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New experimental results on the transport behavior of electrons in dense helium gas at liquid-helium

temperatures are presented. These include accurate measurements of the initial deviation of the mobility
from the classical Boltzmann behavior as the density is increased and a complete characterization of the hot-
electron behavior through the localization transition. The initial deviations at these temperatures are found
to be of the same form as those observed in previous high-temperature studies, and a universal relationship
is proposed. Contrary to an assumption that has often been made, there appears to be no reason to consider
the initial deviation and the localization transition as distinct phenomena. A comparison with the
percolation model of Eggarter and Cohen yields surprisingly good agreement over the whole range of
densities and temperature. The role played by the helium-gas problem in the field of disordered materials is
discussed, and possibilities for further theoretical progress are pointed out.

I. INTRODUCTION

In the study of the electronic states of disordered
systems, one of the most interesting problems is
that of an electron interacting with a dilute gas of
hard spheres. This system appears to represent
a sufficiently simple example of a three-dimen-
sional random medium to offer some hope of the-
oretical development, and it can be approximately
realized in the laboratory by injecting excess elec-
trons into helium gas. Although considerable ex-
perimental and theoretical work has been done on
this unusually elegant and well-characterized
prototype of a disordered system, these efforts
have been somewhat episodic, and there is no
clear consensus on the correct interpretation of
the experimental results. Thus, ample oppor-
tunity exists for further progress.

We first sketch some of the basic features of
the problem. The scattering of a low-energy
electron from a noble-gas atom can be described
in terms of a repulsive core of radius 0.5-0.75 A,
representing the effect of the closed shells, plus
an attractive polarization potential acting only at
a radius greater than 1.5-2 A. ' In the case of
helium, the polarizability is so small that the re-
pulsive core dominates the scattering: The inter-
action is described by a positive scattering length
a, = 0.63 A, and the cross section does not depart
significantly from 4zao for electron energies in
the thermal range. Thus, electrons in helium
gas will see a random distribution of hard-sphere-
like scatterers which can be thought of as station-
ary since their thermal velocities are very low
relative to those of the electrons. Furthermore,
the gas of scatterers is dilute in the sense that
plcEO « 1 for all densities n of interest.

Experimental studies have so far confined them-

selves to measuring the steady-state drift velocity
vp of the electrons in a constant electric field E,
under various conditions of gas temperature and
density. Early work was done at low densities
and high temperatures, where the classical Boltz-
mann equation is applicable. In this regime, vp is
a. universal function vz(E/n, T), the exact form of
which depends on how the momentum transfer
cross section 0 varies with energy. In fact, mea-
surements of this function are used to determine
cr(e). At low fields the usual linear dependence
vp = p.E obtains, and the classical mobility p .,
can be derived explicitly,
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where m is the electron mass and 00 denotes the
zero-energy limit of the cross section.

Large deviations from the classical behavior
have been observed at high gas densities and at
low temperatures. As it happens, these studies
have been carried out in two phenomenologically
distinct areas of interest. In the first of these,
the aim has been to extend the traditional mea-
surements to very high densities in order to test
the limits of the classical description. ' Figure 1
shows that an anomalous decrease in p, is ob-
served, approximately linear in n and becoming
more pronounced at lower temperatures. Similar
behavior has been seen for other scatterers, ' e.g. ,
H2 and N2, which also exhibit a positive scattering
length for electrons. A second group of investi-
gations ' is connected with the fact that in liquid
helium, or in the dense gas at helium tempera-
tures, electrons exist only in self-trapped bubble
states where the electron wave function is con-
fined to a small spherical region from which the
helium is excluded. Figure 2 shows that, as n is
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FIG. 1. Ratio of the actual mobility of electrons in
helium gas to that calculated from the classical result
of Eq. (1) (after Refs. 5 and 6).

increased at these temperatures, the mobility
drops several orders of magnitude from the clas-
sical value to the very low values characteristic
of electron bubbles. Measurements of this type
have therefore been carried out with the idea of
studying the transition between the free-electron
regime and the self-trapped regime.

Despite the fact that both groups of measure-
ments deal with essentially the same phenomenon,
there has been relatively little overlap: The high-
temperature results have not been extended to suf-
ficiently high densities to observe the low mobili-
ties characteristic of the bubble state, and the

105

low-temperature measurements have not been
sufficiently accurate at the lower densities to per-
mit comparison with the high-temperature data.
A similar division exists in the way the results
have been approached theoretically: Analysis of
the high-temperature data has aimed at patching
up the classical theory of free-electron transport;
analysis of the low-temperature data has concen-
trated on the transition of the electrons to the
bubble state, with the implicit assumption that
this process is similar to a first-order phase tran-
sition. Several authors, however, have taken the
more sophisticated approach of treating the gas
as the source of a random potential acting on the
electron, and applying the ideas which arise in
the theory of disordered systems. This approach
will be discussed in the next few paragraphs.

Even in the high-temperature experiments the
thermal wavelength of the electrons is usually lar-
ger than the interatomic distance, and it is natural
to ask whether their wave nature should enter into
consideration. A simple answer is that the clas-
sical Boltzmann equation is not valid unless the
characteristic wavelength of the electrons is much
less than their mean-free path. When this condi-
tion breaks down, the electron wave interacts
simultaneously with several scattering centers
and the usual complications associated with ran-
dom quantum-mechanical systems begin to arise.
Figure 3 shows that this occurs at readily acces-
sible temperatures and pressures. On a slightly
more sophisticated level, one can treat the mul-
tiple scattering effects as giving rise to a con-
stant effective potential V(n) = 2vK na&/m in which
the electrons move, their mean-free path being
unaffected. ' '3 The Boltzmann formalism is then
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FIG. 2. Mobility at 4.19 K (after Ref. 9). The dashed
line shows the prediction of Eq. (1).

FIG. 3. Curve 1: Conditions under which the electron
thermal wavelength becomes significant compared to the
electron mean free path. Curve 2: Conditions under
which the fluctuations in the effective potential seen by
the electron become comparable to kT (after Ref. 14).
The dashed line is the vapor-pressure curve.
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recovered, and, indeed, higher-order effective
medium approximations are possible in which the
mean-free paths as well as the energies of the
electrons are renormalized.

In addition to being formally very complicated,
the effective medium approximations tend to run
into trouble for electron energies near V(n), where
the kinetic energy becomes small. The reason for
this can be appreciated on the basis of the follow-
ing argument. " I.et us suppose that the effective
potential seen by the electron at a point r is V(r)
= Vtn(r)], where n(~) is a local density deter-
mined by counting the number of scatterers con-
tained within some characteristic averaging vol-
ume L . Since L is finite, n(r) and consequently
V(r) will be fluctuating quantities. It is easy to
show that, for an ideal gas and a large enough I. ,
n(r) has a Gaussian distribution with a standard
deviation o„=(n/L )'~' How L. should be defined
is a matter of some conjecture, but one possibil-
ity' is to take it to be on the order of the free-
space wavelength h/(2m&)' of the electron. Now

if the kinetic energy of the electrons is much
greater than the variation o~ =o„(8V/8n) in V, it
is possible to use an effective medium picture and
ignore the fluctuations. At sufficiently low ener-
gies, however, the electrons will be strongly af-
fected by the fluctuations, and will eventually be-
come localized in regions of minimum V. This
regime raises the difficult questions characteris-
tically associated with the theory of localization
in disordered systems. Conversely, it provides
an opportunity to study them experimentally. The
fluctuation-dominated regime can be attained ei-
ther by lowering the electron energy (i.e. , the
temperature) or by increasing o~ (i.e., the gas
density). Figure 2 shows the pressure and tem-
perature at which o~ =kT, if L is assumed to have
the value given above. One may conclude that the
fluctuation-dominated regime should also be easily
accessible in the helium-gas system.

A comparison of Figs. 1-3 indicates that such
arguments, in which the gas is treated as a ran-
dom medium, may indeed suffice to explain the
observed behavior. To go beyond this general sup-
position, however, it is necessary to develop a
specific theoretical model, presumably based on
some of the approximations popular in the theory
of disordered systems, and to compare its pre-
dictions with measurements of the electron drift
velocity as a function of electric field, gas den-
sity, and temperature. As has been pointed out
above, neither the theoretical nor the experimen-
tal parts of this enterprise have been carried to
the point where a coherent picture has emerged.
We have therefore performed an experiment to
obtain additional information. Particular empha-

sis has been placed on establishing the connection
between the two groups of measurements repre-
sented by Figs. 1 and 2. Extensive data on the
hot-electron behavior at low temperatures are
also presented. The results are compared to
previous measurements and an overall picture of
the experimental situation is given. The theoret-
ical aspects of the paper are limited to a brief
discussion of the extent to which extant theoretical
models are relevant to this overall picture. A

preliminary report on the work presented here has
been published previously. '5

II. EXPERIMENTAL PROCEDURES

As in previous experiments, excess electrons
are injected into He gas and their equilibrium
drift velocity vL) is measured as a function of the
applied electric field F. , the gas number density n,
and the temperature T. The drift velocity is de-
termined by generating a low-density pulse of
electrons, letting it drift through the gas under the
influence of a uniform field, and observing its ar-
rival at a collector C by means of a fast electrom-
eter. ' Typical signal-averaged response curves
are shown in Ref. 16.

The measurements were carried out using two
different electrode configurations, the more fre-
quently used of which is indicated in Fig. 4. Gas
in the region R-S is ionized by 0. activity plated
as shown. The repeller R and the drift region S-G
are biased so as to provide a steady electron cur-
rent, which is then gated by applying relatively
small voltages between the wires of a parallel-
wire chopper grid CH, The effective drift space
here is the region CH-G, which for these measure-
ments had a length of 1.85 cm. In the other mea-
surement configuration, the chopper grid was re-
moved and a grid was placed across the opening in
S. Negative voltages appl. ied to the repeller then
inject electron pulses into the drift space S-G,
which is 3.70 cm in length, Drift velocities ob-
tained by means of these two arrangements agreed
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FIG. 4. Primary electrode configuration used in de-
termining drift velocities. See the text for discussion.
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to within 2/p. In either method the measured drift
velocities did not depend on the voltages in the
source and collector regions, or on the size of the
gating pulses, or on which edge of the pulse was
used to determine the flight time.

The electrode assembly is contained in a thick-
walled copper can immersed in the liquid-helium
bath. Temperature is measured by an Allen-
Bradley carbon resistor located inside the can,
and controlled by a heater wire wound uniformly
around the outside of the can, in direct thermal
contact with the bath. The resistance thermometer
is calibrated by filling the can with just enough
liquid to cover the resistor, and measuring its
vapor pressure.

The temperature range studied was 2.7 to 5.0 K.
In this range, the helium bath can support very
large temperature gradients. In practice, these
are minimized by always pumping down to the
working temperature, thus causing convective
mixing in the bath. %ith the additional tempera-
ture equalization provided by the copper walls of
the can, there seemed to be no difficulty in estab-
lishing a uniform temperature in the gas inside
the can. The absolute uncertainty in T, arising
from the combined effects of residual temperature
gradients and of errors in the calibration points,
is estimated to be of order +0.01 K at worst.

He gas from an ordinary cylinder was admitted
to the evacuated can through a nitrogen-cooled
charcoal trap. Upon occasion, the can was filled
with very pure gas obtained from storage-Dewar
boil-off. At other times, air impurities were
deliberately added. awhile a large dose of impuri-
ties had the temporary effect of reducing the sig-
nal current, these were soon frozen out, and no

evidence was found to indicate that impurities
were affecting the measured drift velocities.

The pressure of the gas was determined by
means of a calibrated quartz Bourdon tube gauge.
Over most of the range of interest the gas density
was then calculated from the virial equation, using
the virial coefficients determined by Kilpatrick
et al. from the data of Keller. ' This procedure
is expected to yield n with an accuracy of order
1%. In the greater vicinity of the critical point,
the virial equation is not sufficient, nor does a
better equation seem to be available, except very
near the critical point. To deal with this diffi-
culty, n(P} isotherms were generated by interpol-
ating between the virial equation at lower densities
and the known values of n at the saturated vapor
pressure. ' ' The interpolation was carried out

by extrapolating back from the saturated vapor
pressure using the critical-point equation of Ver-
beke, but with the correct saturated vapor pres-
sure substituted into his equation explicitly. This

is not a particularly satisfactory procedure, and
for that small part of the data taken at high den-
sities and temperatures near 5 K, the error in n
can be as much as several percent.

Several factors limited the range of densities
over which complete vv(E) curves could be ob-
tained. At low densities the mobility becomes
large, and it is necessary to use very small fields
in order to explore vv(E} down into the linear re-
gion. As the field is reduced, however, the signal
becomes weaker, dropping to zero at a finite, his-
tory-dependent value of E. Measurements of p. at
small n therefore require careful procedures to
assure that they are being made in the linear re-
gime. It was in fact found that previously reported
determinations of p, at small n were quite inac-
curate and not suitable for comparison with the
high-temperature results of Bartels. '

Measurements at the very highest velocities
were limited by the response time of the electrom-
eter and by the resolution of the digital signal
averager used to acquire the data. The 1/e rise-
time of the electrometer was about 2 p, sec. As
explained in Ref. 16, this means that & p, sec must
be subtracted from the flight times determined
from the pulse edge. The signal averager had a
minimum dwell time of 1 p, sec per channel. Com-
bining this with the absolute error found by com-
paring results obtained with the two electrode
configurations, one obtains a conservative error
estimate for the drift time of +2% or al psec,
whichever is larger. In general, the long-term
repeatability of the results was well within these
limits.

Finally, it was found that arcing problems im-
posed a density-dependent upper limit to the field
beyond which measurements could not be made.
As a consequence, it was not possible to explore
the nonlinear part of the vv(E) curve at high gas
densities.

An overall test of the experimental methods was
made by measuring vv(E) at liquid-nitrogen tem-
peratures. Figure 5 shows how the results com-
pare with the very precise determination of
Crompton et al. Such differences as exist are
well within the error estimates given above. An
additional check was made by remeasuring p, in
liquid helium. Values obtained with the present
cell were within 2% of those reported previously. '

III. RESULTS

Measurements of the low-field response, i.e. ,
of the zero-field mobility p. , will be described
first and compared with previous results. It is
important to remember that in these measure-
ments, the electrons do not interact with each
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FIG. 6. Measured values of the zero-field mobility at
low gas densities. The points on the n = 0 axis are com-
puted from Eq. (1), using 00 ——4.94 X10 + 2k cm .
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other, but only with the gas. Furthermore, it is
found experimentally that the pulse shapes are not
significantly distorted when they arrive at the col-
lector. Hence, every electron in the pulse has
had time to take a statistical average over the
available density of electronic states N(e), and p
represents an average property of the electron in
thermal equilibrium with the gas. The hot-elec-
tron behavior, described in Sec. IIIB, represents
a more complicated nonequilibrium average which,
in general, will be more difficult to interpret.

FIG. 5. Comparison of results obtained in the present
experiment at 77.5 K with values derived from the pre-
cision data of Ref. 2 (solid line). The dots and crosses
represent drift velocities measured at n = 0.097 &&10 and
0.167 &&10 atoms/cm3, respectively, using the electrode
geometry of Fig. 4.

results obtained in the present experiment provide
significant new information about the behavior of
p, as n-0, about the temperature dependence of
p(n) in the regime below 5 K, a.nd about the be-
havior of p, in the high-density limit. These will
be discussed in turn.

Perhaps most interesting are the low-density
results, plotted in Fig. 6. It is at once apparent
that the initial linear drop-off observed previously
at high temperatures (Fig. 1) is present also at
helium temperatures. Figure 9 compares data
ranging from room to helium temperatures, all
of which show the same basic effect. Some of the

102s

i
024

A. Zero-field mobilities

Figures 6-8 show the measured values of p. .
The values quoted by Levine and Sanders are too
low by a factor of about 2 at the lowest densities,
too high by as much as 40/0 in the region where p.

is dropping rapidly, and correct to within 10+ in
the high-density limit. The values quoted by
Harrison et al. are also much too low at the low-
est densities, and are too high by about 15/& at
densities above n =—0.9x10 '. Except for the large
deviations as n-0, which probably arise from the
presence of electron heating effects in the earlier
experiments, the errors are not much greater
than the experimental uncertainties quoted by
these authors. The more accurate and extensive
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FIG. 7. Measured values of the zero-field mobility in
the region of rapid drop-off. Note that the effect of
small temperature differences is accurately resolved.
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tic electron wavelength X& becomes significant
compared with the mean-free path l, then one is
tempted to try to fit the initial deviation from p.„,„
by p = p„„,(l —nor/l) T. his becomes

p =I „„,(1-cnT '") (2)

with c =boa(2vmk) ~ when the usual expressions
Xr=k(2vmkT} ' and f =(nc} ' are substituted.
In addition to predicting the linear decrease of pn
with increasing n, Eq. (2) also gives the approxi-
mate temperature dependence of the rate of de-
crease. As shown in Fig. 10, the normal. ized slope
is indeed closely proportional to T ', with a val-
ue of c which corresponds to a =-,'. There is some
evidence of an upward curvature in the data points
of Fig. 10, and this may arise from correlations
in the positions of the scatterers. To first order,
correlations give rise to a modified mobility

FIG. 8. Measured values of the zero-field mobility in
the high-density limit. The dashed curves are derived
from Eq. (4), using R =16 A. .

data at intermediate temperatures are unreliable
as n-0, and have been extrapolated to the clas-
sical limits as shown.

It is perhaps more than a mere curiosity that
both the density and temperature dependence
shown in Figs. 6 and 9 can be derived from a sirn-
ple phenomenological argument. If one takes at
face value the idea that deviations from classical
behavior become important when the characteris-

2.5
I

p, = p,,~„[1+2nB(T)],

where B(T) is the virial coefficient of the gas.
Thus, one should add a term -2B(T) to the nor-
malized slope, a correction which is of the right
order to account for the observed deviation from
a strict T ' dependence. Although the argument
that led us to Eq. (2} cannot be taken seriously,
its success suggests that a rigorous derivation
may be possible.

Figure 7 gives the mobilities in the region where
they are dropping rapidly. The results are in es-
sential agreement with the original observations
of Levine and Sanders, but relatively small tem-
perature differences are now well resolved and
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FIG. 9. n p as a function of n at various temperatures:
curve (a) 4.2 K, this work; curve (b) 7.3 K, Ref. 10;
curve (c) 20.3 K, Ref. 11; curve (d) 77.6 K, Ref. 6; curve
(e) 293.2 K, Ref. 5. Dashed lines indicate where best-
guess corrections for electron-heating effects have been
made.

FIG. 10. Normalized slopes of the initial linear devi-
ations from p~&~. Circles are our data, triangles are
from Refs. 5, 6, and 10. The upper curve shows the
prediction of Eq. (2) where n equals 2. The lower curve
shows the correction -2B(T) which should be added to the
upper curve to account for correlations.
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significant new information about the shape of the
drop-off curves is obtained. A synthesis of the
electron-localization curves is shown in Fig. 11,
which combines our data with the higher-temper-
ature results of Refs. 6 and 10. This figure pre-
sents the systematics of the transition in the stri-
king fashion, showing how the electrons localize
as their thermal energy is reduced, and how the
classical Boltzmann limit is approached at high
temperatures or low densities. Interpretation of
these curves, in conjunction with those of Figs. 6

and 9, presents the main theoretical challenge.
A somewhat extraneous point needs to be made

here. As has been mentioned before, the histor-
ical tendency has been to treat the initial drop-off
(Fig. 1) and the localization (Fig. 2) as distinct
phenomena. This has perhaps been reinforced by
the fact that when plotted as in Fig. 2, the mobility
curves appear to show a break in slope at n = 1.0
&10 ' cm, in agreement with the prejudice that
the localized states are not formed until a critical
density of this magnitude is reached. It is, how-

ever, obvious from Fig. 12 that the break in slope
is an artifact of the way in which the data have
historically been plotted, and that it would be pre-
sent for any p(n) which decreases more or less
uniformly with increasing n. Thus, &he experimen-
tal results do not in themselves imply that two
different mechanisms need to be considered.

At still higher densities (or lower temperatures)
p. approaches a slowly-varying limiting behavior
which is reminiscent of the propagation of heavy
impurity ions. This regime has been analyzed by
assuming that the nature of the localized states
availabl. e to the electron are such that its wave
function occupies a spherical region of radius R.
If one assumes that such a localized state moves
through the gas as if it were a solid sphere, one
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FIG. 12. 4.2-K values of p, , plotted in the manner of
Refs. 9-11. The dashed curve is the classical mobility,
the solid curve is a straight-line fit to the low-density
values, as in Fig. 6.

can use the interpolation formula

1+ t/
9wg

6m' 4nR(2wm4kT)'
(4)

where g is the gas viscosity, and m4 is the mass
of a helium atom. As shown in Fig. 8, Eq. (4),
with R =16 A, gives a very good fit to the observed
mobility. The fitted value R =16 A is in reason-
able agreement with the expected radius of the
localized wave function as deduced from varia-
tional calculations, ' and there appears to be
little doubt that in this regime the electron is
permanently trapped in a deep "bubble" state.

B. Nonlinear behavior

In the region where p, is strongly depressed by
localization effects, the drift velocity curves ex-
hibit rather spectacular nonlinearities (Fig. 13).
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FIG. 11. Constant-density electron-localization curves.
Circles represent our data, triangles the data of Bef. 10,
and squares the data of Ref. 6.
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FIG. 13. Typical v&(E) curve. The points are experi-
mental results (with representative errors as shown)
taken at T=4.20 K, yg =1.089 X10 cm 3. The upper
curve is the classical vD(E).
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One can argue qualitatively that, as the electrons
heat up, they spend less time in the low-lying lo-
calized states and thus tend to approach the clas-
sical limit. The details of how this occurs are of
obvious interest as providing an additional test of
any model for the zero-field mobilities described
previously. It is therefore somewhat surprising
that, except for the original observations of Le-
vine and Sanders and the high-temperature studies
of Bartels, no significant information about the
nonlinear behavior has been obtained.

Figure 14 shows how v~(E} varies with density
at 4.20 K. These curves exhibit a number of in-
teresting features. As has already been discussed,
there is a rapid drop in the mobility as n in-
creases. In this region, electron-heating effects
manifest themselves as a supralinear deviation
tending to approach the classical hot-electron lim-
it. The drift velocity at which nonlinearity is
first observed drops sharply with increasing n,
reaching values below 100 cm see '. As the elec-
trons become fully localized, however, this ve-
locity increases again.

Sets of curves such as in Fig. 14 were also ob-
tained at other temperatures. A direct comparison
of these data with Fig. 14 is not particularly il-

io5

luminating since they are qualitatively very sim-
ilar. Instead, we show in Figs. 15-17 the varia-
tion of vD(E) with temperature for various fixed
values of n. In order to facilitate comparison with
the density variation, the results are plotted on a
grid of curves obtained by smoothing the 4.20-K
data. It is particularly striking that a decrease in
T with n fixed has nearly the same effect on the
shape of these curves as an increase in n with T
fixed. Upon closer examination, however, there
is evidence that as T increases the nonlinear part
of vD(E} becomes relatively less steep. This is
qualitatively consistent with the fact that the
76.8-K measurements of vo(E) do not exhibit a
pronounced supralinear behavior.

One peculiar feature of Figs. 14-17 which, al-
though minor compared with the drastic variations
arising from localization, is still outside of the
error estimates is that v~(E) appears to overshoot
slightly the classical drift velocity at high fields
and then to return to the classical limit at still
higher fields. Bartels sees no such effect at 76.8
K, while the 4.20-K measurements of Levine and
Sanders are not sufficiently accurate to tell. It
was initially assumed that this overshoot repre-
sented some kind of systematic error in the mea-
surements. However, the effect resisted all ef-
forts at elimination and must be tentatively re-
garded as real.
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FIG. 14. Density dependence of eD(E) at 4.20 K. The
densities for the various curves are (in units of 10
cm 3): 1—0.301; 2—0.518; 3—0.749; 4—0.948 5—
1.089; 6—1.165; 7—1.236; 8—1.304, 9—1.373; 10—
1.441; ll —1.513; 12—1.587; 13—1.663; 14—1.824. The
straight lines drawn through the data points indicate the
linear response at low fields. The upper curve is the
classical result computed from the Druvsteyn equation
using 0.(E) as given in Ref. 2.
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FIG. 15. Temperature dependence of va(E) for n
=1.089 X10 cm . The temperatures for the various
sets of data are 1—4.98 K, 2—4.60 K, 3—4.20 K, 4—
3.80 K, 5—3.40 K. The solid curves are smoothed fits
to the data of Fig. 14.
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I I I 1 To close this section, we note that even at the
shortest drift times (-10 psec) no evidence for
pulse broadening was observed. Thus, the time
required by a given electron to take an average
over the accessible states is much shorter than
this flight time. Young ' has suggested that the
supralinear vD(F. ) seen experimentally arises be-
cause the electrons start out in extended states and

decay into localized states in some characteristic
times comparable to the flight time. A later paper
by the present author, in which the transmission
characteristics of a chopper grid were used in an
attempt to separate fast and slow electrons ap-
peared to lend support to this hypothesis. The
present work, however, shows that such an inter-
pretation is erroneous.

IV. DISCUSSION
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FIG. 16. Temperature dependence of vD(E) for n
= 1.373 X10 cm . The temperatures for the various
sets of data are 1—4.98 K, 2—4.60 K, 3—4.20 K, 4—
3.80 K. The solid curves are smoothed fits to the data of
Fig. 14.

This section is not intended as a complete catalog
of previous attempts at dealing theoretically with
various aspects of the problem, nor does it present
any new efforts along these lines. The aim is
more to assess the success and current status of
theoretical models in which the helium-gas-plus-
electron system is treated as a solid-state type of
random potential problem.

As discussed in Sec. I, the actual potential ex-
perienced by the electron closely resembles a gas
of randomly placed hard spheres. The gas is at
once dilute, in the sense that nao «1, and dense,
in the sense that only electron wave functions
which overlap many scattering centers will turn
out to be of interest. Although attempts have been
made to attack this problem from first principles
using cluster expansion techniques, this approach
has so far proved too difficult to yield any insight
into the localization process, or indeed to yield
predictions which agree with experiment. Further
progress along these lines may, however, be pos-
sible." The more usual expedient is to separate
the problem into two parts, first computing the
average effect of the potential by treating the mul-
tiple scattering from the hard cores in some ap-
proximation, and then worrying about how fluctu-
ations in the average properties, arising from
statistical variations in the local density of scat-
ters, give rise to localized states.

IP'
IP-2I IP-20 IP-l9

E/n (Vcm~)

Ip-I8

FIG. 17. Temperature-dependence of v D(E) for n
= 0.749 &&10 cm and 1.663 X10 cm . The tempera-
tures for the various sets of data are 1—4.98 K, 2—
4.20 K, 3—3.40 K, 4—4.98 K, 5—4.60 K, 6—4.20 K,
7—3.80 K. The solid curves are smoothed fits to the
data of Fig. 14.

A. The Eggarter-Cohen model

The most comprehensive treatment of this type
is the quasiclassical percolation model of Eggarter
and Cohen. ' ' The authors use a Wigner-Seitz
argument to estimate the average potential V(n),
thus taking approximate account of the effect of
higher-order multiple scattering corrections to
the electron energy. They then divide the system
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Cohen model (solid curves) for various values of c,

th ' tial drop-off. (b) Predictions ofwith emphasis on the i' i
the modified Eggarter-Cohen model with emphasis on
the localization behavior.

into boxes of volume L =(cX) to,3 to determine a
fluctuating local density n(r) and potential V(r), in
a manner similar to that discussed in Sec. I. Here
A. is the free-space wavelength of the electron and
c is a paramparameter adjusted to fit the experimental

toresults. e auTh thors make no serious attempt
otential butulate the electron states in this potentia, u

instead use quasiclassical counting o e er
the density o s a es.t t The degree of localization
of the states at a given energy is deduced from
classical percolation theory, and an average

classical mobility is assigned to each extended
state. The resulting theory, although quite phe-
nom enologica, asl h the virtue of making specific
predictions which can be compared with experi-
ment.

Figures 18(a) and 18(b) show p(n) at 4.20 K as
predicted by the Eggarter-Cohen model, while Fig.
19 shows ~l T at n=( ~ t =1 66~10 '. As has been found

k ' ' the model givesin previous numerical work,
a surprising y gol ood account of itself when com-

19 30 Theared to the data as in Figs. 18(b) and 19. The
most interesting new insight to arise
present calculations is that the Eggarter-Cohen
model also predicts the roughly linear ini ial

Fi . 18 a) . It isdrop-off in p. n as n increases Fig. a
no c ear ext l exactly how this result relates to the re-
cent theory of Braglia and Dallacasa, in w ic
the initial drop-off is explained on the basis of
certain assumptions about t ghe sin le-scatterer t
matrix, or indeed to other, previous attempts
to explain e ro-th d op-off on the basis of multiple-
scattering theory. Nevertheless, all successful
efforts of this typef th t '4'3'34 share the feature that
states below the average potential are assumed to
have a very small mobility. It is this feature, and
not some modification in the transport properties
of the extended states, which appears to give rise
to the initial drop-off.

The Eggarter-Cohen model, while it is simple,
intuitively appealing, and rather successsful is

hat contro-also quite phenomenological and somewha c
' l Many features of this model can be jus-versia .

35 but furthertified from a variational point of view, u u
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progress would seem to require a more detailed
theoretical treatment. In the remainder of this
paper we discuss how the helium gas problem can
be related to current approaches in the theory of
disordered systems.

B. Other models

In the Eggarter-Cohen theory, the choice of the
averaging scale L strongly affects the predicted
behavior: Certain unclear assumptions about the
nature of the wave functions are implicit in this
choice, as well as in the way that the density of
states N(e) is evaluated. To take a more funda-
mental approach, one can begin by averaging the
individual scatterers over some small volume c,
where we use a different notation to emphasize
the fact that this fine-scale smoothing of the po-
tential is now to be interpreted as a mathematical
artifice. Thus, u is arbitrary, except that it
should be large enough to generate a Gaussian dis-
tribution of the local density n(r) and hence V(r)
=gn(r)]. For V(n) one can use either the "optical
potential" V(n) =2vh'2a, n/m, or the more realistic
Wigner-Seitz estimate of Eggarter and Cohen. In
either case, one ends up with a Gaussian distri-
bution V(r}, which has an autocorrelation function
(V(r)V(r)) with a range of order a.

The object now is to find the density of states
and the (pseudo} wave functions belonging to this
potential, without resorting to quasiclassical ar-
guments. For energies such that the wave func-
tions do not change appreciably over distances of
order a, (V(r)V(r)) acts essentially as a 5 func-
tions, and one may expect that the results will in
some sense become independent of the choice of a.
The physical idea is that the overall properties of
wave functions which extend over many scatterers
are not affected by minor rearrangements in the
positions of the scatterers, and hence should be
insensitive to a fine-scaled smoothing of the po-
tential. It appears that this white noise" limit
is indeed a reasonable approximation in the case
of the helium-gas problem, at least near the mo-
bility edge. Other systems to which this descrip-
tion is thought to be relevant are semiconductors
containing a high density of impurities, and met-
al-oxide semiconductor inversion layers. '

The problem of the Gaussian random potential
in more than one dimension has by no means been
solved, even in the white noise limit. Severalvery
illuminating papers ~ have dealt with the prob-
lem of counting states for energies far below the
mobility edge, where the electron states occur
because of deep, highly localized, and widely sep-
arated downward fluctuations of V(r). Halperin4'
has shown that the calculation of deep-lying fluc-

tuation states is in fact a sophisticated version of
the bubble-transition calculations which have
traditionally been applied to the problem of elec-
tron localization in helium gas."'" The fluctu-
ation theory approach is more refined in that it
treats correctly the translational degrees of free-
dom of the localized states, and in that it shows
how the approximations involved in the traditional
bubble calculations break down as q approaches
the mobility edge. Simply put, as e increases, the
available states become more numerous and more
extended: at some point, they will begin to mix
strongly, and the picture of isolated bubble-type
states becomes inappropriate. There is no good
theory for N(e) in this regime. One may remark
that the traditional bubble calculations, which ig-
nore all of these complications and simply com-
pare the free energies of extended and localized
states, may correctly estimate the approximate
values of n and T for which the localized states
become highly favorable, but they cannot be ex-
pected to yield a correct description of the tran-
sition behavior.

The preceding discussion indicates that it is a
matter of current interest to develop a theory
which matches the deeply localized fluctuation
states to a reasonable model for N(e) at higher en-
ergies. The helium-gas system appears likely to
provide a suitable test case for such models. We
conclude by pointing out that there are two theo-
retical approaches which at the moment seem par-
ticularly promising. The first of these is to ex-
amine the manner in which the Halperin-Lax the-
ory breaks down, in order to make a connection
with the percolation model of Eggarter and Cohen.
When the localized states (~0(e} become sufficiently
large and numerous to mix strongly, one presum-
ably goes over to a regime featuring irregularly
shaped, extended, shallow potential wells occupied
by electron states closely spaced in energy. This
is the qualitative picture assumed by Eggarter and
Cohen, where one can now identify their smoothing
parameter L as the characteristic radius of (~,(e)
at that value of e where mixing becomes important.
Thus one may be able to justify some of the ad hoc
features of the percolation model.

A second interesting possibility is to adapt the
recent work of Thouless and Elzain ' on localiza-
tion in inversion layers to the helium-gas problem.
These authors generate a tight binding version of
the white noise problem, again by averaging the
potential over small volumes of size a . This al-
lows them to apply the coherent potential approxi-
mation (CPA) formalism to the extended states in
a regime where it is expected to work well. By
interpolating between the deep fluctuation state
regime and the CPA regime, Thouless and Elzain
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obtain a description which is in good agreement
with their numerical simulations of the two-di-
mensional white noise problem. There appears to
be no reason why this approach could not be ex-
tended to the three-dimensional case, with a view
toward trying to fit the helium-gas results.
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