion in the
0—H —0 bond are unsettled matters open to discus-
sion even to date. Moreover it is necessary to note
that the 0—H —0 bonds of KDP-type ferroelectrics
are in the intermediate critical region between short
and long hydrogen bonds, i.e., very close to the max-
imum in Fig. (2.7) of Hamilton's book. ' According
to Huggins, ' the form of the "local" hydrogen poten-
tial in 0—H —0 bonds is sensitive to the 0—0 dis-
tance as well as to any possible charge fluctuations of
the oxygen ions. Here we note that the d(O —0)
dependence may become particularly strong near the
sharp maximum of the curve for the O~H covalent
bond length versus 0—0 distance.

A sizable charge fluctuation of the oxygen ions was
observed by Blinc'9 in a NQR experiment on "As,
and that charge fluctuation was associated with the
hydrogen motion in KH2As04.

In summary it may be stated that the 0—0 zero-
point stretching vibrations considered by Reid, in
addition to the problem of oxygen charge fluctua-
tions' and ionic polarizabilities, ' will probably lead to
a many-body character for the "local" effective one-
particle potential for the hydrogen motion, or in oth-
er words, V, (u) may become temperature dependent,
as in the work of Mason for Rochelle salt.

Even if the idea of an "effective" one-particle po-
tential is accepted for KDP-type ferroelectrics, the ex-
pansion of the 0—0 distance observed by Ubbelohde
et a/. " in KDP, when the protons are replaced by
deuterons, seems to indicate that the form of the ef-
fective V, (u) for 0—D —0 may be different from that
of the local potential for 0—H —0. Even so, this pos-
sibility will not be considered in the present paper. It
is convenient to recall that here one is concerned
with small quantities such as the presence or absence
of a central barrier in the effective local potential.

In view of the above discussion, it seems clear that
the choice of the form of V, (u) as establishing a cri-
terion for a classification of ferroelectric crystals has
been a particularly unfortunate one, at least for the
quantum ferroelectrics, where the use of a one-
particle potential seems to be already an oversimplifi-
cation.

In spite of that, in the framework of the above
oversimplification, in the present paper, we consider
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the simplest possible potential without a central bar-

rier, which is Pirenne square-well (S%') potential.
We believe that the Hamiltonian Eq. (1.2) in its

own right deserves a careful examination, and an ex-
act solution would be highly desirable. An exact
quantum-mechanical treatment of the above Hamil-
tonian, for two- and three-dimensional lattices seems
to be a formidable task at the moment. The analo-
gous Heisenberg and Ising quantum-spin Hamiltoni-
ans have been studied thoroughly in the last 50 years.
In 1944 Onsager" succeeded in obtaining an exact
solution for the Ising half-spin case, with nearest-
neighbor interactions, concluding that two-
dimensional lattices do have a ferromagnetic phase
transition. As for the quantum Heisenberg (QH)
Hamiltonian with isotropic nearest-neighbor interac-
tions for three-dimensional lattices, only recently
(1976) has an exact proof been found by Dyson,
Lich, and Simon. " They showed in their important
work the existence of a ferromagnetic ordering at
temperatures below a certain T'(~T, ); in view of
that work, it seems unbelievable that the quantum
Hamiltonian Eq. (1.2) does not produce a ferroelec-
tric phase transition.

It should be noted that during these 50 years, the
Heisenberg Hamiltonian has been used' to improve
our understanding of the ferromagnetic materials
even in the absence of an exact proof for the ex-
istence or nonexistence of a magnetic phase transi-
tion. It should also be mentioned that most of these
achievements would have been impossible without
the use of the gneiss molecular-field approximation
(MFA).

As far as the calculation of the critical temperature
T, is concerned, there are strong indications based on
the Onsager reaction field approximation" (ORFA)
that the MFA, for the QH-nearest-neighbor Hamil-
tonian in simple-cubic lattices is in error by being
about 30% higher than the correct value.

No similar calculations for T, in the case of the
pure, long-range, quantum dipole-dipole interaction
spin Hamiltonian, in three-dimensional lattices, are
known to the present authors. It is quite possible
that in this case, for a long-range interaction, both
MFA and ORFA approximations should produce
about the same result for T„at least within a relative
error smaller than 30%.

On the other hand, as shown in Sec. V, the experi-
mental data for parallel electric susceptibility of KDP
are well described by the present model in the MFA,
even in the region

~
T —T, ~

(( T„where the effects
of renormalization-group theory' are expected to be-
come important. In our opinion the reason for the
success of the MFA in KDP resides in that it allows
for the exact consideration of the quantum and the
full anharmonic character of the problem, allied to
the actual long-range feature of the dipole-dipole in-

teraction, which seems to play an important role in

KDP. The application of the square-well potential to
KDP and DKDP is presented in Sec. Vl, where, as a

result of the calculations, the values of J;, required to
reproduce the experimental values of T, (H) and
T, (D) turn out to be roughly of the order of rnagni-

tude of the dipole-dipole interaction, i.e. ,

J a2 p2/I 3 (1.3)

where p, is defined in Eq. (1.16).
In view of the above discussion, if in Eq. (1.2) we

replace u, by the expression

uJ = (u~ ) + x~ (1.4)

where (u, ) = u is the thermal average of u, and x, is

the fluctuation, one obtains

H = $ HL(u, ) ——, $ $ J„x,x) + , NJu; —(1.5)

HL (u) = Hp+ Hp

Ha(u) =p'/2nt + V, (u)

(1.6)

where V, (u) is the infinite square-well potential of
width a, and H~, the polarization contribution, is

given by

H~ = —Au

A =J(u)+Z'eE
J= x JDI

Iwp

(1.9)

(1.10)

J is assumed to be positive. In the Appendix an
heuristic argument is presented to justify this as-
sumption. The total partition function Z of the sys-
tem in the MFA factors as

Z=(Z )',
where we have dropped a constant factor, and N is
the total number of dipoles, i.e. , the total number of
KHqPO4 molecules,

-PHL
Zq =Tr(e L) (1.12)

is the local partition function, and

(u) =Tr(ue ™)/ZL (1.13)

~here HL is defined in Eq. (1.6).
%e also note that the above model contains only

two independent energy parameters, E, and H',

where

E& = rr tr /2 ma (1.14)

the MFA corresponds to keeping only the first (separ-
able) term in Eq. (1.5) and neglecting bilinear terms
in the fluctuations. The local effective "polarized"
Hamiltonian HL(u) is given by
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is related to Hp, and

fY= Ja~ (1.15)

the third parameter, with the dimension of a dipole
moment is

p =TZ ea
1 (1.16)

where Z", defined in Eq. (1.1), establishes the con-
nection between the dynamics of the hydrogen mo-
tion and the polarization properties of the system.

If we compare the number of independent parame-
ters of the present no-barrier model with that of the
pseudospin Hamiltonian, "we have to recall that

Hp, =20r XX) —
—, X XFJZ; Z) (1.17)

where Jj, Yj, and Zj are the corresponding dirnen-

sionless 2 x 2 pseudospin Pauli matrices for the hy-

drogen atom j, OT is the tunneling energy, and F„" is
a hydrogen-hydrogen coupling. In the MFA both
models present three independent parameters, which
are E„W, and p„ in the no-barrier model [see Eqs.
(1.14)—(1.16)). In the pseudospin model, the
corresponding parameters are A~, F, and p, , where
F = X) Fp~.

In the pseudospin model it is customary to assume
F(H) =F(D) and p, (H) =p, (D), where H and D
means KH~PO4 and KDqPO4, respectively; QT is to
be adjusted independently for the protonic and the
deuterated cases, whereas, in the no-barrier model
discussed in this paper, it is assumed that W(H)
= W(D), p, (H) =p, (D), and once E, (H) is speci-

fied, E,(D) is taken as E,(D) = —,E, (H), as one ob-

tains from Eq. (1.15), assuming a(H) =a(D).
It is also important to observe that most of these

theories when checked and adjusted to some particu-
lar experimental data give rise to parameter values
which make impossible the quantitative description of
the remaining available experimental information.
All of them seem to be qualitatively adequate to
describe the thermal, electric, or optical properties of
the quantum-ferroelectric crystals, sometimes with
numerical relative errors of a few to 50 percent.

In other words, it is the opinion of the present au-
thors at this stage that the precision of the available
theories, i.e., the theoretical errors introduced by the
various required approximations, as well as the preci-
sion of the available experimental data, are not yet
adequate for a specification of the details of the local
potential, such as the existence or nonexistence of
the central barrier in KDP-type ferroelectrics.

One should also note that, if we call KHqPO4 and
KD~PO4 an associated pair, it follows that, for each
associated pair of quantum ferroelectrics, the present
no-barrier model contains only three independent
parameters, whereas the pseudospin model of Eq.

(1.17) presents four independent adjustable parame-
ters.

The ratio of the two energies E, and 8'in Eqs.
(1.14) and (1.15) defines a dimensionless parameter

y-E, /W (1.18)

which represents a measure of the relative impor-
tance of the quantum effect in the problem. The
classical limit corresponds to y 0.

As a preliminary study of the local partition func-
tion ZL in Eq. (1.12), in Sec. 11 its classical statistical
mechanical (CSM) treatment is presented, with the
result that the Hamiltonian Eq. (1.6) reproduces the
gneiss MFA as applied to the Langevin theory of
classical dipoles, "and with the conclusion that, in

the limit y 0, a second-order ferroelectric phase
transition is obtained with

kT(cl) = —, W (1.19)

where Wis defined in Eq. (1.15).
In Sec. III the exact quantum-statistical mechanical

(QSM) calculation of ZI is considered, having in

mind the limited purpose of finding the solution of
the self-consistent conditions for u, as well as deter-
mining carefully the order of the possible transition.
It turns out that a second-order phase transition is

obtained; defining

r, = T,/Tp, (i.20)

where Tp is defined in Eq. (2.9), a curve is obtained
in Fig. 3 for 7, as a function of the dimensionless
quantum parameter

y'= y/y* (1.21)

X = Cf/( T Tp)

where

Cf = Np, ~/3k

(1.22)

(1.23)

N is the total number of dipoles (i.e., the total
number of KDP molecules); p, is defined in Eq.

where y is defined in Eq. (1.18) and y„ in Eq.
(3.i3).

The static, uniform electric parallel susceptibility
along the c axis in the paraphase is also considered in

Sec. III for arbitrary temperatures above T, . The fact
that the experimental behavior of the susceptibility
follows quite closely the Curie law near the critical
point is a result that probably is related to the long-
range character of the dipole-dipole interaction. The
Curie constant C„close to the critical point, as ob-
tained in Eq. (3.17), has a value quite different from

Cf, the Curie constant in the high-temperature limit,
where the dipoles are classical and nearly free. In the
region T » Ta= T, (cl), the susceptibility should be
replaced by the classical expression
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(1.16), k is the Boltzmann constant, and To is the
paraelectric temperature which should be obtained
by the usual straight-line extrapolation of 1/X from
the high-temperature region. The fact that C, is dif-
ferent from C~ is another manifestation of the impor-
tance of the quantum effect. In Fig. 4 a curve is
displayed for C, /C~ versus y'.

It is also necessary to point out that precaution has
to be taken in extrapolating the high-temperature
(classical) expression for the susceptibility to tem-
peratures close to T„where the quantum effects are
important. We also believe that a clarification of the
appropriate extrapolation procedure T —T, will be of
interest in the discussion concerning the so-called
soft model"' in quantum ferroelectric crystals.
Also note that, as a result of the application of the
present model to the associated KDP and DKDP
pair, it turns out that in KDP T, is less than To, and
this result seems to favor the imaginary coupling con-
sidered by Scarparo eI al. '

In the SW model considered here, it is impossible
to obtain the temperature dependence of the spon-
taneous polarization P(T) in the whole ferroelectric
phase in terms of closed expressions. Even the
point-by-point self-consistent computer calculation is

complicated by the requirement of certain Airy func-
tions. For this reason, in the present paper, Sec. IV,
the discussion of the spontaneous polarization will be
limited to the y' dependence of the maximum polari-
zation PM at T = 0 K.

Section V is a brief description of the Tokunaga
and Matsubara" (TM) tunneling pseudospin model
in the framework of' MFA, where we have singled
out the classical limit to simplify the discussion. In
that model they obtained a second-order phase transi-
tion for arbitrary values of the quantum parameter q
in the range 0 & q ( 1; this quantum parameter is

the analog to y' in the square-well model. Curves
for the isotope dependence of T„C„and PM in that
model are given in Sec. V.

Both models lead to a second-order ferroelectric
phase transition, if use is made of the MFA. The
cluster approximation applied by TM to the tunneling
model also gives rise to a second-order phase transi-
tion for finite arbitrary values of their parameter n; a

first-order transition only occurs in the Slater limit
The first experimental evidence to the effect

that in KDP the transition could be of first-order
type, came from work by De Quervain. ' The beauti-
ful x-rays-dilatometric studies in KDP by Kobayashi
er al. ' led these ~orkers to the conclusion that the
transition is unequivocally one of first order. Dielec-
tric,"calorimetric, and electrocaloric" studies, as
well as the electric-field dependence of the polariza-
tion in a region around the ferroelectric transition
of KDP also provide clear evidence in favor of a
first-order phase transition.

Among the papers suggesting theoretical models"
able to display a first-order transition for KDP-type
ferroelectrics, no detailed discussion seems to have
been presented on the quantitative aspects of the
deuteration dependence of T„C„and P&&. The
long-overdue necessity for a quantitative comparison
between the consequences of the square-well model
and the corresponding ones for the tunneling TM
model, seems to warrant an application of the results
presented in Secs. III, IV, and V for the isotope
dependence of T„C„and PM to the associated
(KHqPO4, KDqPO4) pair. Such a comparison is

presented in Sec. VI.
In Sec. VII a brief discussion is presented on the

interpretation of hydrogen-associated infrared and
Raman frequencies in terms of the one-minimum or
double-well character of the "local" potential.

II. CLASSICAL APPROXIM ATION

+a/2

Zr = exp(PAu) du-a /2
(2.2)

~here we have dropped the factor from the kinetic-
energy part. The thermal average of u, ,

8 InZL
u

P tlA

is given by

(2.3)

1—a
2

1 1

tanh(
(2.4)

(= -PAaI (2.S)

where A still depends on (u), as explained in Eq.
(1.9). The self-consistency condition corresponds to
finding the common root of F(() = G ((), where
F(() = L (() is the Langevin function for classical di-

poles

F(g) = 1 1

tanh(
(2.6)

G(g) (g & ) (2.7)

where F comes from Eq. (2.4) and G comes f'rom Eq.
(1.9), with

go =p, E/kT (2.8)

In the framework of the MFA described above,
and in the classical limit, the local partition function
ZI, up to a constant factor, may be written

+ao

ZL = exp( —Pp /2rrr ) dp

+oo

exp( —P[ V, (u) —Au]} du

(2.1)
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The self-consistent root („also determines the self-
consistent value of the polarization, (u)/2 a. In this

1

way, a second-order ferroelectric phase transition is
obtained at a critical temperature given by

@,(a) = $e "/n', (3.6)

where

fc(a) = [15&4(u) —cr'&2(a) ]/12cr'Pp(a), (3.5)

Tp= T, (c/) (2.9)

where T, ( /c) is defined by Eq. (1.19) and the parallel
susceptibility along the c axis becomes

X=Cg/(T- Tp) (2.10)

where Cf is the Curie constant for classical free di-

poles, defined in Eq. (1.23). Note that Eq. (2.10) is
valid for arbitrary values of the quantum parameter
y', in the limit T && T'0 where the dipoles become
classical, whereas the equation

T,(g) = T, (c/) (2.11)

is expected to be a good approximation only in the
limit y" (( 1, as is shown in Sec. III,

III. QUANTUM-STATISTICAL TREATMENT

The eigenvalue equation for HL is

HLy„(u) = ~„y„(u)

and its eigenfunctions p„(u) may be written in terms
of Airy functions. On the other hand, for the limited
purpose of the exact determination of T, and of the
paraelectric susceptibility, only small values of the di-

mensionless polarization (u)/ —,a will be required,
t

i.e., for this limited purpose, the polarization term H~
in Eq. (1.6) may be taken as a small quantity to be
treated by perturbation theory. The perturbation ex-
pansion" for the density matrix

pL(p) =e

may be obtained from

Pi(~) =1
/9 Pt

+ Hp(p))

dpi'

Hp(p2) d/82+

(3.2)

(3.3)

F(cv, e) = f((a)o)+ f'3(A')oJ + (3,4)

where pL(P) = e 'p, (P), He(P) =e 'H,e.
with Ho and H~ defined by Eqs. (1,7) and (1.8),
respectively. The local partition function ZL in Eq.
(1.12) may be obtained now as a power series of the
molecular field A, with the result that only terms
containing even powers of H~ will contribute in the
calculation of TrpL. Working in the representation
where Ho is diagonal, it turns out that the dimension-
less polarization (u )/ —a is of the form

u =12y/r

r = T/Tp

c» = Aa/F. ,
where 3 still contains the information coming from
the molecular field in Eq. (1.9), which gives rise to
the second function, 6, for self-consistency as

G(cu) =2y(cv —coo)

where

(3.10)

c»p = 2p, E/E,

and E is the electric field appearing in Eq. (1.2). E,
is defined in Eq. (1.14). The self-consistent polariza-
tion may be obtained now, by determining the root
c»„of the equation F(c») = G(c») and setting

(u )/2 a = F (c»„) Comparin. g Eqs. (3.4) and (3.10),
it follows that the critical temperature may be found
by solving the equation:

f)(a, ) =2y, (3.12)

1.0

0.8
y4

X
~~ 0.6

0.4
EL

0.2

0.0 ac I.O

I

2.0 5.0

FIG. 1. Plot of the function. ft(o. ) vs a. Such a graph

provides the algorithm for determination of the quantum
dependence of the critical temperature, as explained in text.
ln the present and subsequent figures S means the
square-well local-potential model.

where y is the quantum parameter in Eq. (1.19) and
u, =12y/r, . Figure I is a plot of the function ft(a),
where it may be seen that ft(a) is positive and in-
creases monotonically with a, for n positive. This
function approaches asymptotically the upper limit

ft, „=lim + ft(a), given byft, „=(15—cr')/,
12m'. This quantity determines the range of values
of y for which a second-order phase transition oc-
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1.0
I Classical Limit I

O.B

0.6

04

0.2

0.0
I

5.0
I

IO.O

I

l5.0

FIG. 2. Plot of' the dimensionless critical temperature
~, =12&,l'T, /J' vs J'/E, , where J' = &, 8', for a compari-
son with Fig. 5.2 of Ret'. 4.

curs. In other words, only for y & y„where

y, = (15 —n')/24~' (3.13)

fi(12y/r, ) =2y (3.14)

is equal to 0.021659, there exists one and only one
root a, )0 of Eq. (3.12) corresponding to a well-

defined critical temperature. Noting that a, =12y/r„
the solution of the equation

2Np, 1 1

E, ./I (a) .)'I (a, )

where a is defined in Eq. (3.7). Near the critical
point, i.e., for

I
T —T, I (( T„ the quantity

(3.1S)

.f't(&) ./']( ) +(O' & )./'I'(& )

that probably is model independent. In the region

y = y„ the critical temperature T, changes rapidly
with y", going to zero at y'=1, i.e., when y reaches
what may be called the suppressing value y„a fact
that is also present in the pseudospin model. "

The pressure dependence of the critical tempera-
ture of ferroelectric crystals has been studied experi-
mentally. The experimental curve for KDP obtained
by Samara' for T, versus pressure looks similar to
that of Fig. 3. The fact that the critical temperature
T, goes to zero at a certain pressure P, can be well

accounted for by the present model if the quantum
parameter y" is assumed to be a function of pressure
which goes to one when the pressure P approaches
the suppression value P, . The results ot this analysis
will be published elsewhere. '

The parallel susceptibility X along the i axis may
also be obtained from Eqs. (3.4), (3.10), and (3.11)
for arbitrary temperatures T ) T„

determines r, T,/T, (cl) as function of 1/y' or y'
which is plotted in Figs. 2 and 3, respectively. The
classical limit in Eq. (1.14), corresponding to r, 1

for y' 0 is well reproduced. Also note that the
quantum effect, in the present model, reduces the re-
gion of existence of the ferroelectric phase, a fact

with the result that near T,

x=C/(T —T) .

where

C, = Cfr,'/6/", (u,), (3.16)

(3.1 7)

1.0 l.2
I 1

0.8 l.0

0.6 0.8

0.4 0.6
SW MODF

0.2 0.4

l I l I 0.2
0.0 0.2 0.4 0.6 0.8 l.o

I l l I

FIG. 3. Quantum (or isotope) dependence of' the dimen-
sionless critical temperature T, = T,/T, (cl). The quantum
parameter y' in the SW model corresponds to q in the
Tokunaga-Matsurbara DW model, in Fig. 6. Note the
stronger quantum dependence ot the S model in the near
classical region.

0.0 0.2 0.4 0.6 0.8 l.o

FIG. 4. Isotope dependence of' the Curie constant at the
critical point. Note that C, ~ when T, 0 f'or y =1, a

fact that is also present in the D model.



5244 PAULO R. P. SILVA AND J. A. ROVERSI 21

is the critical-point Curie constant, and Cf is defined
in Eq. (1.23). Noting that r, and cr, are functions of
y", a curve for C,/Cf vs y' may be constructed with
the result shown in Fig. 4.

From Eq. (3.15) it is also possible to obtain the
high-temperature limit for the susceptibility, with the
result that Eq. (2.10) is well reproduced.

IV. SPONTANEOUS ELECTRIC POLARIZATION

I.Q

0.8

0.6
K

CL Pg

yp(u) =Ce' " 'c (onsu/a) (4.1)

where cos(vru/a) corresponds to the symmetric, un-

polarized, ground-state wave function of Ho in the
paraelectric phase; 5 is the variational parameter, and
C is a normalization constant. The minimization of
the ground-state energy

&o(g) = 4(lo%. 10 )o(/loll )o (4.2)

i.e. , the equation Bpp/88=0 may be written in the
form

The calculation of the self-consistent value of
P( T), the spontaneous polarization in the ferroelec-
tric phase, for arbitrary temperatures below T„and
for arbitrary values of y' ( 1, is a possible but some-
what difficult task even in the MFA used above. In
view of the above difficulty, in the present paper, the
discussion is restricted to the y" dependence of the
maximum polarization PM, corresponding to the po-
larization value at T =0 K.

The self-consistent calculation of the maximum po-
larization PM is a laborious task if use is made of the
exact Airy functions in Eq. (3.1), even at T =0 K,
where only the ground-state energy of HL and its
ground-state wave function are required. For this
reason the use of an approximation, the variational
method, becomes convenient. The trial ground-state
wave function of HL is chosen as

0.2

Q.O 0.2 0.4 0.6 0.8
yO'

I.O

FIG. 5. y dependence of the maximum spontaneous po-

larization PM at absolute zero temperature.

The self-consistent value 5„of interest is the
nonzero root of equation F —G =0. If a plot of G
and F as functions of 5 is made, it may be seen that a

nonzero root 5„exists only for y (y, „, where

y = (n' —6)'/72m' (4.6)

is equal to 0.02107, a value not too far from the ex-
act suppressing value y~, as obtained in Eq. (3.13).
The proximity of the numerical values for y, „and
yq may be considered to provide an evaluation of the
precision of the variational method. For y & y,, „ the
only possible root is given by 5„=0, corresponding
to PM =0, and this fact provides further insight as to
why there can be no ferroelectric phase for y ~ y,„.
Noting that PM =NZ'eu, or PM = Np, F„, where p, is

defined in Eq. (1.16), a plot of PM as a function of
y' = y/y, , „has been constructed, with the result
shown in Fig. 5.

1+35 m 5'

(1+g')' sinh'(erg)
(4.3) V. TUNNELING PSEUDOSPIN MODEL

where eo is defined in Eq. (3.9), which in the zero-
field case gives rise to

G =2yH(5), (4.4)

as explained in Sec. III; H(5) stands for the right-
hand side of Eq. (4.3). The second condition for
self-consistency is obtained by calculating
u = (gpl u

leap)/(4iplgp)

as a function of 8, i.e, by

means of the use of Eq. (4.1) and setting F = u/ —a

with the result that

The tunneling model Hamiltonian in Eq. (1.17),
modified to include a term p, F. g, Z, for the—in-

teraction between the electric dipoles and an electric
field E along the c axis of the crystal, was treated by

Tokunaga and Matsubara' (TM) in the framework
of the MFA. This consists in replacing the expres-
sion Z, = (Z, ) +x, in Eq. (1.17), keeping all terms
linear in the polarization fluctuations x, and dropping
bilinear x;x, products. In this way they obtained a
second-order ferroelectric phase transition with a crit-
ical temperature T, given by

1 m5

vr 5 tanhm5

1+35'
1+5 (4.S)

40/F =tanh(Q/kT, )

where 0 is the tunneling frequency and F = gj Fpj.
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The classical limit for T, corresponding to 0 (& —,F1

may be obtained from Eq. (5.1) as

l.O

kT, (cI) =kTp=—
4

F (s.2) 0.8

r, = q/arctanhq (s.3)

Defining the dimensionless parameters r, = T, /To
and q =4fl/F, Eq. (5.1) may be written in the form

0.6
O

o 0 4

The spontaneous polarization P attained at T =0 was
shown to be 0.2

PM = 1V JLl, (1 —q )' (s.4)

which, in the limit
~
T —T,

~
&& T, may be shown to

take the form

and the parallel electric susceptibility above T, to be

X = JV p. /f) [cota-nh( ft/kT) —cotanh( ft/kT, ) ]

(s.s)

l l I I

0.0 0.2 0.4 0.6 0.8

FIG. 7. Quantum dependence of the critical Curie
constant.

I.O

with

x = C, /(T —T,), (s.6) In the high-temperature limit it may be shown that
the parallel susceptibility may be written as

C, /Cf ——sinh'( q /r, ) /( q /r, ) ' (s.7)
X = Cf/( T Tp) (s.9)

Cf ——/Vp, /k (5.8)

where v, is determined as a function of the quantum
parameter q from Eq. (5.3); Cf is Curie constant for
classical dipoles given by

where Tp is defined in Eq. (5.2).
In this way the corresponding graphs f'or the quan-

tum q dependence ol' r„C,/CJ, and PM//VP, may be
constructed with the results displayed in Figs. 6—8,
which should be compared with the corresponding
ones in Figs. 3—5.

I.O
I.O

0.8
0.8

0.4

~ 0.6
K

4- 0.4

0.2
0.2

I I I I

0.0 0.2 0.4 0.6 0.8 I.O
I

0.0 0.2
I I I

0.4 0.6 0.8 l.O

FIG. 6. Quantum dependence of' the dimensionless criti-
cal temperature T, = T, /T, (cl). Note that the quantum

parameter ti =40/F goes to zero in the classical limit A —0.
In the present and subsequent figures DW means the
double-well tunneling model.

FIG. 8. Quantum dependence of' the maximum spontane-
ous polarization PM in the tunneling model. Comparing
with Fig. 5 it may be observed the diff'erent behavior in the
classical and intermediary regions.
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VI. APPLICATION TO THE KH2PO4, KD2PO4 PAIR TABLE I. KH PO -KD PO .'

r, (D)/r, (H) = T, (D)/T, (H) =1.82 (6.1)

permits the calculation of the appropriate values of
y' with the result

y'(H) =0.86,
y'(D) =0.43 .

(6.2)

(6.3)

The use of these values in Fig. 4, determines that

C, (H)/CJ =0.97

C, (D)/CJ =0.83

(6.4)

(6.5)

If a comparison is made of the results obtained
above for the square-well local potential in Figs. 3—5

with the corresponding ones for the central-barrier
tunneling model in Figs. 6—8 the overall similarity of
the results for both models becomes evident. This is

even more so in the high-quantum limit correspond-
ing to y' & 1 or q & 1 where T„C„and P~ become
rapidly varying functions of the quantum parameter.
Minor, nonessential, qualitative differences will occur
near the classical and intermediary regions.

This new fact plus the uncertainties in the experi-
mental data make it impossible, at the present stage,
to choose between the two models, as is shown
below.

Dimeasionless ratios. In Table I the experimental
data ' for the critical temperature, Curie constant per
unit volume near the critical point, and the max-
imum spontaneous polarization per unit volume are
listed. Using the algorithm that leads to Fig. 3 for v,
vs y' and assuming that y'(H)/y" (D) =2 as one ob-
tains from m(D)/m(H) =2, a(H) =a(D) and
J(H) =J(D), the ratio

Ratios

Tc
' K 122.5+ 0.2 223.0+ 0.2 Tc /T" = 1.820+ 0.005

C, K 233+ 4 326+ 4 C, /C,"=1.40+ 0.04

P~(p, C/cm2) 5.10+0.07 6.21+ 0.07 P~/P~ = 1.22+ 0.03

'Data taken from G. Samara, Ferroelectrics 5, 25 (1973).
In the present paper, barred quantities refer to unit volume.

condition Eq. (6.1), one obtains a curve (see Fig. 9)
for the values of qH(p) vs p, which are required to
reproduce the observed ratio for the critical tempera-
tures.

In Eq. (5.7), r, is a function of q. If in that equa-
tion the quantum parameter q is replaced by qH(p)
from Fig. 9, a curve for CJ/C, (H) vs p is obtained in

Fig. 10.
In a similar way, a curve for the possible values of

CJ/C, (D) vs p in Fig. 11 may be obtained, if in Eq.
(5.7) q is replaced by q =qD=pqH{p).

From Figs. 10 and 11 one obtains Fig. 12 for the
values of C, (D)/C, (H), consistent with the ratio for
the critical temperatures, determined as a function of
p = O(D)/Q(H).

Along the same lines, using Eq. (5.4), the values
of PM(H), PM(D), and PM(H)/PM(D) consistent
with the observed ratio for the critical temperatures
are displayed in Figs. 13—15, respectively.

As one can see in Figs. 12 and 15, the largest at-
tainable value of C, (D)/C, (H) is 0.41, whereas for
PM(H )/PM(D) the maximum value corresponds to
0.35 both occurring at p =0.

I.OO
with the conclusion that the ratio

C, (D)/C, (H) =0.86 (6.6)

if, in Eq. (1.23), CJ is assumed to be the same for H

and D. Analogously, using Eqs. (6.2) and (6.3),
from Fig. 5 one obtains

PM (H ) /Np, =0.22

PM (D) /Np, = 0.48

PM(H)/PM(D) =0.46

(6.8)

0.95

where p„ from Eq. (1.16), has been assumed to be
isotope independent.

Proceeding analogously for the tunneling model,
assuming that F(H) =F(D), we note that now there
are two independent quantum parameters, qH and

0.90
0.0 0.2

I I

0.4 0.6 0.8 I.O

QD =AH (6.10)

Using the results of Sec. V, and the corresponding

FIG. 9. Possible values of the quantum parameter qH re-

quired to reproduce the experimental ratio T, (D)/Tc(H) for
the KDP pair.
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FIG. 10. Possible values ot the critical Curie constant in

KH2PO4 consistent with the experimental value of
T, (D)/T, (H).

FIG. 12. Possible values of' C, (D)/C, (H) consistent with

the experimental value of T, {D)/T, (H) t'or the KDP pair.

Thc situation is summarized in Table II, where the
SW model means the square-well model whose corre-
sponding numerical values come from Eqs. (6.6) and
(6.9), whereas the D%' model means the double-well
tunneling model. " In Table II it becomes evident
first of all that the D%' model is certainly not better
than the simple S% potential even having at its dis-
position one more adjustable parameter (p). Both
models fail quantitatively. If the corresponding extra
parameter p = y'(D}/y'(H} is introduced in the SW
model, i.e., if V, (u) for D is assumed different from
that for H, it is quite probable that better values for
the ratios for C, and PM would be obtained.

Magnitudes ofphysical quantities. As discussed in
Secs. III—V the critical temperature, Curie constant at
the critical point, and the maximum value attained by
the spontaneous polarization are scaled in terms of
the quantities To, Cy, and Np„respectively, for the
S% model; for the D%' model p, must be replaced by

p, . Since p =0, was found to be the best choice for
the double-well model, corresponding to qp=0, it be-
comes convenient to use T,(D), C, (D) instead of
the corresponding quantities for KH2PO4, in both S%
and D%' models. This leads to the construction of
Table III, where the line of values for the DW' model

0.5

04
0.8

0.6
Ch

O 0.4

x 05

I
0.2

LL

O. I

0.2

I I I I

0,0 0.2 0.4 0.6 0.8
P

FIG. 11. Same as in Fig. 10 for KD2FO4.

l.0

0.0 0.2 0.4 0.6 0.8
P

I.O

FIG. 13. Allowed values of the maximum polarization

PM of KH2PO~ consistent with the experimental value of
T, {D)/T, (H).
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1.0

0.8

TABLE II. Predicted ratios for C, and P~ consistent with

the experimental value for T, (D)/T, (H) in the various
models discussed in text compared with the corresponding
experimental ratios in Table I.

0.6

0.4
Expt. '

SW model
DW model
Novakovicb

C, (D)/C, (H }

1.40
0.86

~0.41

P~(H)/P„{D)

0.82
0.46

~0.35
0.43

0.2

l I l

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 14. Same as in Fig. 13, now f'or KD2PO4.

corresponds to the classical limit (qD=0) whereas for
the SW model, the value of ~, (D) may be obtained
in Fig. 3 for y'(D) =0.43, and the remaining dimen-
sionless quantities come from Eqs. (6.5) and (6.8),
respectively. Using now only the experimental values
of T, (D) and C, (D) and the values listed in the
second and third column of Table III, one obtains
Tp(SW) =387 'K and C~(SW) =395 ' K as well as
Tp(DW) =223 'K and Cj-(DW) =326'K, which are
listed in Table IV.

Assuming a dipolar nature for the hydrogen-
hydrogen interaction in both models, and recalling
that the classical limit for both cases corresponds to a

dominant dipole-dipole character, where the critical

0.5

0.4
Cl

~& 0.5

x 02
CL

0. 1

'From Table I.
bReference 7.

temperature would become equal to Ta = lp'/12k or
Tp = F/4k in SW and DW cases, respectively, the
quantity kTp defines the basic energy scale for the
problem in both models.

In the square-well model, noting that

1P' =8 $ p,'(3c so' ,t)—1)/r, '
j wp

(6.»)

where Hj is the polar angle for rj with respect to the i

axis of the crystal, where rj is the equilibrium posi-
tion qf the centroid of molecule j, one obtains

CI(SW) = !Vp,i/3k

using the experimental x-ray value6 for N =4/ p;,
where V, is the unit-cell volume, as well as the nu-
merical values obtained above for Tp and CI, Eqs.
(6.12) and (6, 13) can be solved for the determination
of the two unknowns f and p„whose values are list-
ed in Table IV.

For the double-well tunneling model, recalling the
notation correspondence between the papers of TM'
and Blinc' in which j.Tp= —I = —J(TM)I 1

hatt, Tp (DW ) = f lV p, (6.14)

as one can identify in the latter reference, noting that
7, in the present paper, Eq. (5.3), corresponds to
T, =2Z(o. ) in that paper. The corresponding equa-

TABLE III. Predicted values of dimensionless quantities
for KD2PO4, consistent with the experimental value of
T', (D)/T, (H }, in both models; see text.

C-Tp(SW) = fgp2 (6.12)

where 1V is the number of KDP molecules per unit
volume, and f is a dimensionless structure-dependent
parameter (see Appendix). Recalling that

l l I l

0.0 0.2 0.4 0.6 0.8 1.0 T, (D)/Tp C, (D)/CI P„(D)/N

FIG. 15. Allowed values of' the ratio of maxirnurn polari-
zations P~(H)/P&(D) consistent with the experimental
value of' T, (D)/T, (H) for the KDP associated pair.

SW
DW

0.58

1.00
0.83

1.00
0.48ps

1.00@,
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TABLE IV. Calculated values of Tp and Cf obtained

from Table III using the experimental values of T, (D) and

C, (D) in Table I. Knowledge of the values of Tp and Cf
allows for a determination of the quantities, f and p, in both
models.

Tp

('K)
Cf

('K)
0

(0 A)

~'„(D)„.,
( p,C/crn~)

SW 387
D% 223

395
326

ps =0.82 0.33

p, =0.43 0.68
6.6
7.2

E, (H}= 7.4 meV (6.i 6)

which differs from the value 6.8 meV given by Pir-
enne only because a more recent value for T, (D)
has been used in the present analysis. From the de-
finition of E, in Eq. {1.14) one obtains for the width
of the square-well potential the value

a =1.66 A (6.17)
which may be compared with the available space ex-
isting between the two oxygen ions in KHqPO4, i.e. ,
D(OO) —2rp —(2.50 —1.32) A =1.18 A as one ob-

tion for Cf is

Cf(DW) =Np, /k (6.i S}

Using Eqs. {6.14) and (6.15), as well as the above
determined values for Ta(DW) and Cf(DW), the
corresponding values for f and p. have been deter-
mined and listed in Table IV, where it should be not-
ed that p, is not necessarily the same as p, for the SW
model, whereas f should have the same value in both
models.

The values listed in the fourth column of Table III
have not been used yet. Using now the values ob-
tained above for p, and p, as well as the x-ray value
of N, the numerical values for PM(D)/Np, listed in

Table III allow a calculation of PM(D) for both SW
and DW models, which are displayed in the last
column of Table IV, and which may be compared
with the known experimental value" of P~(D) =6 ~ 2

pC/cm'. Comparing the values of PM(D) so ob-
tained one can see that quite reasonable values have
now been obtained, but here again the square-well
model gives better agreement with experiment.

As for the calculated values of Tp and Cf listed in

Table IV no experimental data are available from
high-temperature (classical) behavior of the parallel
electric susceptibility, probably because of the low

melting-point of these materials.
As a curiosity, if we recall Eqs. (1.21) and (2.9),

which define y' and Tp, respectively, one obtains

E, (H) =12y, y'(H)kTp

where y'(H} =0.86 from Eq. (6.2) and Tp=387'K
from Tabie IV, y, =0.0216 from Eq. (3.13), with the
result

y (x) = (1 —x) yH+xyp

for the SW model and,

c/ (x) = (1 —x)qH+xqp

(6.i 8}

(6.i 9)

for the DW model, where x is the deuterium concen-
tration, yH =0.86 and yp=0. 43 are taken from Eqs.
(6.2) and (6.3), and qH=0. 94 as shown in Fig. 9 for
the best choice p =0 and Ip =0 for KDP pair. In or-
der to make use of the experimentally determined"
values for T, (x), C, (x), and PM(x), if in Figs. 3 —5

one replaces y' by the values y'(x) of Eq. (6 ~ 18),
tables could be constructed for T, (x)/Ta, C, (x)/Cf,
and PM(x)/Np, for x in the range 0 ~ x ~1. Assum-

ing, as we have done above, that Tp, Cf, and Np, are
isotope independent, curves for T, (x)/T, (1),
C, (x)/C, (1), and PM(x)/PM(1) as functions of x
may be obtained with the result displayed in Figs.
16—18 in full lines.

tains from BP and the covalent radius for oxygen in

a monography by Speakman. " Noting that

p, =
~

Z"ea from Eq. (1.16), the numerical value of
Z' may be estimated by using Eq. (6 ~ 17) and the
value of p, listed in Table IV with the result

Z' = 0.99

The results above obtained seem to indicate that the
bottom of the local effective potential may be quite
flat.

The failure of the D%' tunneling model to describe
quantitatively the observed values for C, (H)/C, (D)
and PM(H)/PM(D) (see Table II) led Tokunaga and
Matsubara to consider such a contradiction with ex-
periment as due to the use of the molecular-field ap-
proximation. Taking into account the short-range
correlations among the four nearest-neighbor hydro-
gen atoms to a PO4 group, in similar manner to the
model of Slater' and Takagi" and neglecting all the
other-than-nearest dipole-dipole interactions, ™
obtained a sharp second-order ferroelectric phase
transition, with a choice of n = 5. In this way they
obtained a curve (see their Fig. 6) for the isotope
dependence of T, = T, (q), where q = Dr/aa is the
new quantum parameter. Such a curve looks quite
similar to that of Fig. 3 obtained in the present S%'

model for 7, ( y'). The predicted values for
C, (H)/C, (D) and PM(H)/PM(D) in the above clus-
ter approximation were not given by TM in that pa-

per. They only state that the cluster approximation is
inadequate to describe the relative lack of sensitivity
of C, and PM to deuteration.

KH~PO4-KDqPO4 mixtures. The concentration
dependence of the static ferroelectric properties of
KDP-DKDP solid solutions has attracted the atten-
tion of a number of investigators. " Proceeding in a

form similar to that of TM, an effective quantum
parameter y' is assumed for each solid solution, with

a deuterium-concentration dependence given by
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FIG. 16. Deuterium-concentration dependence of' the crit-
ical temperature in solid KH2PO4-KD2PO4 solutions, for the
square-well and the tunneling double-well model.

FIG. 18. Deuterium-concentration dependence ot' the
maximum polarization in solid KH2PO4-KD2PO4 solutions,
f'or the S and the D model.

Using the same method for the DW model, from
Figs. 6—8, the corresponding curves for the concen-
tration dependence are shown, for a comparison, also
in Figs. 16—18 in dashed lines, Due to the difficul-
ties involved in the precise determination of deuteri-
um concentration in each specimen, the experimental
points in Figs. 16—18 are scarce. On the other hand
Fig. 16 may be used to provide a scale for the deter-
mination of the deuterium concentration, x =x( T, )
if the values of T, are known. In this way, replacing
in Figs. 17 and 18 the values so obtained for
x =x( T, ), the graphs of Figs. 19 and 20 may be ob-

tained for the SW and DW models. Now, many
more experimental points may be used from the re-
ported data, ' even for those cases where the deuteri-
um contents were not known.

As can be seen in Fig. 16 the MFA, as applied to
the SW model, describes quantitatively the concentra-
tion dependence of T„whereas the DW model is not
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FIG. 17. Deuterium-concentration dependence of' the crit-
ical Curie constant in solid KH2PO4-KD2PO4 solutions, for
both models.

FIG. 19. Correlation between the Curie constants C, and
the critical temperatures in solid KH2PO4-KDgPO4 solutions
1'or both models. C, (D), the constant appropriate for pure

KD2PO4, has been used as a normalization constant. The
experimental points were taken from Sarnara (Ret'. 41 ) and
references therein.
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FIG. 20. Same as Fig. 19, now t'or I'M.

consistent with the experimental data. The near
linearity predicted by the SW model for the x depen-
dence of T, is related to the linearity of Fig. 3, in the
region between yD and yH. The inconsistency of the
DW prediction with the experimental data in Fig. 16,
led TM to attribute the difficulty to the use of the
MFA. But from Fig. 16, we can conclude that this is

not necessarily so. In any event, with the use of the
cluster approximation, they succeeded in obtaining
consistency between the DW model and experimental
data for T, (x) (see their Fig. 7).

In Figs. 17 and 18, once again we can see that both
models fail quantitatively, but still the square-well
model is closer to the overall experimental data.
Noting that the SW prediction in Fig. 18 came from
the use of the variational method, as described in

Sec. IV, it is possible that the exact calculation by
means of the appropriate Airy functions may lead to
an improvement. In Fig. 19 one can see that in spite
of the dispersion of the experimental points, they are
all closer to the SW prediction as compared to that
for the double-well tunneling model.

VII. DISCUSSION AND CONCLUSIONS

The oversimplified square-well model considered
here seems to be inadequate to describe infrared and
Raman frequencies associated with the hydrogen mo-
tion in these quantum ferroelectrics. On the other
hand, we cannot exclude the possibility that a no-
barrier modification of the above square-well model,
or a nearly harmonic one-minimum local potential '
may become adequate to describe not only the phase
transition, the strong or moderate isotope depen-
dence, but the infrared- and Raman-observed H-

motion frequencies as well.
According to Wiener ei al. the broad ir bands ob-

served in KDP at 2400 and 2750 cm ' have been dis-
cussed extensively in the literature but their origin is
not yet clear; the corresponding KD2PO4 bands are
shifted to 1730 and 2000 cm ', all these peaks seem
to be unconnected with the ferroelectric phase transi-
tion since the transition was shown not to affect
them; the frequency ratios v(H)/v(D) are, respec-
tively, 1.39 and 1.37, i.e., very close to the K2 har-
monic ratio, and this fact may be considered to favor
the displacive one-minimum near-harmonic model
for KDP. Inclusion of corrections to above ratios,
coming from vibrations transversal to the bond as
discussed by Pirenne may even bring those ratios
closer to 1.41. In other words, the use of those in-

frared bands does not seem adequate to discriminate
between the displacive (one-minimum) or the order-
disorder (double-well) character of those ferroelectric
crystals, at least until much more accurate calcula-
tions and experiments become available.

In the model suggested by Novakovic' for KDP the
local potential V, (u) is replaced by a full many-body
problem, but still use is made of a representation en-
volving four linearly independent local wave func-
tions in a manner that looks similar to Slater-Takagi-
Blinc model. Taking into account the short-range
nearest-neighbor interactions among the four hydro-
gen bonds close to a KDP molecule, he succeeded in

obtaining consistency with the laser-excited Raman
lines observed by Kaminow et al. ' at room tempera-
ture in single crystals of pure and deuterated samples
of KDP. No experiments on the temperature or
transition dependence of the 2705, 2360, and 1790
cm ' Raman bands for KDP, as well as for those at
1990, 1770, and 1370 cm ' for DKDP seem to be
available. The near-harmonic ratios for the corre-
sponding H and D Raman frequencies may be con-
sidered again ' as an argument in favor of the simple
near-harmonic one-minimum local-potential character
for KDP, or being more precise, the above Raman
frequencies may be considered not to provide a clear
discrimination between Novakovic model and the
one-minimum local-potential model. Besides that the
above many-body model, with the neglect of the
long-range component of the dipole-dipole interac-
tion, seems to allow only for a second-order phase
transition as opposed to experimental evidence al-

ready mentioned for a first-order phase transition.
As a result of the above discussion, it may be stat-

ed that the isotope dependence of T„C„and PM as
well as the H motion above assigned infrared and Ra-
man frequencies do not provide yet a clear discrirni-
nation between the displacive and the order-disorder
character for KDP.
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APPENDIX

As a curiosity let us consider the possible dipole-
dipole origin for the hydrogen-hydrogen J„coupling
in Eq. (1.2). The direct dipole-dipole interaction
between the KP dipole of molecule i and that of
molecule j is given by

1+
3

(P ' Pj 3P ' fj'rj'Pj )
flJ

(A1)

where P; is the electric dipole of the KP ion pair in

molecule i, r„ is the distance between (KP); and
(KP)j, and r"„ is the unit vector along the line con-
necting i and j. Now assume that the displacements
of the K and P ions occur essentially along the c axis
of the crystal, i.e. , that

Pj=P,,Z, (A2)

where P„ is not the absolute value of the dipole but
its component along the c axis, which may change
sign according to Eq. (1.1). Equation (A2) corre-
sponds to assume that both K and P ions have a

cigar-shaped Debye-%aller factor directed along the c
axis, corresponding to relatively small displacements
transversal to c axis. Using now the strong H-KP
coupling by means of Eq. (1.1), and replacing Eq.
(A2) in Eq. (Al), the interaction energy between site

0 and site j becomes

2

3(3 cos'Hj —1)Mpoj(-'a ) rpj
2

(A3)

where use has been made of' the definition for p, in

Eq. (1.16); in Eq. (A3), Hj is the polar angle of vec-
tor rpj. Consequently the molecular-field energy 8',
in Eq. (1.15) becomes

+'=8p, ' $, (3cos'8, —1)
j wp rpj

(A4)

and the structure-dependent parameter f defined in

Eq. (6.12) becomes

.f =
6 $ 3

(3cos t)J 1)'
1 ~0 (rrj, /D)' (As)

where D'= I, is the unit-cell volume. The best
method for an evaluation of Eq. (A5) is the Ewald
method. The angle 0 for which 3 cos'8 —1 =0 corre-
sponds to 8, =—55'. The fact that the factor f may
be positive in KDP-type ferroelectrics may be ex-
plained if it is observed that, other considerations be-
ing equal, the angular average of 3cos'8 —1 is zero,
since (cos'tl) = —, . For a tetragonal or orthorrombic
"squashed" structures the nearest neighbors to a cen-
tral site correspond to cos0 = +1, where 3 cos'8 —1

attains its maximum value +2.
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