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Ground states of polarized and unpolarized 3He
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A variational computation of the ground-state energy of a Fermi fluid similar to 3He is made

using Slater-Jastrow-type wave functions. The calculation of the energy is performed by an ex-
act Monte Carlo algorithm. The two cases of the polarized and unpolarized fluids are con-
sidered in the domain of densities corresponding to a stable thermodynamic state. For these
densities the energy of the polarized fluid is shown to be lower than the energy of the unpolar-

ized fluid. A comparison is made with the previous approximate computations of the ground
state of unpolarized He.

INTRODUCTION

Recently two articles" have discussed the ex-
istence of a metastable polarized phase of fluid 'He.
This phase, in which all the nuclear spins are parallel,
is expected to have a lifetime large enough to be ob-
served in a "quasithermodynamic" equilibrium. In
Ref. 1, Lhuillier and Laloe have studied the effect of
a total polarization on the equation of state and on
the transport coefficients of the dilute gaseous phase.
For the pressure and the viscosity these authors have
found rather large differences between the polarized
and the unpolarized gas. These results were obtained
on the basis of the virial expansion for the pressure
and of the collision integral expansion for the viscosi-
ty. For the liquid phase near zero temperature, these
expansions are not valid, and the present work is an
attempt at computing the equation of state of liquid
'He both in a polarized and an unpolarized state at
Tp=0 K.

The ground state of unpolarized 'He has been stu-
died by Schiff and deerlet, ' who have used a varia-
tional method. In this method, the ground-state
wave function was written as the product of a
symmetrical function of the spatial coordinates of the
He atoms and of a Slater determinant. Then the

ground-state energy was computed by use, up to
second order, of a cluster expansion proposed by Wu
and Feenberg. 4 In spite of a reasonable agreement
with the experimental ground-state energy, the
results of Ref. 3 were not an upper bound for the
ground-state energy due to the truncation of the clus-
ter expansion. Ceperley, Chester, and Kalos' have
overcome this difficulty. They propose an exact
Monte Carlo algorithm for the computation of the
ground-state energy with the same kind of variational
wave function as used in Ref. 3, and show that the
estimation of the ground-state energy by Schiff and
deerlet was almost exact for a density corresponding
to zero pressure and that it was in error by —l K for

a density near solidification.
Using the algorithm of Ref. 5, we extend the

results of this article, and for Tp=0 K we give the
equation of state of fluid 'He in the range of densi-
ties from that at zero pressure to the solidification
density. The computation is done both for the polar-
ized and for the unpolarized phase.

Our paper is organized as follows. In Sec. I we
give the expressions for our variational wave func-
tions and results for the ground-state energy E. Sec-
tion II is devoted to a detailed comparison of the po-
larized and unpolarized phases. In Sec. III we discuss
the unexpected result that, for the variational wave
functions used here, the polarized phase has an ener-
gy lower than the unpolarized phase. In the conclu-
sion we summarize our results and sketch what we
plan to do on the subject in the future.

I. COMPUTATION OF THE GROUND-STATE ENERGY

In this paper the interaction between the 'He atoms
is chosen to be a Lennard-Jones (LJ) potential V(.r):

V(r) =4m[(o/r)" —(o/r)6]
0

where a =2.SS6 A, a =10.22 K, 0 is taken as the
unit of length, and the density p is expressed in
number of atoms by cr3.

The trial wave function is assumed to have the fol-
lowing form for a system of N fermions:

P= g exp [ —
—,
' u(l r; —r, ~)1D =PD

where r; are the coordinates of the ith atom, and D is
the term which gives to P the desired antisymmetry.
For the polarized fluid, D is a Slater determinant of
plane ~aves, and for the unpolarized fluid, D is a
product of two Slater determinants corresponding to
the spin-up and spin-down particles.
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%e have

u(r) =(b/r)' (2)

for the unpolarized state, and

rir~ =rtrdet }dr;} (ii =1,2, . . ., W) (4)

r}r„=rtrdet rrdr;}det }d'J}(l, i, man, d j =1,2, . . ., T~N)

for the polarized state, ~here di; = (exp (i ki r;) )
are the elements of the determinants.

The system of N fermions of mass m is enclosed in
a cubic box with periodic boundary conditions. These
conditions determine the choice of the kI vectors.
These vectors have components equal to 27m/L,
where n is some integer (0, + 1, + 2, .. . ) and L is the
side of the cubic box. The ground-state energy is ob-
tained by taking the average of the Hamiltonian H:

N 2

6; rird r r d r
, 12m

y"acid r1 d r N

+ — l}III' V( r; —rj )dr1 drN
iWj 1

P"1tidr1 . drN

=T+U (5)

where His
N 2 N

H = —X 5;+ —, g l'(I r; —r I)
2m i+j

(6)

and from formula Eq. (10)

N N N

T = $ —' $ 5 r,,) —z D„rrd„—zo„..k,.
d).4m i 1 jwi 1 I I

I r

with

N

g(r) = $ (g(~r; —r, —r ~))

The kinetic energy can be written in two different
forms. %'e can ~rite either

5;r}r div; [='7; (@D)]

N N

= d iv; —— X 'vr; u ( r;, ) + XDr; '7; dr, PD

=—div;(F;$D) (9)

where DI; is the cofactor of dI; divided by D, or

N N

5;u(r;, )+ $ Dr;5;dr;

r r 2

X Dr; '7;dr; +F; rirD (10)

Using Green's theorem we obtain from Eq. (9)
N

The potential energy is easily expressed in terms of
the two-body correlation function g(I):

U= —
JI &(r)g(r)dr

2

p Jl /t, u(r)g(r)dr + Tr
Sm

= Tu+ TF

The expressions of T are written in the case of the
polarized fluid. For the unpolarized fluid, the sums

1 r

over I go from 1 to —2N and dI, DI; or dI;, DI; are

used according to the determinant associated to the
ith atom. On the average, both formulas for T give
the same answer, as expected, but one formula is to
be preferred, if its variance is smaller. In fact in the
case of 'He, we have not found large differences.
The two terms T„and TF give the contributions to T
due to the pseudopotential u(I) and to the Slater
determinant. According to the formulas (7) and (11)
or (12), the computation of E is done as an average
over configurations drawn from the probability distri-

bution r}r r}r/ Jl r}r'r}rd r, d rrv. The details of the
Monte Carlo computation are given in Ref. 5, and we
do not repeat them in this article.

Values of F. are given in Tables I and II; for each
calculation, we give the number of particles in the
sys.tern, the number of generated Monte Carlo con-
figurations, and the estimated error. The values of
E, U, and T„contain a correction for the finite size
of the system. These corrections are obtained by as-
suming g(r) =1 for r larger than L; they are rather—1

small ( —1 K) because p is small, and they are
identical for the two phases (polarized and unpolar-
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TABLE 1. Results for the unpolarized phase. p is the density, b is the parameter ot the pseudo-
potential u(i), N is the number of particles, I~ is the number ot' configurations ( x 10 ), E is the to-
tal energy, T is the kinetic energy, TI; is the Slater kinetic energy, U is the potential energy, and the
error estimate is for E(in K).

E TF Error

0.18

0.20

0.2189

0.2554

0 2743

0.3283

0.3648

0.414

1.10

1.08
1.10
1.12
1.145

1.10
1.12
1.145
1.17

1.10
1.12

1.145
1.17

1.12

1.12

1.12

1.12

1.10
1.12
1.145
1.17

54

54
54
54
54

54
54
54
54

54
54
54
54

54

54

54

54

54
54
54
54

52

52
52
52
52

60
52
52
52

30
52
52
52

30

30

30

52
82
82
52

—1.14

—1.12
—1.32
—1.26
—1.25

—1.33
—1.42
—1.25
—1.02

—1.18
—1.33
—1.29
—0.94

—1.20

—0.90

—0.34

+0.99

+3.24
+ 2.64
+ 2.57
+ 2.89

6.80

7.50
7.70
8.02
8.32

8.67
8.98
9.43
9.88

9.63
9.95

10.40
10.98

12.37

15.84

18.57

21.42
22.42
23.89
25.35

1.83

1.96
1.93
1.95
1.91

2.05
2.03
2.07
2.04

2.16
2. 12
2.09
2. 12

2.22

2.40

2.58

2.74

2.96
2.99
2.98
2.93

—8.62
—9.03
—9.27
—9.66

—10.00
—10.40
—10.67
—10.90

—10.81
-11.27
—11.69
-11.92

-12.30

—13.27

-16.18

-17.59

-18.17
-19.78
—21.32
—22.46

+ 0.15

+ 0. 15
+ 0.15
+ 0.15
+ 0.15

+ 0.15
+ 0.15
+ 0.15
+ 0.15

+ 0.20
+ 0.15
+ 0.15
+ 0.15

+ 0.20

+ 0.20

+ 0.15

+ 0.20

+ 0.15
+ 0.12
+ 0.12
+ 0.15

ized) ~ For E, there is a cancellation between the
correction for U and the correction for T. The influ-
ence of N on the value of E has been studied by

Ceperley, Chester, and Kalos, who compared results
for 38, 54, and 114 particles in the unpolarized state.
They found a variation on E of the order of +0.15 K
when 1V is increased. For the polarized state, we
have performed computations with 33, 57, and 81
particles, and we have found a similar variation.

For unpolarized ~He, we have made computations
for a system of 54 atoms in the density range
0.18 & p &0.414. From these computations we have
found that the density po and the energy Eo corre-
sponding to zero pressure are equal to 0.22 and
—1.42 K. These values of po and Eo should be com-
pared with their experimental counterparts pa=0. 274
and Eo= —2.52 K. The value of po obtained varia-
tionally is thus erroneous by 25%. Schiff and deerlet'

have found p0=0.237 and Eo= —1.37 K on the basis
of the Wu and Feenberg expansion. As already
pointed out by Ceperley, Chester, and Kalos, the
result of Ref. 3 is in agreement with the exact Monte
Carlo result for the density p=0.237, but this agree-

ment is in fact coincidental because Schiff and
deerlet's results are above the exact variational results
for p &0.24 and below for p )0.24.

At higher densities p=0.4, we find E =+2.6 K,
in good agreement with the value of Ref. 5. This
value is higher by —1 K than Schiff and deerlet's es-
timate and by 3 K than the experimental value for
'He ( ——0.5 K).

The optimal value of b increases slightly with den-
sity from 1.11 at p —0.2 to 1.13 at p

—0.4. The
value b =1.12 is a reasonable choice for all the inter-
mediate densities (0.2 ( p & 0.4).

For the unpolarized 'He, the variational wave func-
tion tcj„ is not very satisfactory; especially if the
results are compared with those obtained for 4He

with a variational Jastrow wave function. For He,
the minimum density calculated by a variational
method is only 10% smaller than the experimental
minimum density, and the value of E is —1 K above
the experimental energy in the fluid. '

In Table II, the values of E, U, and Tare given for
the polarized phase. For all the densities p )0.22, E
for the polarized phase is lower than the value of the
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TABLE II. Results for the polarized phase. Same notation as in Table I.

Error

0.2189

0.236

0.2554

0.2743

0.3283

0.3648

0.414

1.00
1.05
1.10
1.13
1.16

1.05
1.10
1.13

1.05
1.10
1.10
1.12
1.13
1.16

1.05
1.10
1.12
1.13
1.16

1.05
1.10
1.13

1.10
1.13
1.16

1.10
1.12
1.13
1.145
1.16

33
33
33
33
33

33
33
33

33
33
57
57
33
33

33
33
57
i3
33

33
33
33

33
33
33

33
57
33
81
33

15
20
20
20
15

20
20
20

20
20
36
36
20
20

20
20
36
20
20

20
20
20

20
40
20

30
37
50

227
30

—0.37
—1.27
—1.35
—1.31
—0.98

—1.07
—1.50
—1.26

—1.11
—1.62
—1.40
—1.36
—1.36
—1.14

—1.01
—1.46
—1.28
—1.44
—1.07

—0.23
—0.81
—1.04

—0.21
—0.22
+0.13

+ 1.81
+ 1.57
+ 1.19
+0.95
+ 1.85

7.68
8.29
9.02
9.40
9.89

9.16
9.87

10.48

10.03
10.90
11.10
11.47
11.60
12.11

11.08
12.08
12.66
12.64
13.43

13.91
15.44
16.37

17.98
19.10
20.44

21.72
22.83
23.17
22.90
24.93

3.13
3.09
3.04
2.98
2.96

3.23
3.15
3.16

3.34
3.24
3.27
3.30
3.21
3.16

3.57
3.41
3.46
3.34
3.28

3.81
3.72

3.9&

3.87
3.86

4.21
4.28
4.20
3.93
4.09

—8.05
—9.57

—10.37
—10.71
—10.87

—10.23
-11.37
-11.74

-11.14
-12.52
-12.50
—12.83
-12.97
-13.29

-12.11
-13.54
-13.94
—14.08
—14.50

—14.14
—16.24
—17.43

-18.19
—19.32
—20.32

—19.91
-21.25
-21.98
-21.95
-23.08

+ 0.25
+ 0.20
+ 0.20
+ 0.20
+ 0.25

+ 0.20
+ 0.20
+ 0.20

+ 0.20
+ 0.20
+ 0.20
+ 0.20
+ 0.20
+ 0.20

+ 0.20
+ 0.20
+ 0.20
+ 0.20
+ 0.20

+0.20
+ 0.20
+0.20

+ 0.20
+ 0.15
+0.20

+ 0.18
+ 0.20
+ 0.13
+ 0.10
+ 0.15

energy for the unpolarized phase. We find a density

po equal to 0.25 and an energy Eo equal to 1.6 K. If
the size effect and the estimated error on E are taken
into account, the difference between the variational
results for the unpolarized and the polarized phase is

not larger than 0.1 K for the densities 0.2 ( p (0.29,
but the difference is I K, at least, for densities of the
order of 0.4.

The fact that the energy computed with P~ is lower
than the energy computed with P„ is in contradiction
with experiment, and this is a failure of the variation-
al method. However, if the results for P~ are con-
sidered as an upper bound for the ground-state ener-

gy, they are not bad and are comparable to those ob-
tained for liquid 4He with a Jastrow function.

Our new variational results for E modify the previ-
ous estimates' concerning the densities and the
volume variation of the liquid-solid phase transition
of 'He. It is clear that, if the values of E in the solid

phase are kept the same as in Ref. 7, the volume
variation will be too large if E is computed by using
p„and will be better than in Ref. 7 if Eis computed
by using P~. This is due to the fact that the energy
for the fluid phase used in Ref. 7 is the energy calcu-
lated by Schiff and deerlet. Near solidification this
energy is intermediate between the energies calculat-
ed from P„and from P~, but a precise determination
of the transition is not very interesting because the
best results correspond to the p~ wave function.
Since Schiff and deerlet's article, various variational
methods, the so-called hypernetted chain (HNC) and
Fermi hypernetted chain (FHNC) methods, have
been used for the study of the fermion system at
To=0 K, All these methods, reviewed in Ref. 8,
contain an approximation which has as a consequence
that the calculated ground-state energy is not a true
upper bound. However, these methods are rather
accurate. For instance, for the fluid, unpolarized
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3He, the work of Pandharipande and Bethe9 and of
Zabolitzky' give a minimum density p =0.24—0.25
with an energy E = —1.3 K. In these papers, for the
densities p & 0.3, the values of the energy are very
close to the values found by Schiff and Verlet. The
preceding discussion remains valid for the results of
Refs. 9 and 10, and it shows the limitation of the
HNC or FHNC methods in the domain of density

p (0.3.
The errors quoted in Table I and II are estimated

from independent Monte Carlo computations at fixed
b and p. For instance in the case of p =0.414,
b =1.145 for the polarized state, we have done five
different calculations of —4.5 x 10 configurations
for N =81. The values of E are 0.92, 1.21, 1.10,
0.75, and 0.75 K; those of U are —21.95,
—21.82, —21.86, —22.07, and —22.07 K; and
those of T are 22.88, 23.02, 22.95, 22.82, and 22.82
K. In spite of a very good precision for Vand T
(better than 1%), the error on E is rather large due to
the cancellation between U and T. This is a familiar
result for the variational computations on helium.

II. COMPARISON OF THE EQUATIONS OF STATE OF
THE POLARIZED AND UNPOLARIZED PHASES

In this section we attempt to explain why the best
ground-state energy is associated with pp for

p )0.22. A rough estimate of the effect of a total
polarization on the ground-state energy consists in
considering firstly that U is the same for both the po-
larized and unpolarized states, and secondly that T
increases as in a perfect Fermi gas. With these hy-

potheses, the energy of the polarized state should be
larger by —+1.5 K than the energy of the unpolar-
ized state.

Obviously these hypotheses do not seem to hold
when the functions P„and Pp are used as trial func-
tions in a variational calculation. From Tables I and
II, where we compare the results for a given value of
b and for fixed p, we see that, as expected, Tq is
larger by —1 K in the polarized phase. But the total
increases of T is not 1 K but is only +0.2 or
+0.3 K. The potential energy U varies also by—1 —2 K and, in absolute value, U is larger in the
polarized phase. The origin of these different varia-
tions for U and T is easily traced in the behavior of
the two-body correlation function g(r), which pic-
tures the relative localization of the atoms in the sys-
tem.

In Figs. 1 and 2 the functions g(r) for the densi-
ties p =0.414 and 0.2189 are plotted both for the po-
larized phase [gp(r)] and for the unpolarized phase
[g„(r)]. In the case of the unpolarized phase, g„(r)
can be divided into a function for the atoms with like
spins gL(r) and another function for the atoms with
unlike spins g„(r) [all g(r) functions are normalized

~ ~ ~

0 I

2

FIG. 1. Two-body correlation functions at p =0.414 and
b112gp(r):gu()''gL()''g(&)-1k'

in such a way that they go to unity for r ~]. For
the unpolarized phase our results are in perfect
agreement with those of Ref. 5. For p =0.2189gL(r)
has no structure and g„(I) has a pronounced peak at
r =1.35. For p=0.414, the two functions have a
peak; this peak is located at r =1.23 in g„(r) and at
r =1.4 in gL(r) As discuss. ed in Ref. 5, the antisym-
metrization of P„ is responsible for the differences
between g„(r) and gL(r). The atoms with like spins
tend to stay away as far as possible. On the contrary,
the atoms with unlike spins are near neighbors, and
this fact compensates the reduction of the potential
energy due to the larger distances between the atoms
with like spins.

The functions gp(r) and g„(r) differ by the posi-
tions and the heights of the peaks. In Fig. 1, the po-
sitions of the peaks are f =1.26 for g„(r) and
r =1.32 for gr(r). The heights are 1.25 and 1.30,
respectively. For all the fluid densities, there are
similar differences, as sho~n in Fig. 2 for p =0.2189.

jka a
a4

~ ~ ~

0 s

2

FIG. 2. Two-body correlation functions at p=0.21892 and
b =1.10. g,(r):,g„(.):———,g, (r),g„(r): i a a.
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The displacement of the peak to large I in the polar-
ized phase reduces the value of T„because b, u(r) is
a monotonic function of r proportional to (b/r)
For the potential energy U, the contribution of the
positive part of V(r) (r & 1) is reduced in the polar-
ized phase because, in the domain r & 1, g~(r) is

smaller than g„(r). The contribution of the negative
part of V(r)(r ) 1) is more difficult to guess: g~(r)
is smaller than g„(r) for 1 & r & 1.2, but the opposite
is true for r & 1.2. In fact, in the two phases, the
negative part of V(r) gives an almost equal contribu-
tion to U. For instance, at p=0.414 and b =1.12
(Fig. 1), the contributions to U coming from the
domain r & 1 are —25.7 (unpolarized phase) and
—25.9 K (polarized phase). The difference on U
between the two phases is due to the contributions
for r & 1 which are equal to +6.0 (unpolarized
phase) and +4.7 K (polarized phase). A similar
analysis is valid for the other values of p and b.

Briefly, if the unpolarized state is transformed into a

polarized state, T increases and U gets more negative.
For all the densities p & 0.22, the negative variation
of U exceeds the positive change of T if p„and p~
are used as trial wave functions. This fact implies
that our variational computation gives a polarized
ground state for 'He.

The main conclusion of the previous discussion is

that, for a Fermi system of particles interacting by a

potential of the LJ type, there is a very delicate bal-

ance between the positive and negative contributions
to E. Then it is very difficult to predict correctly the
value of E and the polarization state at TO=0 K. It is

worthwhile to notice that this conclusion is probably
not valid for a fermion one-component plasma, "
where V(r) is positive for all values of r and where
there is no cancellation between U and T.

III. POSSIBLE IMPROVEMENTS OF THE
VARIATION AL RESULTS

The present calculation fails to give the true polari-
zation of the ground state of fluid 'He. The origin of
this failure can be the form of the variational func-
tions or the potential V(r).

We have considered the first possibility by doing
calculations for the unpolarized state with a wave
function which is different from p. In this function,
the b parameter of the pseudopotential, u (r), has two
different values b~ and b2, b~ for the pairs of atoms
with parallel spins and b2 for the pairs of atoms with
antiparallel spins. The choice b2 & b~ seems ap-
propriate in order to decrease the contribution of the
positive part of V(r) or equivalently, in order to
reduce the value of gL(r) for r & 1. However, the
domain of reasonable values for b~ and b2 is rather
small, because from Table I we see that the optimal
value of b is around 1.12 with a variation of a few

percent in the whole domain of densities and that,
for a fixed density, it is not possible to vary b strong-
ly without increasing E With these limitations on
the values of b~.and b2, the condition b~ & b2 in-
volves rather weak variations on E. For instance, for

p =0.414 if b~ and b2 are equal to 1.13 and 1.145, we
find E =+2.53 K, and if they are equal to 1.10 and
1.12, we obtain E =+2.70 K. These values of E
must be compared to the best value found with

b& = b2 which is +2.57 K and to the value +1.1 K
corresponding to the polarized phase.

Obviously there is a very large choice of pseudopo-
tentials u(r) But, f.rom the numerous variational
calculations"' on He, it is possible to conclude that
a maximum decrease of only —0.2 K can be ob-
tained from a modification of u (r). This decrease is
too weak to bring the energy computed with P„below
the energy computed with p~.

Recently Schmidt and Pandharipande' using a
FHNC method have shown that the inclusion of
three-body correlations in g decreases the minimum
energy by —0.8 K. The order of magnitude of the
variation on E seems to be sufficient to correct our
results for the densities p & 0.3. For the densities

p -0.4 it is very difficult to guess whether the
three-body correlations are able to eliminate the
discrepancy of —3 K on the energy derived from P„.

For the LJ-boson system, Whitlock et al. " have
made an exact calculation of the ground-state energy.
This computation has proved that the ground-state
energy of this potential is slightly above the energy of
He at TO=0 K. The difference is about 0.5 K in the

fluid phase, if the contribution of the three-body in-

teraction is subtracted from the energy of He. With
the hypothesis of an identical interatomic interaction
in He and He, a difference of —0.5 K is probable
in the computation of the energy of 'He due to the
inadequacy of the LJ potential. However, the discus-
sion of the second section has shown the important
role of the positive part of V(r) in the determination
of the values of E and of the polarization of the
ground state. Then a weak modification of V(r)
around r =1 can involve a variation on E, maybe,
larger than 0.5 K. But with our hypothesis of an
identical V(r) in 3He and He, we must be careful in

the choice of a new potential for He in order to ob-
tain also a correct value of the ground-state energy of
4He.

Finally, the most significant improvement to the
present variational calculation seems to include
three-body correlation in p.

IV. CONCLUSION

The energy calculated here with the function p~ is
a true upper bound for the ground-state energy of a
polarized fermion fluid interacting by a LJ potential.



21 GROUND STATES OF POLARIZED AND UNPOLARIZED 3He 5165

If the three-body correlation effects (about
——0.7 K) and the inadequacy of the LJ potential
(about ——0.5 K) are taken into account, we con-
clude that the difference between the energies of the
polarized and unpolarized He is probably not larger
than 0.2 —0.3 K. This result follows from the fact
that our upper bound for the polarized LJ fermion
system exceeds the energy of fluid 'He at most by
+1.5 K.

We plan further work on the subject in order to
find a variational function giving the true polarization

of the ground state of 'He and the best way seems to
include three-body correlations in the trial wave func-
tion. We also plan computations with partial polari-
zation.
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