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A comprehensive theoretical picture of the dynamic properties of the order parameter and the
quasiparticles in superconducting short weak links is presented. Both diffusion and inelastic
scattering are found to be important in relaxing nonequilibrium populations. At low voltages a
dissipative current, which is considerably larger than the normal ohmic current, is found and at
higher voltages the maximum supercurrent is enhanced. These effects describe quantitatively
well the foot structure in the /-V characteristic observed experimentally by Octavio, Skocpol,

and Tinkham.

I. INTRODUCTION

Qualitatively, superconducting weak links' behave
rather similar to Josephson tunnel junctions. For ex-
ample, in the static case, short weak links obey a sim-
ple sinusoidal current-phase relationship. Quantita-
tively, however, a greater variety of individual prop-
erties are found with weak links which shows that
they have more internal structure than the oxide
layer of a tunnel junction. In particular, the variety
of dynamic properties reveals the activation of inter-
nal degrees of freedom.

In the following, we want to investigate theoretical-
ly the "foot" structure in the current-voltage charac-
teristic of short microbridges. Such structures have
been noted by a number of workers, but were studied
particularly quantitatively in variable-thickness
bridges by Octavio e al.? It is found that the voltage
which first appears above the critical current increases
much more slowly than expected (i.e., with differen-
tial resistance much less than the normal resistance)
up to a certain point, after which the expected steeper
rise in voltage (i.e., with differential resistance com-
parable with the normal resistance) sets in. An effect
of this type had been predicted theoretically by As-
lamasov and Larkin® on one side, and by Golub* on
the other, in terms of an enhancement of supercon-
ductivity by a nonequilibrium distribution of quasi-
particles. In contrast to these theories, our work in-
cludes as an essential feature, a nonequilibrium con-
tribution to the supercurrent which is the leading-
order contribution when the length of the bridge goes
to zero. Otherwise, our treatment follows essentially
the picture drawn by Tinkham® (which, in turn, has
been motivated by the papers mentioned above>*),
where the motion of the gap in the bridge leads to a
deficit of quasiparticles of low energy, and thus, to an
effective cooling of the bridge. An essential contri-
bution to the nonequilibrium properties of the bridge
results from the dependence of the supercurrent on
the quasiparticle population at the gap edge. An im-
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portant parameter of the theory is the electron-
phonon collison time 7¢, and we will show that for
small voltages eV 7y << 1, the nonequilibrium incre-
ment of the supercurrent is out of phase by %‘n and

hence, appears to be dissipative, whereas in the case
eVt >> 1, the contribution to the supercurrent is in
phase with the static part. We also calculate the
correction to the current for finite length of the
bridge which allows us to conclude that our theory is
applicable when the length of the bridge is smaller
than ¢(0)[(T, - 7)/T. 174

The plan of the paper is as follows. In Sec. II, we
present our model as well as the Boltzmann equation
for the quasiparticles and the Ginzburg-Landau equa-
tion for the order parameter. Next, we will show in
Sec. III that quasiparticles of sufficiently small energy
are confined to the bridge region, which is a prereq-
uisite of the cooling effect mentioned above. Fur-
ther, we present arguments showing how the
Boltzmann equation can be solved in an adequate ap-
proximation. We evaluate this solution in Sec. IV in
the local approximation for the generalized densities
of states in the limits of small and large voltages. We
repeat the same calculation in Sec. V, except for the
difference that the generalized densities of states are
chosen according to a form obtained recently by Ar-
temenko, Volkov, and Zaitsev,® and we obtain quali-
tative agreement with the results derived previously.
The resulting current-voltage characteristic is com-
pared in Sec. VI with experimental data. In the last
section, we compare with other theoretical and exper-
imental work.

II. MODEL SYSTEM

We consider the following standard model’ of a
weak link. A narrow link ("bridge") connects two
bulk superconductors ("banks") of the same material
which we assume to have a short electron mean free
path (7, T. << 1).® The local state of the bridge
depends only on the distance from the banks (since
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its cross section is uniform and small), and, at the
end points it attains the equilibrium values charac-
teristic for each of the banks (since diffusion in three
dimensions restores equilibrium effectively).

For the sake of simplicity, we testrict our attention
to the case of a short bridge where the length (2a) is
small compared to the coherence length £(7). In
such a case, the local state of the bridge is predom-
inantly determined by diffusion processes with the
banks acting as reservoirs. There is, however, the fol-
lowing important exception: excitations with energy
less than the gap of the banks will be confined to the
bridge region, and their number only changes due to
inelastic electron-phonon scattering. This is the
essence of the arguments made by Aslamasov and
Larkin® as well as by Tinkham.’ If it were not for
this effect (which has important consequences), the
rather elegant theory of Artemenko, Volkov, and Za-
itsev® would answer most of our questions.

In order to study the quasiparticle dynamics, we
start from the Boltzmann equation for the quasiparti-
cles in a form which one obtains in the Green’s-
function technique.’™!! In the dirty limit (7,7
<< 1), it is only necessary to consider the isotropic
part f£(T,t,) of the distribution function. Further-
more, it is advantageous to split f¢ into two parts
&P and f£7, where the longitudinal (L) and the
transverse (T) parts are such that /5% —% is an odd,
and fén is an even function of the energy £. Corre-
spondingly, we obtain a set of two Boltzmann equa-
tions [see, for instance Eq. (44) of Ref. 11; the no-
tation,'? however, is the same as in Ref. 10 ]

—-DIMD. ﬁf(L)_zD §N2R2._Q'f(T)
+2eDNyR,Q - A3fL/OE + N f P

+RAMPIIE-KP(rL)=0 (1)

and

—DIMD (T D —eRof/IE)
—2DN,R,Q -V B +(8/80) (N, )
+2AN, f D +(Nyed +A0N,) 81D /DE
-KP( M =0 .

In deriving this equation, we have expressed the
complex order parameter A by Aexp ( —i#) and the

electromagnetic fields by (¢, A). Furthermore,
Q=—(T0+2¢A) is the superfluid momentum and
D= %v}fimp the diffusion constant. The quantities
N;, R;, and M may be called generalized densities of
states since they are combinations of retarded and ad-
vanced Green’s functions. In a homogeneous super-
conductor, for instance, we encounter relations of the

form
E+iT
[(E+iT)?—A2]'2
iA
[(E+il)2—A?)2

N(E) +iR,(E) =

2)
Nz(E) +iR2(E) =

(Rel’ > 0) where T is the pair-breaking energy (level
broadening). Furthermore, MY’(E) = N? — R} and
MT(E) =N + N{. The electron-phonon collision
integrals are denoted by K and do not need to be
specified here.

In the limit A << 7, the Ginzburg-Landau equa-
tion is of the form

md 1 (L) 4 ; (7
8T8[+ A de(stf +iN, £7) A

=—la+pAY T - £(0)(T -2ieA)’]1A . (3)

We have introduced the notation 8/ = £ — £,
where fi, is the thermal distribution function (Fermi
function), whereas a=(T —T,.)/T. and
B=17¢(3)/8%2. Furthermore, the current and charge
densities are given by

T=£[ w Alé_de M(T)
e

4T dE

|

p=2eN(0)[de N.f‘”—e¢] , @

— = (L)
A ALY ) A ]

+2N,R,Q5 P

where o =2¢XN(0)D. It is interesting to note that in
cases where Eq. (2) is valid and the level broadening
is small T << A the last term in the integral for j
which we denote by 8, gives a contribution to the
supercurrent

87s=(a/e)mAQ(—5s5E)) . (5)

We assert that in short bridges, this contribution,
which depends sensitively on the depletion of states
at the gap edge, produces the largest nonequilibrium
effect.

Furthermore, for short bridges, the terms contain-
ing spatial derivatives play the most important role in
the Boltzmann and Ginzburg-Landau equations.
Thus, in a gauge where A =0, A is determined"? in

leading order by the equation Vzé =0. Choosing the
x direction parallel to the bridge, such that the banks
are located at x = +a, we have

A(x) = 3A,[(1 =x/@)e™ P+ (1 +x/a)e™] , (6)

where A, is the gap of the banks. The phase differ-
ence ¢ =2y obeys the Josephson relation ¢ =2eV (1),
where V(1) is the voltage difference of the banks. It
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follows from Eq. (6), that
A%(x,t) = A}l cos?y + (x%/a?) sin?y] . @)

From this, the static (equilibrium) current density is
found to be equal to

Jeq=Josin ¢ ®
with

. "TAI% o

107 %et |24

It is also possible to calculate corrections to this ex-
pression due to the finite length of the bridge.'* The
correction A" to the order parameter follows from

0?2

a+BA 3

A(0) ©)

£0) -2 a0 -
ox? ~

with the boundary conditions é“)(x =+4)=0, and

A® s given by Eq. (6). Hence, one finds

8J'eq=—l25—[20/§( 7 1%josin ¢sin($/2) . (10)

IIl. CONFINEMENT OF QUASIPARTICLES

In the following, we discuss a solution of the
Boltzmann equation (1) in the case where the
Josephson frequency is not too large such that
eV << A, << T. For the sake of simplicity, our ar-
guments are based on generalized densities of states
of the simple form of Eq. (2) in the limit [ —0,
though the conclusions we reach are valid rather gen-
erally. We emphasize the local nature of Eq. (2)
since we understand that A= A(x,?) is a function of
space and time as given by Eq. (7). It follows, for in-
stance, that the reduced density of states N,(E) is
finite even for energies |E| below the gap A, of the
banks provided that |E| > A(x,1). This is also found
for MY, which in the considered limit is
MWD =g[ E2— A¥(x,1)]. Therefore, for quasiparticles
involved in the longitudinal mode with an energy in
the range A,|cosy| < |E| < A,, the diffusion is con-
fined to the region |x| < x., where

x2/a*=[(E/Ay)?—cos’yl/sin’y ,

whereas quasiparticles of higher energy |E| > A, can
diffuse freely. [In contrast, M‘" is nonzero every-
where and there is no restriction imposed on the dif-
fusion of the quasiparticles involved in the transverse
mode. However, due to the conversion term
2AN,/ D, the transverse part of the distribution
function rapidly vanishes in the region where
|E| < A(x,0).]

The boundary conditions are imposed by the
banks, which are in equilibrium at potential energies

% +eV. Consequently, at x=%a
8fW=0;|E| > A, ,

af"'eV/2 . (11)

f( n_
In cases where diffusion is unrestricted, diffusion re-
laxes the nonequilibrium quasiparticles at a fast rate
of order D/a? >> A}/T, and in comparison, other
processes are irrelevant. For an estimate, we disre-
gard the singular character of the generalized densi-
ties of states (which are otherwise of the order of 1)
and find, since Q ~ 1/a, that (8"/8x") f ~ eV /(a"T).
On the other hand, it will be shown later that the dis-
tribution function of the confined (|E| < A,) quasi-
particles is of order

8/ ~min (rgAeV/T,A/T) ,

where the inelastic collision time 7 is usually large
such that 7£A is a very large number. These argu-
ments allow us to put for all x

5/ =0, |[E| >A, . (12)
fMN=0,allE

Thus, the problem is reduced to solve for energies
|E| < Ap, a Boltzmann equation of the relatively sim-
ple form

(w
—DVYMWY L 4 N W 4 RAD agE

+—N—‘(f‘“ —fw) =0, (13)
E

where also, we have replaced the electron-phonon
collision operator by a relaxation ansatz.

This equation can be solved in a closed form as
follows. Taking into account the steplike depen-
dence of MY on x, we conclude that 3/2/9x =0 at
the boundary of the accessible region |x| <x.. (This
point has been emphasized in Ref. 11.) Thus, the
diffusion operation has one eigenvalue zero, whereas
the other ones are at least of the order D/a?. This
means that the spatial average (f‘©)) of f*) is much
larger than any of its Fourier components of finite
wave vector. Consequently, in the space average of
Eq. (13), we may replace (N, /) by (N,) (f©P)
with very good accuracy. Similar substitutions can be
made at other places. A further point deserves atten-
tion. If we define

e [ aEN(ED (14)

we may, using Eq. (2), convince ourselves that

N, =1(9¢/3E), and R,A =—(93¢/d1) ¢ (the subscript
denotes the variable which is kept constant). It is
even possible to show, that these relations are gen-
erally valid. Since the spatial averaging is inter-
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changeable with integration and differentiation, we
may write the space average of Eq. (13) in the fol-
lowing form:

l6<€)l[6(f‘“)] [a<e>l [a<f<“>

+ L% a“) ) =fa)=0 . 49
E

This equation is equivalent to the simple form

aflh aE
ot

o ](c)
which may be integrated to yield

(16)
Wiy =L [ g e| OE 7
&) 4Tf’o t'e o | , an
where we have put ( —9fw/9E) =(1/4T). Condition
(12) implies, that at a given (€), to is defined to be
the latest time (with respect to 1), where | E((€):1,)|
=A,. Furthermore, if |E((€);t)| > A,, we have
(Sf““)) =().
In the case where the Josephson frequency is small
such that eV 7y << 1, we obtain

ﬂl (18)
ot "

1 o spwy o
(¢)+ TE o) dE

(L)y o TE
(@) =2

if E((€),t) < A,; and zero otherwise. In the oppo-
site case of fast motion where eV 7 >> 1, the limit-
ing form for the distribution function is

(85 Py = (1/4T)E((€);) —ApsgnEl . (19)

It is not difficult to write down corrections of the
next order to the expressions given above. Further-
more, let us note that these results prove the asser-
tion on 55X made above.

IV. THE LOCAL APPROXIMATION

We will evaluate here the theory specifically in the
local approximation which means the spectral quanti-
ties are given by Eq. (2). For instance, we have
N(E) = |E|(E*— A?)"'2 and hence, €= (E2—A2)
for |[E| > A. In the energy range
Ayl cosy| < |E| < Ap, the spatial averaging leads to
the simple result
n E*—A}cos?y

(=T

(20)
4  Aplsinyl

Note that the space averaged density of states is just
proportional to |E|.
a. Slow motion (eVtg << 1). Here, we have from

Egs. (18) and (20)

LSy . . Q@1
siny

(L)
(o) =—228

2
1 +sin ‘y—f—
b

The leading nonequilibrium contribution to the
current is given by Eq. (5). Taking into account that
N3R,=(m/2)AE8(E?— A?), we find for the spatial
average'’

(81 = 16p1(6/2) o ,
pl(‘y)-%['y(l+sin2'y)cotany—-cosz'y] , Q2)

where Jjj is defined in Eq. (8). The function, p;(y)
is even in vy, it is of period 7; and the expression
given above is valid in the range |y| <=/2. Further-
more, p,(y) =0; it vanishes at y =0, *7/2; and it
has a maximum of 0.40 at y=+1.05. We emphasize
the fact that 8", though being a pair current is dis-
sipative since it carries the factor ¢ =2eV.

Nonequilibrium corrections to the pair current due
to the finite length of the bridge can be calculated in
a way similar to the equilibrium case where the con-
tribution given by Eq. (10) has been found. The
correction to the order parameter is now found as the
solution of

2
£ 580 =55 [ dE Ry (87140 | 23)

with boundary conditions A (x = +4) =0. Other

contributions originating from the time derivative of
the Ginzburg-Landau equation and from the
transverse mode f(™ are small in the sense of ap-
proximation (12). Thus we obtain

A )
D=2 4(0) ] 1e602(6/2) o
p2(y) -—% Ics(i):ny [(1 +sin%*y)?In| cosy|

+3sinfy +3sin'y] . (24)

The function p,(y) has properties similar to p,(y);
furthermore, it has a maximum value of 0.020 at
y=11.04. We conclude that even for moderately
short bridges, 8/, is smaller than 8/, say, by one
order of magnitude.

The quasiparticle current which results from the in-
tegral containing V /7 of Eq. (4) can be neglected
since it is of the order (o/2a) V which is the current
along the bridge in its normal state. This is much
smaller than the Ieadmg contribution 8 ) which is
of the order (7zA2%/T)(o/2a) V. This conclusion is
in accordance with the estimates of the previous sec-
tion.

b. Fast motion (eV 1z >>1). According to the
result of Eq. (19), the quasiparticles are almost kept
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out of the sub-gap region |E| < A,. The conse-
quences of this distribution on the current will be dis-
cussed in analogy of the case of slow motion. Thus
we obtain from Eq. (5)

(8j,V) =[r1(¢/2) —sindljo ,

ri(y) =cos-yln1+—sfnl .
1 —siny

(25)

This contribution to the pair current is nondissipative
and hence, we have written it in a form which allows
to add the equilibrium contribution (8) easily. Thus,
the supercurrent is equal to r;(¢/2)j,. The function
ri(y) is odd in v; it is of period ; and it is non-
negative in the range 0 <+vy < u/2. Furthermore, it
vanishes at y =0 and y = * #/2, and it has a max-
imum value of 1.325 at y=0.99.

Nonequilibrium corrections due to the finite length
of the bridge can be calculated as before. One obtains

2

A 2
1(2) b a 2);

8.’: T 6(0) ] r2(¢/ )JO »

27 |9 2 3 1
==T|2 - 34—

ra(y) 23 [s cos’y —2cosy + 3 T eosy

x cosy sgn(siny) . (26)

We remark that r; has the same general properties as
ry. It has a maximum value of 0.026 at y =1.22.

Comparing the finite length correction 8,2’ with
the leading term 8,("’, we find that, in slow as well
as in fast motion, the correction is small provided

that
2a <EO)(T.-D/TJ .
We consider this as a criterion for the applicability of
our theory.
For sake of completeness, we also consider the
limit
EO)(T,—T)/T.17* << 2a << £(T)

discussed by Aslamasov and Larkin (AL). In this
case, the maximal supercurrent is given by

12
. 2a |As .
Jl,AL=g§(0) - | Jo 27
where the factor g =0.280(g =0.238) for

Ay/T =1(A,/T =0). Considering a graph where
Jo+8j 0 — 8,2 as well as ja are plotted as a func-
tion of 2a, we may infer that the crossover between

these two limiting forms occurs at 2a > £(0)
x [(T.— /T

V. ALTERNATIVE DERIVATION

The local approximation used so far has the virtue
to allow a straightforward qualitative discussion of the

processes in a short weak link, but it may be inap-
propriate on a quantitative level. In particular the
curvature of the order parameter is known to have a
pair breaking effect I'=(4T/7) £*(0) Re [(V?A)/Al,

which can be determined from Eq. (23), and is found
to be not always small. We, therefore, will rederive in
this section expressions for the generalized densities
of states starting directly from the equations of mo-
tion for the Green’s function. Using approximations
appropriate for short weak links these can be solved
as was shown by Artemenko, Volkov, and Zaitsev.®
We will find results similar to those obtained in the
local approximations with certain quantitative correc-
tions.

We first summarize the derivation given in Ref. 6.
As was shown by Larkin and Ovchinnikov,'' the
equation of motion for the quasiclassical Green’s
function

G5 (41',R)
F
li A 5, =5 1=\ -5
=L ) de,G(t, .- R++T, R—2T)e ™ Ta?
ﬂ_f £G( > T >T)e r

can be written in the form

B’F§§¢GA +13—aa—?—+‘gTGIT3+[ﬁ+/i,GI—=0 ,

G'=1 . (28)

1
m

The notation follows Ref. 11. It is understood that
an integration over internal time arguments is per-
formed. The caret expresses the fact that the quan-
tities are matrices as introduced by Keldysh,'” e.g.,

. |G G
G= 0o 64| - 29)

It should be noted that G, G¥, and G“ are still the
2 x 2 matrices characteristic for superconductivity. In
a short weak link, of a dirty material (T, 7ip, << 1)
the most important terms in Eq. (28) are the space
derivative and the part of the self-energy describing
elastic scattering at impurities

iQ,

~ / ~
pp—— —2G . 30
Zimo 2Timp 4 G (30)

Hence, to lowest order it is sufficient to consider

1

2 Timp

dQ, A
4 ¢

%mﬁrcﬂ ,G‘] -0 G
which can be reduced further by expanding G= Go
+p,G,. The normalization yields [ Go,G,1,=0. By
taking angular averages of Eq. (31), one finds that
G, is independent of the space coordinate x, and that

9Go _ _m G1Go=0 . (32)

aX Timp
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The boundary condition§ +require that éo(x) attains
the equilibrium values G~ at x = +a. Thus one ob-
tains

G = Jimo 10 (G167
2ma

=+ M . resinh %[G+,G_] (33)
2ma
and
(Go) =(InG*GH'(G* -G , (34)

where () denotes the spatial average across the weak
link. For completeness we mention that from Eq.
(28) the equilibrium Green’s function follows to be

A N A —ifr
Geg=aty+B71e To=e 3, (35)
where
E
R =

[(E £i0)2—A2]'2 "

R _ iA

g [(E £i0)2— A2~ (36)
For simplicity we have neglected level broadening
(I' —0+) in the banks, which in the longitudinal
mode has no significant effects. It is convenient to
choose the cut of the square roots extending from
—A Fi0 to A ¥i0, and the signs such that
(- J/RD —~ 4 Efor |E| >> A. In particular G*
and G are of the form given above with 6 =—y and
+ vy, respectively, and A=A,.

We now can calculate the generalized densities of
states. One quantity of interest is N;R,Q. Using the
relations (35), (36) and the definition (2) one can
show that

8N,R,0 =Tr[1-3 lc(,*sa; GE — 66%03

I . 37

(For simplicity we choose a gauge where A =0.)

This quantity was also introduced in Ref. 11, where it
was denoted by jz. Furthermore, from the relation
(32) one finds

NiR;Q =— 3Ty (G - GP) (38)

Timp

where, in turn Gf (G{) can be expressed by

|E|A,]sin y|
A} — EDV2(E2— Al costy) 2 m

(Nl)’(

. 2
R Ay siny + (E2— Af cos?y)'/?
m°+

GIR(G*1). We thus find
R _ Timp iApcosyrs—ET
' 2ma ((E*— A}costy) 2R
{[(E2 = AZcos?y) 2R — A, siny)? (39)
EZ_A2
b

X In

and a similar relation for G{ with R and 4 inter-
changed.'® An equivalent convention for the sign
and the cut of (E2— AZcos?y)!/? is chosen as men-
tioned above. Furthermore, the logarithm, which has
a cut for negative real arguments, leads to a cut on
the real E axis in the range Ay|cosy| <|E|=<A,. In
this range the infinitesimal I' have to be carefully
taken into account. It is then straightforward to show
that N,R,Q is zero for |E| < A,| cos y| and for
|E| = A, whereas, for A,|cos y <|E| <A, it is given
by

Aycosy
4 (E?— A}costy)'

Notice that this space independent result is identical
to the space averaged value (N,R,Q) obtained in
Sec. IV.

In the limit of fast motion (eV 7 >> 1, but
eV << A) the distribution function is again given by
Eq. (19). If we take the generalized density of states
to be the equilibrium value (40), we obtain exactly
the same expression for the extra current contribu-
tion as we found in Eq. (25).

In the opposite limit of slow motion (eV7r << 1),
in order to find the distribution function we have to
determine the quantity (3E/d1) (). It is convenient
to express this by the spatial average of the density of
states (N,) as follows

NiR,Q =

sgn(Esiny) . (40)

1 ae) | .
, (41)
[ ](, B oy |,
where
=2 o= [Far v . @)

The quantity (N,), on the other hand, can be ob-
tained as usual from (N;) =-;—( (G R — (G D),
where (Go)}{“ is found from Eq. (34) by an
analysis similar to the one discussed above. In the
interesting range A,|cos y| <|E| < A, we find

Apsiny — (E2— AZcos?y)'?

l , 43)

whereas for |E| < A,| cos y| this quantity vanishes, and for |E| > A, and y =0, (N,) is equal to the BCS re-
duced density of states. Using the result Eq. (43) we can calculate the current in the considered limit.'"* Up to

corrections of a few percent, we obtain

(8j V) =redB1($/2) jo

(44)
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where p,(y) is of period m. In the range |y| < —;-w it
is given by

p1(y) =(¥/2)sin(2y) . 45)

It is nearly of the same form as p;(y) and is only
about 10% larger.

Thus, starting from microscopic equations of mo-
tion in a form that applies to the situation in short
dirty weak links, we found expressions for the gen-
eralized densities of states which in general differ
from those obtained in the local approximation.
However, the spatially averaged currents (also the
equilibrium current) are either identical or only
slightly different in both approaches. We conclude
that the expression for the order parameter as given
in Eq. (6) and the local approximation are a very rea-
sonable starting point for a qualitative discussion of
the dynamic processes in short weak links. For the
following analysis of the current-voltage characteris-
tics, we will take into account the modifications
derived in this section.

VI. CURRENT-VOLTAGE CHARACTERISTIC

In this section we will discuss the relation between
the time-averaged voltage and the total current
through the weak link. We start with the expression
for the total current

j=josin¢+6j,+%% ) (46)
where, depending on 7£¢, 8/s reduces to the different
results presented above. Since at large voltages the
normal current cannot be neglected we have included
it in Eq. (46). At small voltages the addition of this
term actually is inconsistent. Since, in the spirit of
the approximations made already, it has no signifi-
cant effect, we may keep it in order to obtain a uni-
fied picture over a larger voltage range.

It is important to realize that even at low currents
0 < (j —jg) << ji the time evolution of the phase is
not slow in the whole cycle. Rather it is of the form
as sketched in Fig. 1. There is an initial fast rise of ¢
for 0 =< ¢ < ¢,, followed by a slow motion for
¢1 < ¢ < ¢,( < w), which turns into a fast motion
again during the rest of the cycle ¢, < ¢ <2x. Dur-
ing these fast parts of the cycle, the normal current
term has to be included. On the other hand, for
large currents, the motion is always fast. It is clear
from Eq. (46) that the characteristic time scale for
the fast motion is given by 7, =2T/wA} which, in
most cases of interest, is much shorter than the in-
elastic scattering time 7,. The strong inequality
7, << 7 allows further approximations in deriving
simple relations for the current-voltage characteristic.

a. Small currents. For currents below a certain j,,

2n

o)

joSin Y + <6Js> —
3n/2+ “‘jo

P,
n/z +

@ (t) T o

t

FIG. 1. The phase difference ¢ across the weak link and
the supercurrent j; = josin ¢ + (8j;) is qualitatively plotted
as a function of time for one cycle of the periodic process.
For typical values of the parameters, say j/jo=1.1 and
/T = 1—(1)6 the distinction between slow and fast parts is
much more pronounced.

the motion can be divided into the three distinct re-
gimes mentioned above. If we neglect for the mo-
ment the finite length corrections, we find

j.-maxr1(¢/2)jo=l.325jo . (47)

It is clear that near ¢ =0 and ¢ =, where the super-
current vanishes, the characteristic time for the
evaluation of ¢ is given by 7,. This is also true for
the backward cycle 7 < ¢ < 2=, where the super-
current flow is opposite to the total current. In calcu-
lating the time At needed for one complete cycle

0 < ¢ =<2m, we may neglect the times required for
the fast parts of the cycle. The corrections are of or-
der 7,/7¢ << 1. (Actually, for typical values of the
parameters, e.g., 7;/7¢= % and j/jo=1.1 the fast
motion is considerably faster than shown in Fig. 1.)
However, the fast motion reduces considerably the
range of ¢, where the system moves slowly,

¢1 =< ¢ < ¢, and hence it has a large effect on At
Thus, we obtain (consistently neglecting the normal
current which is also of relative order 7,/7¢)

Ar_ 1 (o 5i(¢/2) _ 2w
TE TE f‘l ¢/9 Ll Jjljo—sing  g(jljo)

(48)
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A good estimate for the lower cutoff ¢, is obtained
from the limit of the fast motion j = jor;(¢,/2)
which means that ¢, is the smaller of the two solu-
tions of

e 1 +sin (4/2)
Jjljo=cos (¢/2) In T—sin($/2) (49)

On the other hand, the upper cutoff ¢, is not easily
determined. The reason is that Eq. (25) is valid only
if the system moves fast during the whole cycle, when
the distribution function is of the form given in Eq.
(19), which means it is determined by the initial con-
ditions at ¢ =0. If, however, the motion is intermedi-
ately slow, the distribution function relaxes towards
a thermal function during this time and hence, in
the following fast motion is fixed by a different in-
itial condition. Therefore, j, will be smaller than
Jor1(#/2). Nevertheless, we may choose ¢, to be
the larger solution of Eq. (49). The error thus intro-
duced is small and vanishes both for j = j, and for
=h.

Thus, the integral defining g (jj/jo) is only a func-
tion of j/jo, independent of other parameters, and
the time-averaged normalized voltage ¥V o/(2aj,)
= (71,;/7g)e(jljo) simply scales with ,/7¢. [In the
normal state ¥ o/(2ajo) =j/jo.1 A plot g(2) is given
in Fig. 2. For very small values of z —1, one finds
g(2) =3.6(z —1)Y2. For larger values the function g
becomes approximately linear with slope of order 17.
We want to point out again that the strong inequality
7;/7e << 1 allows us to divide the motion into the dis-
tinct regimes with different time scales and to neglect
the time spent in the fast regions. If this inequality is
not strictly satisfied, our approximation scheme is
less reliable, in particular, if the current j is close to
ji- The corrections are of the same order as the ef-
fect of the normal current, hence both are neglected
consistently.

" 1 " 1
o 1 12 7o

FIG. 2. The function g(j/jo), defined in Eq. (48) vs j/jg.
From g the time-averaged normalized voltage in the foot re-
gion is found as V/(R,jo) =(7;/7£)g(j/jg). In the region
where g is approximately linear, it has a slope of order 17
(dotted line).

b. Large currents. If the current is larger than j,
(and not too close to j;) the motion is always fast.
Hence, we find simply

At e mdm/k Gl 5O)
s Jo Cie—re2y " TIE

from which we see that the normalized voltage
Va/(2ajy) =k (j/jo) only depends on j/jo. A plot
of k(z) is given in Fig. 3. It has a square root
behavior near j = j, and approaches the normal-state
result k (z) — z for large arguments. It turns out that
in a good numerical approximation we can set

k(2) =122 = (j1/jo)?1'2 which would be the result of
the simple resistively shunted junction (RSJ) model
modified to have a maximum supercurrent j; instead
of Jo-

We thus find as long as we may neglect the finite
length corrections, that the current-voltage charac-
teristic can be very simply described by the two
universal functions g and k and the ratio 7,/7g,
everywhere except in a narrow region where j = j,,
the width of which diminishes as 7,/7¢ becomes
small. In Fig. 3 we also included the result obtained
above for small currents j < j; for a value of the ra-
tio 7;/1g = %. The average voltage ¥ as a function
of the current shows clearly the qualitative features
observed in the experiments of Octavio et al.2: a
"foot" at low currents followed by a steep rise which,
extrapolated back to ¥ =0, yields j,. The slope of
the foot in the region where it is approximately
linear, yields a normalized differential resistance
which is proportional to (7, — 7).

On the other hand, for a quantitative comparison
with the experiment, we can no longer neglect the
finite length corrections. The approximation scheme
discussed above can easily be generalized to include
them. Their most significant effect is to shift j; to a

1 1

1 2 3 /e

FIG. 3. The function & (j/jg), defined in Eq. (50) vs
Jljo- From k the high voltage (b_ut eV << A) part of the
I -V characteristic is obtained as V/(R,jo) =k (j/jy). For
comparison the low voltage part for 7,/7¢ =100 is also in-
cluded.
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higher value given by

A
T

2a

£(0) . (5D

Jiljo=max|ri(y) + ra(y)

The correction 3j¢q given in Eq. (10) can be neglect-
ed. As long as the second term in Eq. (51) is a small
correction we find simply

A 1325 40,0192
Jo T

2
2a
N

Also, the finite length corrections reduce the slope of
the foot since ¢ in the slow phase becomes smaller
and the range ¢, < ¢ =< ¢, of the slow motion is in-
creased. As long as this correction is small the nor-
malized differential resistance of the foot becomes!®

2]—1

(53)

' A

P

2a
£(0)

R T
2elt _10 8#l—c— 140.052

R, T Tere | A

where R, =2a/o.

In Fig. 4 we plotted the ratio j;/j, as a function of
temperature for values of 2a/£(0) =4, 6, and much
smaller than 1. Also experimental data taken from
Ref. 2 are included. The lengths of the bridges used
in the experiments were found to be 0.5—0.65 um
and ¢(0) =0.13 um. Considering the uncertainty in
determining the precise effective length, and of the

20 g e ¢ o T
/] A 5 q °
J/)o . LA ®
-\. a
181 \ e |
C .
o 0 0,4 o -\.‘ (]
16 x x o \‘I T
B < .
14F R AN
A x
O
1.2“ A -
10 1 1 1
094 096 098 T/Tc 10

FIG. 4. The reduced maximum supercurrent j/j, as
given by Eq. (51) vs temperature for weak links of length
2a/¢(0) << 1 (curve A), 2a/¢(0) =4 (curve B), and
2a/£(0) =6 (curve C). Also experimental data on six dif-
ferent bridges taken from Ref. 2 are included. The lengths
are chosen to agree with the range of the experimental
parameters.

10
Reff/ Rn
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FIG. 5. The normalized differential resistance Ry /R, in
the foot region as given by Eq. (53) vs temperature for the
same lengths as in Fig. 4, 7.=3.8 K and 7, =2.8 x 10710
sec. The experimental data on tin microbridges taken from
Ref. 3 are also included. The value of 7, which was used
to fit the data, is very reasonable for tin.

extrapolation to find j,, the agreement between
theory and experiment has to be considered reason-
able. Also, the length of the bridges are rather large
and we are at the limit of the region of applicability
of the theory. In Fig. S we plotted the normalized
differential resistance of the "foot" versus tempera-
ture for the same parameters. The inelastic scattering
time was chosen 7, =2.8 x 1071 sec, which is a very
reasonable value for tin. The experimental data from
Ref. 2 on tin microbridges are also included. Here
we find a good quantitative agreement.

We can estimate the voltage limit of the "foot" by
combining Eqgs. (52) and (53) to compute V= (jo
—Jjo) R, which gives a measure of the extent of the
linear rise before the limiting enhancement of the su-
percurrent is reached. In the short bridge limit, this
product is simply

eVmax=2.76(1/7¢) . (54)

Thus, for 7,=2.8 x 1079 sec, V. would be
~7 wV, which is in satisfactory agreement with the
I-V curves of Ref. 2.

VII. DISCUSSION

We have presented in this paper a theory describ-
ing weak links of short length 2a << £(7). In this
case, the order parameter in the bridge and the gen-
eralized densities of states are fixed by the boundary
conditions in the superconducting banks. Diffusion
processes relax all nonequilibrium quasiparticles at a
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fast rate except for those which are confined in the
bridge because their energy is lower than the energy
gap in the banks. Inelastic electron-phonon collisions
are responsible for the relaxation of these quasiparti-
cles. Furthermore, the strong diffusion has the effect
that the distribution function of the confined quasi-
particles is spatially homogeneous in the range which
is energetically accessible. The current through the
weak link, which for short bridges in equilibrium has
the well-known sinusoidal phase dependence, is sub-
stantially modified due to nonequilibrium quasiparti-
cles. At low voltages we find a dissipative contribu-
tion to the current which is larger than the normal
ohmic current and which is responsible for a "foot" in
the current-voltage characteristic of weak links
(which is not found using a simple RSJ model). At
high voltages the supercurrent is increased, hence the
high voltage part of the current-voltage characteristic
extrapolates to a higher zero voltage current than the
equilibrium value. The comparison between experi-
ments? on tin bridges and the theory, augmented by
finite length corrections, is quantitatively good.

Since the characteristic length scales are so much
longer in aluminum than in tin, it is relatively easy to
make aluminum bridges for which the zero-length
limit should be a good approximation. Data on such
bridges have been reported by Klapwijk et al.?® and
by Bindslev Hansen et al.?! Taking 7 for aluminum
to be =1.5x 1078 sec, the voltage limit for the "foot
given by Eq. (54) is =0.1 uV, where problems of
noise rounding and limits of experimental sensitivity
make quantitative observation difficult or impossible.
In the work of Klapwijk et al., a small initial rounding
at the foot of the voltage rise was ignored in defining
the critical current as that at which a rapid rise in vol-
tage appeared. With this definition, their measured
critical current would be the enhanced one, I, « j,
given by the maximum of Eq. (25), namely,
1.325I.,. This factor would account for roughly half
of the excess of the I.R products reported by
Klapwijk et al. above the theoretically expected
values. However, one must be very cautious in
drawing any conclusion from the numerical magni-
tude of the /.R product, since other factors appear
also to influence it. For example, data of Octavio?
on tin bridges show that the unambiguously identi-
fied I, at the beginning of the foot can have dl.o/dT
larger than predicted by the Aslamazov-Larkin
theory, and Yanson?® found similar effects with lead
and indium. An important further observation of
Klapwijk et al. was that the measured critical currents
scaled linearly with (7, —T), as expected from the
present model in the zero-length limit for both /.
and /.,. By contrast, the Aslamazov-Larkin model
predicts an enhanced /., scaling as (7. — 7)%*. In the
work of Bindslev Hansen et al., the published /-V
curves (Fig. 1 of Ref. 21) are shown at roughly five
times higher voltage resolution than in the published

data of Klapwijk et al., and a submicrovolt foot is dis-
cerned. In summary, although no definite conclusion
can be drawn from the results published for alumi-
num bridges, they certainly are not in contradiction
with the present theory.

To conclude, we want to draw a comparison with
previous theoretical investigations. The qualitative
features of the current-voltage characteristic have
been discussed before by Aslamasov and Larkin.}
However, since they consider only time-averaged
quantities, their approach is restricted to high vol-
tages, where a large number of oscillations take place
in the time 7. Also, their result for the maximum
supercurrent j;, (which we quoted at the end of Sec.
IV) was derived under restrictions which can hardly
be satisfied. Indeed, if one takes the numerical coef-
ficients seriously and also the experimentally deter-
mined lengths of the bridges, this result does not fit
the experimental data.> Furthermore, since they did
not consider the extra contribution 8/ to the current
(the importance of which we have shown) they ar-
rived erroneously at the conclusion that nonequilibri-
um quasiparticles would not modify the current in
very short bridges 2a < £(0)[(T.—T)/T.1"'4. Fi-
nally, we have shown that their approach of consider-
ing only time and spatially averaged distribution func-
tions, which leads to the concept of "energy diffu-
sion," can be avoided in favor of a'more straightfor-
w/ard method presented in this paper.

The reduction of the effective resistance at low
currents—the "foot"—was also discussed by Golub.*
His starting point is similar to ours and he also real-
ized that the diffusion of quasiparticles is the most
important process in short weak links. However, his
conclusion that the distribution function would be
spatially inhomogeneous with strong gradients pro-
portional to 1/a, and that also for this reason, inelas-
tic scattering can be neglected is incorrect as we
showed in the present paper. In fact, the experimen-
tal results® show no indication of the strong length
dependence of the resistance in the foot region fol-
lowing from his assumptions.

Finally, we want to mention that the work of Ar-
temenko, Volkov, and Zaitsev® is complementary to
the present paper in the respect that the limit
eV >> A is discussed. There they find an "excess
current"—or "insufficient voltage"—correction to the
normal ohmic current, which is in agreement with
experimental observations of the current-voltage
characteristic of weak links.2* The physical origin of
this effect seems to be a property of the boundaries
between banks and bridge in the weak link since the
same effect is found if a single normal-metal-
superconductor boundary is considered.? In contrast
to this "excess current," the "excess current" apparent
in Fig. 3 vanishes for larger currents. The latter is
simply due to the fact that the time evolution of the
phase difference across the weak link is slower when
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the supercurrent and total current flow are parallel
than if they are antiparallel. This results in a net
time average of the supercurrent. A generalization of
the approach of Ref. 6 to describe also the dynamics
at low voltages (eV << A) is not easy since effects
which are important in this case, as for example the
inelastic scattering of confined quasiparticles, are no
longer included in their approximate equation of mo-
tion [Eq. 31)].
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