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Elementary microscopic arguments are given showing that in equilibrium the order parameter

of a superfluid rotates with the container. We show that this rotating equilibrium is also a

consequence of the phenomenological equations of superfluid hydrodynamics, provided consid-

erable care is taken in specifying which variable in those equations is to be identified with the

chemical potential. Our results clarify the physics underlying the so-called gauge wheel effects in

superfluid 3He and He, demonstrate that recently raised doubts on the validity of the proposed

hydrodynamics of He are misconceived, and make some novel points about the behavior of the

superfluid chemical potential under Galilean transformations and its role in the equations of
I.andau's two-fluid model.

I. INTRODUCTION

Consider a superfluid in a uniformly rotating con-
tainer. We shall show that in the equilibrium state,
for quite elementary reasons, the superfluid order
parameter rotates with the container. We character-
ize this behavior by the term "rotating equilibrium. "

We shall then examine how rotating equilibrium is
embodied in the standard equations of superfluid hy-
drodynamics. This is a somewhat more subtle ques-
tion. In the case of a scalar superfluid ( He) we shall
show that the rotation of the equilibrium scalar field
characterizing the order parameter is driven by terms
in the hydrodynamic equations that can easily be
overlooked, if insufficient care is taken in specifying
the variables in those equations that is to be identi-
fied with the chemical potential.

In the case of a vector superfluid ('He) these same
terms (which we shall refer to as terms of the first
type) are present in the hydrodynamics, supplement-
ed by the additional terms (terms of the second type)
required to drive a uniform rotation when the order
parameter is characterized by vector fields.

The terms of the second type are explicitly present
in the proposed hydrodynamic equations for super-
fluid He, and some of the interesting effects they
drive in nonequilibrium configurations have recently
been explored by Liu and Cross. ' Comparable atten-
tion has not been paid to the similar and equally im-

portant role played by the terms of the first type of
either He or He.

There are several reasons for publishing the quite
elementary observations that make up the bulk of
this paper:

(a) The rotation of the equilibrium order parameter
in He is relevant to experiments, both actual' and

Gedanken, but the way in which this rotation is built
into the two-fluid hydrodynamics has never been
made explicit.

(b) For a complete understanding of effects such
as those proposed by Liu and Cross it is essential to
take into account the implic't terms of the first type
that drive the rotation of the order parameter as well
as the explicit terms of the second type peculiar to He.
Spectacular but completely spurious effects can be
predicted if the terms of the first type are overlooked.

(c) Arguments have been put forward disputing
the form of the proposed hydrodynamic equations for
'He. It has been asserted that the terms of the
second type are absent or that they are present, but
with a coefficient that vanishes as the temperature
approaches zero. ' Such revised hydrodynamic
theories can be ruled out for the simple reason that
they do not have rotating equilibrium as a solution.

(d) Certain comparatively obscure expressions in

the standard two-fluid description of He (and analo-
gous terms in the description of He) acquire a strik-
ingly simple and natural form, when the subtleties as-
sociated with the proper identification of the chemical
potential are made explicit.

In Sec. II we give the elementary argument that if
superfluid 'He or He is in equilibrium in a uniformly
rotating container, then the order parameter rotates
with the container. The proof consists of nothing
more than an explicit working out of the conse-
quences of the following fact: If there exists a frame
of reference in which the Hamiltonian is time in-

dependent, then a time-independent thermal equili-
briurn state can be attained in that frame. In the case
at hand the frame rotating with the container is such
a frame, and the rotation of the equilibrium order
parameter in the lab frame then follows. Readers
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who already find this convincing should skip all of
Sec. II except for the transformation at the end of the
section of the simple statements (2.19) and (2.20) of
rotating equilibrium into the rather more intricate dif-
ferential equations suitable for direct comparison with
the equations of hydrodynamics.

In Sec. III we show how rotating equilibrium is
indeed built into the existing hydrodynamic theories
of superfluid He and 'He; i.e., we show that when
applied to helium in a uniformly rotating container
these equations have solutions that describe a super-
fluid characterized by an order parameter undergoing
rigid body rotation at the angular velocity of the con-
tainer. We note that proposed modifications in the
hydrodynamics of He do not have this property.

Before this can be done it is necessary to explore
some important features of the chemical potential
that bear on rotating superfluids but have not, as far
as we know, received sufficient emphasis in the exist-
ing literature on superfluidity. In Sec. III A we show
how the chemical potential transforms under a
Galilean transformation, and emphasize that the
quantity commonly identified as the chemical poten-
tial in most treatments of superfluidity is, in fact, the
chemical potential in the local v, =0 frame, and not
the laboratory-frame chemical potential. In Sec. III B
we show that the equilibrium conditions for a super-
fluid in a container that rotates uniformly about a
stationary axis, require the laboratory-frame chemical
potential to be constant. In Sec. IIIC we show how
the conclusions of the preceding sections immediately
yield rotating equilibrium when applied to the exist-
ing hydrodynamic equations of either helium super-
fluid. Any proposed modification in the hydro-
dynamics of 'He must (unlike the proposals in Refs.
4 and 5) continue to pass this simple test.

In Appendix A we emphasize that the hydro-
dynamic terms of the first kind are as important as
the terms of the second kind in understanding what
Liu and Cross have described as "gauge wheel" ef-
fects in 'He-A. In Appendix B we show the simple
forms assumed by the Gibbs-Duhem equation and
the energy current in 'He, when the different forms
assumed by the chemical potential in different frames
of reference are explicitly taken into account.

We conclude this introductory section with some
cautionary remarks on two common misconceptions:

(a) Rotating equilibrium in He is not inconsistent
with the fact that the superfluid velocity remains zero
in a slowly rotating cylindrical container. The super-
fluid velocity being zero is equivalent to the order
parameter being spatially uniform, and the rotation of
a uniform order parameter leaves it completely unal-
tered. To test rotating equilibrium in He requires
configurations in which the equilibrium order param-
eter is nonuniform. This happens when the rotation
rate of the container is large enough to stabilize a
vortex lattice. Rotating equilibrium then requires the

vortex lattice to rotate with the container, and that is
what it does.

(b) Rotating equilibrium is driven by terms in the
hydrodynamic equations containing the normal fluid
velocity v„. Although the normal fluid density van-
ishes at zero temperature in the helium superfluids, it
is not correct to conclude from this that the normal
fluid velocity must drop out of the zero temperature
hydrodynamics. The velocity v„ is the velocity of the
frame of reference in which the helium is locally in

equilibrium with external systems with which it can
exchange momentum. It follows that v„ is the velo-
city of the frame in which the excitations are in local

equilibrium, but v„ is not deprived of a hydrodynam-
ical role if there are no excitations present to exhibit
this velocity. Moving ~alls can exchange momentum
with the helium even in the absence of excitations,
and the terms in the zero temperature hydrodynamics
involving v„are essential for the description of this
process.

II. ROTATING EQUILIBRIUM: MICROSCOPICS

We inquire into the equilibrium behavior of super-
fluid He or He in a uniformly rotating container.
The argument is simplest if the container does not
have perfect cylindrical symmetry about the rotation
axis. It is sufficient to consider this case since it in-
cludes the important case of a macroscopically sym-
metric container because of its residual surface
roughness or, ultimately, because of its atomic struc-
ture.

We can then represent the interaction between the
helium and the container by a term in the Hamiltoni-
an of the form

y e-i Pu ~ L t y ei tas ~ L t
t 0 (2.1)

where Vp is independent of time. The unitary time
evolution operator obeys the equation

I' ( ii)8 t ) U, = ( H + V, ) U, (2.2)

H -H+ Vp —o).L (2.4)

In the Heisenberg picture the time evolution of the
field operator 'k( r, t) is given by

(2.5)

Using the explicit form [Eq. (2.3)] of Uwe can write

where H is the rotationally invariant' Hamiltonian of
the helium alone. Because of the simple time depen-
dence of V, one easily verifies that the explicit solu-
tion to Eq. (2.2) is

(2.3)

where
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this as

( r t ) e'Hte'Pu ~ L r+( r 0)e-'co ~ Lre-'H

eiHiqg(R -1
r 0)e iHI-' (2.6)

where R, acts on the coordinate r to rotate it through
an angle cut about the cylinder axis. If we define a
rotated field operator 0'( r, t) by

der parameter is given by

i)t(r, t) = (%(r,t)) = (4( R r, t))

=e-"(e(R-'r 0))
=e 't"(O(R, 'r, 0))

'~ry(R ' 0) (2.»)
~(r, t) = ~(R, r, t),

then Eq. (2.6) gives

4( r, t) =e'"'4(r, 0)e '"'

(2.7)

(2.8)

(4(r t))=Tre t' " '4(r t)/Tre ~" ""' (2.9)

i.e., the time evolution of + is governed by the
time-dependent Hamiltonian H.

Because H is time independent it follows that (I

has an equilibrium mean value given by the
Maxwell-Boltzmann-Gibbs distribution appropriate to
H; i.e., there exist constants P and p, such that

In 'He the equilibrium order parameter
p( r~s~, r~s~, t) is the equilibrium average of the pro-
duct of two fields operators, +( r ~s~) 4( r ~s~). Trivi-
al modifications of the argument leading to Eq.
(2.10) now imply that when equilibrium is attained in
a rotating container, the time evolution of the order
parameter iin 'He is given by

In the London limit the He order parameter has
the form

~( r t) ~ et'( r l) (2.13)

P(r~s~, r~s~, t)=e '"'P(R, 'r~s~, Rr 'rq, s&, 0) . (2.12)

or'

(4(rt) ) =, e '"'(4(r, 0) ) (2.10)

and Eq. (2.10) then requires that the time evolution
of the phase is given by

In He the equilibrium order parameter p( r, t) is
just the equilibrium average of the field operator
4( r, t). It follows that when equilibrium is attained
in a rotating container, the time evolution of the or-

0(r, t) =0(R, 'r, 0) —p, t (2.14)

The London limit form of the order parameter for
He-A (the only 'He superfluid phase we consider

here in explicit detail) is

i T
t

r~ + rq r~+ rq
P{r&s&, rtsq, t) =P (r& —rq)Xs s Ir& —r&(, I (ri —rq)2, ' ' '

2
(2.15)

where
" (1) . " (2) (&) (&)

(2.16)

@(r,t) =Rrb(Rr r 0)e (2.17)

" (i)
and the $ are a pair of orthonormal vectors. Equa-
tion (2.11) then requires that the time evolution of $
is given by

(a/at)v, = —

(coax

r) '7v, +&u xv, (2.21)

and

To facilitate the comparison to be made in Sec. III
between the rotating equilibrium forms (2, 19) and
(2.20) and the equations of hydrodynamics, we
rewrite Eqs. (2.19) and (2.20) in the equivalent dif-
ferential forms

The superfluid velocity fields are given by, for He
and He, respectively, (a/at) ) = —(~ x r ) '7) + ~ x ] (2.22)

v, =(tr/M) VO, v, ={tr/2M)@;" '7Q; (2.18) Elementary vector identities permit us to rewrite Eq.
(2.21) as

v, ( r, t) = R, v, (R, ', r, 0) (2.19)

In 'He-A the anisotropy axis 1 evolves in precisely
the same way

Since p, is independent of r, it follows from Eqs.
(2.14) and (2.17) that in either superfluid the time
dependence of v, is just that of a rigid body rotation
with angular frequency ~ about the cylinder axis

(a/at)v, = '7(v, cu x r)—

+(coax

r) x(Vxv, )

(2.23)

The rotating equilibrium configuration in He
('7 x v, =0) therefore satisfies the simple differential
equation

(2.24)

1(r,t) =Rr l (R, 'r, 0) (2.20) In He-A the curl of v, does not vanish, but is
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given by'

7 " vg = qr&k(/ 71& X 7Ik
4M '

The last term in Eq. (2.23) then becomes

(2.25)

If the term (cu x r 0) I in Eq. (2.26) is replaced by
cu x I —8 l /Bt [see Eq. (2.22) J, then the rotating
equilibrium configuration in He-A satisfies the dif-
ferential equation

(g x r)('7 x v, )-(t/2M)a&„l, '7lj(~ x r '7)lk

(2.26)

invariant intensive fields that are required to specify
the configuration of the more intricate types of su-

pertluids produced by anisotropic pairing (e.g. , the I

field in 'He-A). Such fields are understood to be
held constant in all the differentiations performed
below.

Two configurations of the superfluid that differ
only by a Galilean boost must have the same degree
of disorder: i.e., the entropy density must be a

Galilean invariant. We can therefore relate the en-

tropy density for any value of g to the entropy densi-

ty so measured by an observer in the g =0 frame

s(a, p, g, v, ) =sa(a —g'/2p, p, 0, v, —g/p)
—v, = —V(v,

faux

r+ ru I)
at ' 2M

+ e„kl,—l, vlk .
2p,

(2.27)

The Galilean transformation properties of the vari-

ous thermodynamic functions follow from taking par-
tial derivatives of Eq. (3.2). Thus the e derivative
shows that the temperature is a Galilean invariant

Equation (2.2'7) is satisfied if and only if v, and 1

[related by Eq. (2.25)] undergo rigid body precession.
We have tortured Eqs. (2.19) and (2.20) to yield this
grotesque expression of rotating equilibrium, because
in Sec. III we shall see it emerging more naturally
from the hydrodynamic equations of 'He-A. We
have produced it in the present context to emphasize
that it is nothing but a statement of rotating equilibri-
um, which must therefore continue to be valid in any
attempted revision of the 'He-A hydrodynamics.

I

1 Bs Bs
T 86 86

(3.2)

The derivative with respect to v, gives a vector in-

variant

Bs

v

Qs

Qvg
(3.3)

and the derivative with respect to g relates Bs/Bg to
this invariant

III. ROTATING EQUILIBRIUM: M ACROSCOPICS 8s g 1 is
g pT p Qv,

0.4)

The discovery of anisotropic superfluidity in 'He
has revived interest in the foundations of two-fluid
hydrodynamics, as a part of the effort to develop the
hydrodynamics of the more exotic 'He superfluids.
Less attention has been paid to the much simpler but
at least as important question of the foundations of
two-fluid thermodynamics. In this section we examine
with some care certain features of the normal fluid
velocity and especially of the chemical potential, in a
superfluid (3He or He) which is in equilibrium with

a specified total momentum and/or orbital angular
momentum. ' Having derived the equilibrium condi-
tions for v„and p. , we will then show how the Eqs.
(2.24) and (2.27) characterizing rotating equilibrium
are contained in the hydrodynamic equations of su-
perfluid He and 'He-A.

A. Normal Auid velocity and the transformation
lair for the chemical potential

We consider a homogeneous superfluid, character-
ized by an entropy density s(a, p, g, v, ) where e, p,
and g are the energy, mass, and momentum densi-
ties, and v, is the superfluid velocity field. We
suppress explicit reference to the additional Galilean

thereby demonstrating that TBs/Bg tran—sforms like

g/p, i.e., like a velocity. This velocity is given the
name v„:

v„- T(Bs/Bg )— (3.5)

Note that v„ is to momentum exchange as T is to
energy exchange: if a superfluid is in equilibrium
with respect to the exchange of energy with any other
system, then the two must have the same tempera-
ture; if the two are in equilibrium with respect to the
exchange of energy and momentum, then they must
have the same v„. We shall be interested in this fact
primarily in the case in which the other system is the
containing vessel. Since the entropy of the container
is not a function of an additional velocitylike field

v„a similar application of Galilean invariance to the
entropy density of the container shows that v„of the
container is simply g/p, the local mean velocity.
Thus a superfluid in local equilibrium with a con-
tainer (which may be moving) has a velocity field v„
at the walls of the container equal to the local wall

velocity. We shall make use of this familiar boun-
dary condition below.

The transformation properties of the chemical po-
tential follow from taking a density derivative of Eq.
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(3.1). With the aid of Eqs. (3.2), (3.4), and (3.5)
the result can be cast in the form

B. The equilibrium conditions on v„and p,

in a uniformly rotating container

2 '2
9s vn Qs 1 g

Bp 2T 9p p
2T "

p
(3.6)

p, = T(Bs-leap) (3.7)

then the content of Eq. (3.6) is that the quantity

p+ 2 Uyt
1 (3.8)

If the chemical potential (divided by the 'He mass) is
defined by

Consider superfluid 'He or 'He in a container
which we take, for simplicity, to have negligible mass
and heat capacity, so that the entropy and other ex-
tensive quantities are dominated by the contribution
from the helium. " A container rotating uniformly
about a stationary axis is then characterized by the
vanishing of the total momentum of the helium and
a fixed nonzero angular momentum. Equilibrium is
determined by maximizing the entropy subject to
these constraints and the constraints of constant total
energy and mass. The equilibrium condition is thus

0= dV(5s —a5e —b5p —c 5g —d r x 5g)

is a Galilean invariant.
It is useful to relate the chemical potential p, to the

values of the chemical potential in the local frames in
which either v„(r ) or v, ( r ) vanishes. Calling these
p, „and p,„v e have from the invariance of Eq. (3.8)

p, + —,
' v„=p,„=p, , + —,

' (v„—v, )' . (3.9)

Since the chemical potential is Galilean invariant to
first order in the velocities the distinctions made in

Eq, (3.9) are often of no practical importance. "
However the discovery of the superfluid phases of
'He has stimulated interest in effects that are non-
linear in the velocities, and in considering these it can
be very important to bear in mind the distinctions
implied by Eq. (3.9). In particular it is important to
note that the quantity called the chemical potential
and denoted by the symbol "p," in most treatments of
superfluidity in texts and published papers is, from
our point of view, not the true chemical potential but
p,„the chemical potential in the local v, =0 frame.

Since the hydrodynamic equations themselves
determine the functional form of p, provided the
correct Gibbs-Duhern equation is used, it might ap-

pear that the question of which p. is dignified with
the title of chemical potential is of no practical in-

terest. This would be true if the hydrodynamic equa-
tions could indeed be rigorously solved, but in most
applications one applies a blend of mathematical
analysis and simplifying physical intuition. One can
then overlook important effects by being vague on
the question of which chemical potential one expects
to be uniform in equilibrium. We show in part B of
this section that when 3He or 4He is in equilibrium in

a container that rotates uniformly about a fixed axis
then it is the true chemical potential p, that is uni-
form. The extraction of rotating equilibrium from
the hydrodynamic equations in part C then depends
critically on the fact that Khalatnikov's chemical po-
tential" (our p, ,) is not uniform in rotating equilibrium.

dV ——a 5e ——+b 5p
1 jx

T T

v„- (g —pv„)——+c+d x r 5g — 5v,
T T

but since the total momentum vanishes, the form
[Eq. (3.11)j of v„must reduce to the form

v„=o) x(r —rp)

where

Mrp —— dVpr, ~ = —Td

(3.»)

(3.14)

For the container to be in equilibrium with the
helium at the surface [see the remarks following Eq.
(3.5)1 it must therefore rotate with angular velocity

(3.10)

where a, b, c, and d are constant Lagrange multipliers.

Equilibrium is thus attained at a uniform tempera-
ture and a uniform chemical potential p, [with, we

emphasize, p, defined by Eq. (3.7)]. The equilibrium
v„has the form

v„=—Tc —Td x r (3.»)
where the constants c and d are determined by the
following argument.

In He we can write 5v, as '750. In 'He-A there is

an additional piece to 5 v, involving 5 1, but this
only contributes to the stationary condition with

respect to variations in the 1 field, which we do not
consider here. Thus in either superfluid we can re-
place 5v, by '750, and integrate by parts. Vanishing
of the surface term requires the normal component
of g —pv„ to vanish at the surface, and the remain-
ing condition requires the divergence of g —pv„ to
vanish in the bulk. The two conditions together then
give

0= dVr '7 (g —pv ) = dVpv„— dVg

(3.12)
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Vp, =0, v„= cu x r (3.1s)

C. Rotating equilibrium solutions to the
hydrodynamic equations

All dissipative terms vanish in equilibrium. The
time evolution of v, in He is therefore given by the
hydrodynamic equation'

ao about an axis passing through ro. (The surface
condition on g —pv„ is then just the condition that
there should be no mass flux through the wall of the
container in the frame moving with each surface ele-
ment. }

The two equilibrium conditions of major interest in

what follows, for 'He or He in a container rotating
uniformly about a fixed axis (somewhere along which
we place the origin of coordinates) are
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APPENDIX A: GAUGE WHEEL EFFECTS

We consider here the time evolution of v, in He-
A under conditions in which the 1 field is indepen-
dent of time. We stress that this is not necessarily
the case in real experiments; we do it here in order to
isolate the effects of the terms not explicitly involv-
ing 1) I /Bt in the equation of motion (3.17).

When 1 does not depend on time one can regard
Eq. (3.17) as asserting that v, is driven by the effec-
tive chemical potential

Bv,/f)t = —O(p, , + —, z) = —'7(p+ v„v, ) . (3.16) p, = p, +v„v, +(1/4M) 1 V x v„ (A 1)

When the equilibrium conditions (3.15) hold, this
reduces precisely to the Eq. (2.24) describing a velo-
city field v, rotating rigidly with the container.

The nondissipative part of the equation of motion
for v, in 3He-A is now generally agreed to be

f)v, /f)t = —'7[@, + v „v,+ (g/2M )y 1
. '7 x v„]

+ ~ a+ ep l;
—

l~ vlk
Qt

(3.17)

where purely hydrodynamical reasoning requires the
coefficient y to be precisely —,, if angular momentum

is to be conserved. ' '
1The result y =
2

has recently been disputed in pa-

pers that purport to derive the hydrodynamics on mi-

croscopic grounds. Combescot" claims that y van-
ishes at all temperatures, while Nagai' claims that y
depends on temperature, vanishing at T 0.

It is therefore instructive to note that if y =
2

(and
only if y = —,) then the equilibrium conditions (3.15)
reduce Eq. (3.17) to the correct form [Eq. (2.27)l
that holds when v, and 1 rotate rigidly with the con-
tainer. Thus any modification of the A-phase hydro-

dynamics setting y equal to a value other than —,,
must contain additional reactive terms which reduce
numerically to (IE/2M) (1 —2y) ( 1 cu), when the
equilibrium conditions (3.15) hold. We are not
aware of (nor do we see any basis for) such a pro-
posed modification.

Note added i?? proof:. R. Combescot (private com-
munication) tells us that we misinterpreted his theory
by characterizing it as giving y=0 in Eq. (3.17). His
theory has no terms of the second type, but he re-
gards their absence as arising from a non-zero value
of y = 1/2 and a precisely cancelling term in the
chemical potential. Viewing his theory in this way
does not alter our opinion of it.

v, = (n —l, )/2Mr

If we then represent v„ in the form

v„= red(f, z ) @

(A2)

(A3)

then the term of the first type in the effective chemi-
cal potential becomes

(A4)pat = v„v, = (1 2/M ) ( n —l, ) ru( r z )

On the other hand the term of the second type is

1 + xv„
4M

(AS)

If ~ is essentially uniform for large positive and
negative values of z [i.e., we consider two containers
above and below the z = 0 plane, each in a state of

The work of Liu and Cross' focuses attention on the
term in l V x v„(which we have characterized in
Sec. I as a term of the second type). We wish to em-
phasize here that the term in v„v, (a term of the
first type), which is the only source of gauge wheel
effects in He, can play a role quite as important as
the term of the second type in the gauge wheel ef-
fects of 'He-A. [We also emphasize that this term
can be entirely overlooked if one replaces p, + v „v,
by p, , + —, v, in Eq. (A1) and disregards the-fact that

it is p, and not p,, that is uniform in rotating equilibri-
um. ]

For simplicity we consider configurations of
cylindrical symmetry in which v„ is, at least initially,
entirely along the Q direction (as it would be in
equilibrium in a uniformly rotating container). The
solution to the curl v, Eq. (2.25) requires thats for n

an integer
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local rotating equilibrium (though not necessarily at
the same rotation rate) connected by a cylindrically
symmetric tube in which cu will in general be nonuni-
form) then Eq. (AS) gives an effective chemical po-
tential drop between the two regions

(which also follows directly from the results in III A). j
]

By eliminating p, in favor of p,„=p, + —,v„' and in-

troducing p„and p, through the conventional
representation of g as

AP» = (1/2M) 5(l,~) (A6)
g = p ~ + p ~ . {p = p. + p. )

This suggests, for example, that a supercurrent would
be driven between the two regions if cu were the
same but 1 reversed between the two regions, or if

1 were the same and ~ reversed. The driving term
(A6) is, however, precisely canceled by the contribu-
tion of the term of the first type [Eq. (A4)] when
n =0, and when n ~0 we are left only with a term

hpt+ hatt = (1/2M ) n A~ (A7)

which is common to both 'He and 'He-A.
Note that such a cancellation is required if rotating

equilibrium is not to be violated, since the terms of
the second type by themselves would lead to an ac-
celerating supercurrent along the z direction in a uni-
formly rotating container, provided the direction of 1

reversed between the bottom and the top.
We reemphasize that this cancellation can easily

be overlooked in a hydrodynamic analysis if the
chemical potential is incorrectly identified or if the
constraint [Eq. (2.25)] relating the curl of v, to the
spatial variation of 1 is not taken explicitly into ac-
count.

APPENDIX B: THE TWO-FLUID MODEL IN TERMS
OF p, , AND p,„

P = T(BS/a V) {B2)

[To derive Eq. (Bl) one uses the extensivity of the
total entropy, $(EM, P, v„V) ,= Vs(E/ V, M/V,
P / V, v, ) and the identification of the derivatives of s
made in Sec. III A to deduce from Eq. (B2) that

P = Ts+pp+g v„—e (B3)

This immediately gives Eq. (B2), when taken togeth-
er with the thermodynamic identity

Tds = de —pdp —v„dg —(g —pv„) d v, (B4)

We show here that by exploiting the various possi-
ble forms [Eq. (3.9)] in which the chemical potential
can appear in the equations of the two-fluid model,
one can considerably simplify the two expressions
that do not have an entirely transparent structure.

The Gibbs-Duhem equation

dP =sdT+pdp+g dv„—(g —pv„) dv, (B1)

follows from defining the pressure to be

one can rewrite Eq. (B1) as

dP = sdT + pd p,„—
&

p, d( v, —v„) (BS)

in which the independent variables are T, p, „, and
( v, —v „)'. Noting, however, that Eq. (3.9) gives

) {vs vn) =pn ps (B6)

we can replace the last variable by p, Equation (B6)
then becomes simply

dP =sdT+ p„dp, „+p, dp. , {B7)

(B8)

Using the definitions [Eq. (3.9)] one easily verifies
that this is equivalent to

Q = [sT + p„(p„+ ~
v„') ] v„+p, (p., + —u, ) v, . (B9)

The term in Eq. (B9) proportional to v„ is simply
the energy current for a classical fluid with mass den-
sity p„and momentum density p„v„provided p, „ is

taken to be the chemical potential in the local rest
frame of the fluid. Thus the full energy current con-
sists of a term of precisely the classical structure for
the normal fluid, and a second term for the super-
fluid of the same structure except for the omission of
the entropy term.

We believe that on esthetic grounds along these
simplifications justify paying more attention to the
distinctions summarized in Eq. (3.9).

This has precisely the structure of the Gibbs-
Duhem equation for a classical two-component sys-
tem, although the interpretation is, of course, quite
different. The independent variables p, „and p, , are
the forms assumed by the single chemical potential
p, , evaluated in the v„=0 or the v, =0 frames. Thus
a given chemical potential difference is directly relat-
ed [via Eq. (B6)] to a relative velocity between the
superfluid and normal components.

This simplicity of Eq. (B7) [compared with the
conventional form Eq. (Bl)] is echoed in a very simi-
lar simplification in the energy current. This is usual-

ly eliminated in favor of the much simpler entropy
current, but the form it takes (in the absence of dis-
sipative terms) is".

Q = (p, , + —v,')g +sTv„+ (g v„—pv, v„)v„
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