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~e discuss the character of' long-wavelength polarization fluctuations in model ice-rule f'er-

roelectrics. Because polarization is locally conserved in these systems, polarization correlations
are strikingly different in character f'rom those in systems having rotationally invariant correla-

tions. Several aspects of' the problem can be discussed quite fruitfully in the language of two-

dimensional potential theory. Comparisons are made between predictions of' this model family

and neutron scattering experiments on a quasi-two-dimensional ice-rule ferroelectric, copper for-

mate tetrahydrate.

I. INTRODUCTION

A recent neutron scattering study' of the order-
disorder phase transition in copper formate tetrahy-
drate (CFT) showed that the order-parameter fluc-

tuations in that substance are unusual compared to
those accompanying most previously studied phase
transformations. In this paper, we will show that
those observations are typical of what is to be expect-
ed from model two-dimensional (2D) ice-rule sys-
tems. In order to put the CFT observations in the
proper context, we begin by summarizing some of
the relevant features of typical diffuse scattering
studies of systems undergoing phase transitions.

In systems governed by short-range forces having
finite strength (e.g. , Ising systems), the observed dif-
fuse scattering cross section (which gives the spatial
Fourier transform of the pair correlations) is approxi-
mately a Lorentzian function of the reduced momen-
tum transfer q. ' Apart from a possible anisotropy in

the correlation length (which can be removed by a

coordinate transformation), the pair-correlation func-
tion is rotationally invariant, depending only on the
distance between sites. The observed scattering cross
section has a peak at q = q„where q, is the wave
vector at which long-range order appears; in princi-

ple, when q, = 0, the magnitude of the scattering at

q, is related to a macroscopic susceptibility.
In uniaxial dipolar-coupled systems, the situation is

somewhat different. There is a contribution to the
correlations which is not rotationally invariant; the
differential cross section is singular at q =0.' In the
well-known uniaxial ferroelectric potassium diphos-
phate (KDP), for example, the diffuse scattering can
be represented' by

5(q) = I) +p[J(q)+ t (q)] I
'

where S(q ) is the Fourier transform of the

displacement-displacement correlation function, P is
the inverse temperature, J(q ) is the Fourier trans-
form of a short-ranged interaction, I (q) ~ (qt/q)',
the small-Iq I

limit of the dipole-dipole potential, and

qt is the longitudinal component of q (the com-
ponent along the uniaxial direction). At small q,
J(q ) is rotationally invariant, in the sense described
above, but the dipolar term V(q ) destroys the rota-
tional invariance of S. Again, lim~ OS(q ) is related
to the macroscopic susceptibility, and the scattering is

intense at »l =0. Note that there is no q for which
the scattering is predicted to vanish, although the
scattering is weaker when q is longitudinal than when

q is transverse. (A more recent discussion of
scattering from systems of this type was carried out
for the case of LiTbF4. )

In CFT, the results are qualitatively different from
these two cases. A sample of the neutron diffuse
scattering results is showy in Fig. I, which is a map

INTENSITY

FIG. 1. Shown here some results of'a neutron scattering
study of finite-wavelength polarization fluctuation» in the
disordered phase of CFT. (See Ref. 1.)
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of

(2)

where (}= q +G, G is the reciprocal-lattice vector
nearest Q,

S~~ ( q ) = g e ' O ' ' (Pr (0 ) Pr ( r ) )
r

~F(Q) ~' is a geometrical structure factor which varies

slowly with Q, and the angle brackets with subscript
av denote an average over the instrumental resolu-
tion function. ' The subscripts on S indicate that this
particular scattering arises from correlations in P~, the

y component of the unit-cell polarization. In general,
the cross section includes contributions from other
correlations as well; however, making use of the
mode analysis given in Ref. 1, one can show that
other contributions are suppressed by the structure
factor at the point in reciprocal space at which the
data in Fig. 1 were taken.

The 2D water layers in CFT lie in crystallographic
ab planes; the intralayer reciprocal-lattice coordinates
are (h, k). In the ordered phase, the polarization
points along + b, the sign alternating from layer to
layer. Thus there are superlattice reflections at half-
integral I. The data of Fig. 1, which are centered at
such a site, (h, k, —, ), were taken at a temperature

)

above the transformation temperature, To. At high
temperature, the scattering is largely independent of
t, showing that the layers are very weakly correlated.
Just above To the t dependence of the peaks is more
pronounced, demonstrating that a strictly 2D model
of the transformation is incomplete. But the qualita-
tive features of the scattering, which are the subject
of this paper, are features of ideal isolated 2D layers.

We see in Fig. 1 that the scattering essentially van-
ishes along the line h =0. Rather than peaking at

q = q„ it peaks at finite transverse q. As we men-
tioned earlier, it is typical of uniaxial dipolar-coupled
ferroelectrics that the scattering is stronger at trans-
verse q, but it is not typical for the scattering to van-
ish in the longitudinal direction. Moreover, q, is, in

this case an antiferroelectric superlattice point, at
which the dipolar V(q) is noI singular; indeed, the
existence of the notch was shown in Ref. 1 not to
depend on the I coordinate. Therefore, the pattern in

Fig. 1 does not arise from a three-dimensional
(long-ranged) dipolar coupling. We will see later that
this pattern has a basically 2D dipolar character,
although its origin is in ice-rule constraints rather
than dipolar interactions.

We will show that these results are to be expected
in model 2D six-vertex systems. The lattice models
we are discussing are the following. ' Arrows (spins)
are assigned to each bond in a square planar array in
such a way that two arrows point into and two arrows
point away from each vertex (the ice rules). Each of
the six allowed vertices in Fig. 2 has a weight,

~; =exp( —PE;). We discuss only the case in which

there are no external fields and symmetry requires
QJ] cU2 ck)3 cl)4 and so~ = cv6. The ice, KDP, and F
models are special cases. These models are generical-
ly termed ice-rule ferroelectric models; they are use-
ful in describing networks of hydrogen bonds, in

which protons occupy one of two possible sites along
a bond which can be labeled by a spin, cr = +1. One
can imagine associating a physical dipole with each
spin; the ice rules insure that the resulting polariza-
tion is locally conserved (i.e., "divergenceless" at each
lattice site).

A very important characteristic parameter for these
models' is

~t + ~3 —~S2 2 2

20) t 6)3
(3)

Prescribing particular energies for the different ver-
tices fixes the interval over which b, ranges as a

function of temperature. If either pair (1,2) or (3,4)
1

is favored, 5 increases from —, as the temperature
decreases from ~, and ferroelectric order sets in at
5 = l. Allen' has argued that the layers of water
molecules in CFT are nearly ideal examples of this
behavior. If the pair (5,6) is favored, antiferroelec-
tric long-range order sets:n at 4 = —1. The systems
we are discussing are thus disordered in the interval
—1 ( b, ( 1, and the conclusions we draw are valid

only for that regime. The other important parameter
for our discussion, ri= cut/ru3, measures the prefer-
ence for (1,2) vertices over (3,4) vertices, and thus
reflects the intrinsic anisotropy.

It has become increasingly clear that there is a

close relation between this problem and several other
interesting 2D many-body problems. " In the dis-
cussion of the form of the polarization correlations
(Sec. II A), we will see that this problem is governed
by standard 2D potential theory.

II. PROPERTIES OF THE CORRELATION
FUNCTION AT LARGE R

In this section, we discuss certain properties of the
pair correlations at large r. We will draw from three
sources of information: Sutherland'st2 exact result
for parallel arrow correlations at 5 =0; the exact
results of Fisher and Stephenson' for dimer correla-
tions, which can be manipulated to provide complete
information about polarization correlations in the

X

QJ
(

(aP p

F16. 2. Six allowed vertices and the associated weights ~;.
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six-vertex model at 5 =0; and studies of the dynam-
ics of the Heisenberg-Ising chain, carried out by
Luther and Peschel' and Fogedby, "which provide
some information about the correlations in the six-
vertex model at 5 &0. It will be clear by inspection
of the six-vertex model results that it is very useful
to introduce a "coarse-grained" polarization P( r ),
which is a local average of the polarization around r.
The leading contribution to the correlations of this
quantity are seen at once to be governed by the con-
tinuum equation '7. P =0. For, h &0, less informa-
tion has hitherto been available; however, from the
Heisenberg-Ising model results, one can infer the
form of the coarse-grained correlations even when
5 &0.

We begin by considering parallel arrow correlations
in the six-vertex model, for the case q =1. Suther-
land' has shown {see the Appendix) that

(a;(0)rr;.(r ))— {4)

where o-;{r ) is the spin pointing along + I (i =x', v')

at position r = (x', v'). These coordinates are primed
for reasons that will become clear shortly (Fig. 3).
One sees in Eq. (4) that there is one contribution to
the correlations that oscillates in sign from one lattice
site to the next, and another which is smooth. This
is also true in the dimer pair correlations (see the
Appendix), and in the Heisenberg-Ising correlations
(to be discussed shortly). In the CFT problem, these
were described' as fluctuations of two different
modes, one ferroelectric and one antiferroelectric.
Our concern here is with long-ranged polarization
correlations, or fluctuations in the ferroelectric mode;
accordingly, it is useful to introduce the notion of a
coarse-grained polarization

P, ( r ) = (y-, (x',p'') + (r, (x'+1,v')

At large r, the leading contribution to the correla-
tions of the coarse-grained polarization is essentially
the smooth contribution, for the values of 4 that we
are considering; the rapid oscillations are averaged
out. However, two things must be borne in mind.
First, the period of the rapid oscillation changes in an
applied direct field", in the presence of such a field,
the coarse-graining procedure used here would have
to be modified. Second, the oscillating contribution
decays more slowly than 1/rt, for 5 ( 0 (Ref. 15); it

is only the coarse-grained polarization correlations
whose leading decay is l/rt (In considering the.

coarse-grained polarization, we are essentially taking
a step towards a continuum problem which can be
discussed in terms of 2D potential theory. But as LL

tends towards —1, the rapidly oscillating contribution
becomes increasingly important; ultimately, at
LL = —1, there is a transition to a state of antifer-
roelectric long-range order, in which the discreteness

FIG. 3. Here we summarize the connections between the
various models discussed in the text. The upright (.v, i )

coordinate system is that of the dimer problem, whose lat-

tice sites are those of' the upright grid. If we designate verti-
cal bonds by 3 or B in the manner shown, then the i com-
ponent of the polarization associated with each row is (the
number of 3 dimers minus the number of adimers) in that
row; this polarization is conserved from one row to the
next. The primed coordinate system is that ol the associated
six-vertex problem. A» drawn, the arrows correspond to the
state of complete polarization along the i axis. In the
language of the dimer problem, this is the state having (for
example) all 3 sites occupied by dimers. (See Ref. 8.) The
square enclosed by the broken line is the unit cell over
which coarse graining is perf'ormed. Since the arrows lie

along i or i, the primed coordinates appear lo be a natural
choice in the six-vertex problem. It is to be emphasized,
however, that the ferroelectric order parameter points along
.v or i. We may think of x' as the Heisenberg-Ising chain
axis, and i as the imaginary time axis. For some purpose»,
it is useful to think of 5' as pointing along i '.

of the lattice is clearly essential. )
Another route by which we may evaluate the polar-

ization correlation function uses the correspon-
dence"' between the dimer- and six-vertex models.
This route has the advantage of giving the off-
diagonal components, (P;(0)P, ( r ) ), (i W j), as well
as the diagonal one considered by Sutherland. It is
shown in the Appendix that at 5 =0, and for
p=(x +A.'v')' ' large compared to f —(q'+I)]' ',

(x' —Z'v')
(P (0)P (r)) ——A. . . , . (5)

( 2 + g2„,2)2

2A. x
(P,(0)P.(r)) —W

( 2+) 2,2)2



CORRELATIONS IN ICE-RULE FERROELECTRICS 52i5

and

(P, (0)P„( r ) ) —A ) '
(x2 + g2y2) 2

(7)

(P, P») = ——h(xy), —h(xy)8
By

' '
Qx

= —0 ~ [h(r)z] (s)

where z is a unit vector in the z direction.
Conservation of polarization ('7 P =0) translates

into the requirement that h(x, y) be single valued.
(Its curl has zero divergence. ) Letting p(R)
=(h(rp)h(r)), then,

(P, (rp)P„(r )) =— y(R)8
~y ~yp

(P»( rp) P»( r ) ) =— p(R)8
Qx Qxp

(P»( rp) P, ( r ) ) = y(R)8
By Bxp

Bearing in mind that g(R) = g( r —rp), so that
aq/ax =-aq/axp, etc. , one obtains Eqs. (5)—(7)
from

(9)

(10)

where A =2/m2, and X = f, / f», the ratio of the hor-
izontal and vertical dimer activities. Note that these
results are referred to unprimed coordinates. [Of
course, these are compatible with Eq. (4), in which
h. = rt= 1.] The unprimed system is special, in that r&

distinguishes x from y; the ferroelectric order param-
eter is a polarization which lies along x or y, not x' or
y'. Naturally, then, the formulas are simplest in the
(xy) system, if r&W1. (See the Appendix for fur-
ther discussion. )

All three functions [Eqs. (5)—(7)] are derivable
from a single scalar potential. It is instructive to
consider this in the light of van Beijeren's'
correspondence between the six-vertex model and a
particular roughening model. If we think of the
height A of the interface in that roughening model
as a scalar potential h(x,y), we see from van
Beijeren's paper that the polarization at six-vertex
sites is related to the derivative of h( r ); one has

(x'+ v2t2)
(S'(0, 0)S'(x, &) )—,

2 2 2 24m'e (x' —u'(')'

(2
+(—1)"

i&t2e

, (14)

where" 8= —, —(1/7r) sin '5, and the coordinates are

again defined in Fig. 3. Although this result pertains
to a different physical model, it is possible to extract
information about the six-vertex problem from this.
McCoy and Wu' showed that the transfer matrix of
the six-vertex problem in an applied field commutes
with the near-neighbor Heisenberg-Ising Hamiltoni-
an. (Conservation of polarization from one row of a

six-vertex lattice to the next is related to conserva-
tion of the net magnetization of a 1D chain from one
instant of time to the next. ) Thus, the eigenvectors
of the two operators are the same. Bearing this in

mind, consider the correlation between two spins in

the same row.

g (x',y' =0) = (Xp~ o, (0, 0) cr, (x', 0)
~
kp), (15)

where ~)tp) is the eigenvector of the largest eigen-
value of the transfer matrix. This quantity depends
on the eigenvector ~)tp), but not on the eigenvalues;
it can therefore be identified with (S'(0, 0)S'(x', 0) )
given above. Of course, the situation is different for
t' &0. Note in this connection that the six-vertex
problem under discussion has two nontrivial pararne-
ters, q and b„' the above Heisenberg-Ising Hamiltoni-
an has only one. It can also be seen in Fig. 3 that
the two problems have incompatible mirror planes;
we expect

(S*(0,0)S'(x'f) ) = (S*(0,, 0)S*(—x', !) )

'7 P =0 must in any case govern the continuum
limit of the coarse-grained polarization correlations.
With this in mind, let us consider the case b, &0.

Studies' ' of the 1D Heisenberg-Ising chain,
which is governed by the Hamiltonian

X(h) = —$ (S('Si+i + S/S/+1+ &) S/S/+1 ), (13)
1

have shown that at large x,

p= —3 lnp (12) but not

This has the form of the potential operating between
two charges of opposite sign in an anisotropic 2D
dielectric medium with h.

' = p, /p».
Conservation of polarization is clearly of

paramount importance here, but in itself it is not suf-
ficient to guarantee this result. In particular, the
algebraic decay of the correlations is a consequence
of the nonexistence of a gap in the eigenvalue spec-
trum of the transfer matrix, and this state of affairs is
easily changed (by application of a staggered field, for
example). On the other hand, the conservation law

(a (0, 0)o (x',y')) = (a (0, 0)o ( —x',y'))

since the x and y axes are distinguished by the aniso-
tropy q. The similarity between Eqs. (14) and (5) is
almost misleading; the two appear to be nearly the
same for q =1, b, =0,

We may summarize the situation as follows. Even
though we cannot make immediate use of Eq. (14)
for r &0, the form of (P;(0, 0) P&(x,y)) is clear.
Equation (14) prescribes the normal derivative of p
everywhere on the edge of the half-plane defined by



5216 R. YOUNGBLOOD, J. D. AXE, AND B. M. McCOY 21

the x' axis. Equations (9)—(12) continue to govern
the correlations for 5 ~0, with A and A, now depend-
ing on b, . On comparing Eqs. (5) and (14), we arrive
at the result that

A (a) =(~'e)-'

%hen X(q, 5 &0) is known, information concerning
the asymptotic behavior of the polarization correla-
tions will be complete. Further arguments concern-
ing X(q, 5) will be presented elsewhere.

III. PROPERTIES OF THE SCATTERING
CROSS SECTION

The intensity of diffuse neutron or x-ray scattering
probing the small ~q ~

fluctuations in Py is proportion-
al to

arrived at a similar conclusion for the case of three-
dimensional ice.) This has to do with the fact that
the sum over r of g( r ) is conditionally convergent.
A discussion of this point will be presented else-
where.

Recall [Eq. (3)] that in a scattering experiment,
one measures an average of the differential cross sec-
tion over an instrumental resolution function. For
example, if the resolution function is Gaussian—
frequently a good approximation' —then

g2
I(h /) p

C7P (7k 2a

x exp, S(h + si, , k + hk)
20k

x dS~ dhk

Syy(q) = $e'' ' (P (0)Py(r ))
~here

$ jr ( I.) pi(kx+ky) (19)

Transforming Eq. (5), we find

( )
A. h' 2vrA A.

)'A'+~-' ) '+(I;(I )'

at small ~q ~. This function is plotted in Fig. 4. It is

particular in that it depends only on the ratio (h/I ),
not on the magnitude

~ q ~. (By studying diagrammat-
ic expansions of the correlation functions, Villain'

P( r ) = t;( r ) exp( ——,
' ~~x') exp( —

—,
'

~k v')

O.q. o.k are resolution widths along h. k, and Sq, Sk are
deviations from the nominal q. From this, is can be
seen that the shape of Eq. (18) cannot be directly ob-
served in a scattering experiment. The peculiar
nonanalyticity is a consequence of the range of,~ ( r );
as seen with realistic resolution, however, P(1) de-
cays as i 'exp( —I') rather than as r '. To put it

another way, l(h, k) is, of necessity, a smooth, well-
defined function of ( h, k) while S ( h, k) is not.

To understand what is seen in a scattering experi-
ment, it is useful to consider a particular limiting case
of Eq. (19). Let o-~ be very small, and consider
l(h. k) along the line k =.0. According to Eq. (18),
S(h, k) is a Lorentzian function of k, whose width is

proportional to ~h~. At sufficiently small ~h ~, then,
the integral over k essentially sums S(h, k), because
the resolution function is effectively constant com-
pared to S(h, i ). Therefore, at small ~h ~, we can
write

l(h, k =0) ~ Qyy(h, 6k)dSk =4~Ah tan '

k hz

FIG. 4. This is a schematic contour plot of Syy(h, l ). All

the contours meet at q =0. The arrows indicate widths of
an instrumental resolution function. hen the resolution
function is centered at q =0, the intensity [Eq. (18)] is

small; when it is centered at large h, with I =0, maximum
intensity is picked up.

(20)

The intensity is predicted to go to zero as
~
h ~. In

fact, by integrating (h, k) over k, we have simply
recovered the one-dimensional Fourier transform of
pyy(x & 0), since

dk S(h k) ~ g(r)e' dk e'ky

x,y

~ $t;(r)~' g( v)
x,y

The form of Eq. (20), then, is the experimental sig-
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separated by s horizontal bonds and t vertical bonds
in terms of a product of Green's functions, (s, t).
For example, for two horizontal dimers

C (s, r) = f„'[(s —l, r)(s + l, r) —(s,r)'] (A1)

and

h(a, p) = f„(1—costa) + f~ (1 —cosp)

FS evaluate (s, r) exactly for [s (
+

(
r

(
~ 11, and they

discuss the asymptotic behavior of (s, t =0) and
(s =O, t). Using a different method, we extend the
evaluation to general s, t in the asymptotic limit.

The integral on p may be performed exactly:

l(a, r) = Jt dP

' t/2
(1 —a )' —1

{A3)
g(1 2) I/2

and

for large t. Here

8 = f„(1—cosu}+f~

a = f~/[ f„(1—cosa) + f~
—

1

and X = f„/f~. Since l(a) is sharply peaked about
a =0 for large r, the integral in Eq. (A2) on a can
now be performed with the substitution of Eq. (A3)
to obtain the asymptotic behavior of (s, t) by Lap-
lace's method. The result, in the limit of large s, is

The remaining correlation functions are similarly
defined. (s, t) is defined in terms of a double integral

.f r " h(p r)
(s, r) =

& J dag(a, s) dP (A2)
2m a(~, p)

for odd s and even t. (s, t) =0 for s, t both even or
both odd, and for even s and odd t, (s, t) is obtained
from Eq. (A2) by a permutation of the arguments of
g and h. In Eq. (A2)

g{a,s) =cos—(s+1)a —cos—{s—1)a1 1

2 2

1 . 1=—2sin —asin
2
sa

h(p, t) =cos
2

t p

—v (s +1,t) + v (s +1,t +1)} (A6)

where we take (s, t) to be even. It is then a simple
matter to show that

(P (
2

s, —r ) Prr(0, 0) )

( —1) +"C
a( s+m, ( +n), (A7)

m, n 0, 1

for s, t )) 1. The explicit results are

2
1 I .f»

(P ( —s, —r)P, (0)) —2—

(P„( 2
s,

2
r) PE(0) ) —2

1 1 .f .fy

2

(Py( —,s, —,r)Pr(0) ) ——2—',1 1 .fy

2 2

(A8)
p2+ q2)2

2pq
){p'+q')'

( 2 2)', , ", (Alo)
( p2+q2)2

where p =f~s and q = f„t.
Now we turn to the related problem of pair correla-

tions in the six-vertex model. For 5 =0, the prob-
lem reduces to a free fermion model, and Suther-
land" was able to calculate the diagonal (i.e., vertical
arrow-vertical arrow) correlations g, ( r ). He

presented explicit expressions for the asymptotic
behavior only in the isotropic (q=1) limit. We ex-
tend these results into the g & 1 regime, and com-
pare the results with those just derived for the dimer
model.

Sutherland finds that, in the absence of long-range
order and with no external fields, the diagonal pair
correlations are given by

g, , (x',y') = {1/m )11(x',v'}12(x',v'), (A11)

readily evaluated from expressions given in FS.
It remains to make the correspondence between di-

mer and polarization fluctuations. As discussed in

Refs. 1 and 8, the correspondence is such that a 2 x 2

cell on the dimer lattice represents a single unit cell
in a CFT layer. The state of uniform x(y)-axis po-
larization corresponds to a configuration involving
only horizontal (vertical) dimers which are staggered
in adjacent rows and columns. If we introduce the
operator v {s, t) =0 or 1, which measures the dimer
occupation of a given bond on the dimer lattice, then
it follows that the local coarse-grained polarization
operator on the CFT lattice consistent with that de-
fined in the text for the six-vertex model is

P ( —,s, —,r) = —,[v (s, r) —v (s, r+1)1 1 1

(s, t)—
fys

(s odd, t even), (A4)
~ (.f,s)'+(.f.t)'

f»t
(s even, t odd)(.f,s)'+ (.f.t)'

(AS)

Given (s, t), the dimer correlation functions are

where
3~/2

I = [ f(ik}}&e'""dk
s/2
w/2

lt= [ f(ik)) e '" "dk
—~/2

and f(ik) =(sr+e'")/(7re'" 1). Here x' an—d y

(A12}

(A13)
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measure the number of intervening bonds along the
x' and y' directions, respectively (see Fig. 3). Mak-
ing use of the relation f(i (I. + n)) = —[.f'( —lj ) ]
we find that I2=( —1)"+y I]' and thus

(x', .v') = [(—) )" +' /rr ] I/i(x'. v')
I (A&4)

In order to evaluate I](x', v') asymptotically, we write
it as a contour integral in the complex plane with the
intention of using a method of steepest descents.

with

tanH = 2q v'[( r]' + 1)x' —2q v']

D = x' —2Px'v'+ v'

= [2/(q'+ l)](x'+ x'v')

—= [2/(q'+ ) ) ]p' .

P = (&'- I )/(&'+ I) .

(A17)

(A18)

(A19)

/1(x', v') = [ /'(z) ] 2"—
C Iz

exp[ w(z) ]
dz

C /Z

If we write: = re'~ and f (z) = R (z ) e' "then

w(z} =(y'lnR +x'lnI. ) +i ( v'4 +x'@}

(A1S)

——(i)" + e'~ e-0'ds = —(i)" +y e' D, (A16)

and the contour is taken clockwise on a unit semicir-
cle from —i to +i. Consideration of the integrand re-
veals that the important contributions to I] come not
f'rom saddle points but from the end points of the in-

tegral, where Re [ w (z = + i ) ] = 1. The integration is

performed by deforming the contours in the vicinity
of the end points to coincide with paths of steepest
descent for Re[ w(z) ]. If, for example, such a path
around: =i is specified by z =i + se'~, it is found
that the contribution to the integral can be approxi-
mated as

[Note that it is D, not r = (x'2+ „, 2)]/2, which plays
the role of the large parameter in the asymptotic ex-
pansion. This means that the asymptotic expansion
is not valid for any combination of parameters for
which D is not much larger than unity. This occurs,
for instance, as q —~, even for arbitrarily large
x' =J'. Analogous comments pertain concerning the
large parameter in the asymptotic expansion of the
dimer correlations. ] The contribution to I] from the
- = —i end point is of the form I = I~, on evaluation,
one obtains the final result for g, ,(x', v'),

(o,(0) a. , ( r ) )

r 't

(1 —2P ) v' +2Px'v' —x'
( 1)x +y

m D D

(A20)

This reduces to Eq. (4) for the isotropic case, q =1„
and the coarse-grained part of the expression is ident-
ical to that obtained from Eqs. (5)—(7) by a trans-
formation from the (x, v) to (x'. v') coordinate system.
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