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The first magnetization law of an infinite slab of rectangular cross section, in a perpendicular
applied field, is worked out along general ideas previously published. By neglecting penetration
in the edges of the slab, assumed of small thickness, the complex potential is obtained in a sim-

ple way with the help of two successive Schwarz-Christoffel conforma) mappings. The construc-
tion of the thermodynamic potential permits a detailed analysis of the ideal thermodynamic
behavior which is, then, compared with the real one, based on a migration mechanism. Explicit
calculations of the magnetic moment along with the thermodynamic and migration thresholds
are carried out. The migration process is shown to give rise to a metastable phase, including a

macroscopic current, and responsible for the currently observed hysteretic behavior.

I. INTRODUCTION

In Ref. 1 we have discussed the thermodynamics
of the rnetastable process governing the magnetic-
flux penetration into a nonellipsoidal type-I supercon-
ducting sample. The first stage of this process is con-
cerned with the penetration in the edges up to the oc-
currence of the migration of domains into the bulk.
A complete theoretical treatment of this stage, in the
case of an infinite slab, placed in a perpendicular and
uniform field, has been worked out in Ref. 2 by
analytical and computational means, within the limits
of a so-called macroscopic model.

The purpose of this paper is to work out a theoreti-
cal treatment of the second stage of magnetization in
the slab, beyond the migration threshold. As dis-
cussed in Ref. 1 this stage is characterized by flux
penetration both in the edges and the bulk. It is well
confirmed by many observations on samples of dif-
ferent shapes. '

The analytical method used in Ref. 2 which is
based on an appropriate extension of existing solu-
tions of the Dirichlet's problem, could be extended to
the present more complicated magnetic configuration,
but it would lead to rather involved mathematics.
For this reason we will restrict ourself, here, to the
case of a thin slab which will permit a drastic simplifi-
cation of the treatment. If the thickness l is much
smaller than the length a of the cross section
(l (( a) the effect of the penetration in the edges on
the magnetic behavior is known to be very small. '

Ignoring this penetration, a mathematical description
of the field distribution is possible by using elementa-
ry conformal mappings only. The price of this ap-
proximation is that the first-stage magnetization is re-
duced to a purely diamagnetic law, and some preci-
sion is lost in the determination of the migration

threshold. On the other hand, the model will permit,
in a quite simple and enlightened way, to bring out
the metastable behavior of the penetration in the
bulk, in which we are mainly interested.

%e will also retain the macroscopic point of view
of Ref. 2, in which the fine structure of the inter-
mediate state is smoothed out into a continuous
phase.

II. COMPLEX POTENTIAL FOR THE PENETRATION
IN THE MEDIAN REGION OF THE SLAB

In Fig. 1 the half cross section of the slab (dimen-
sions a, l) is represented in the xz plane with the con-
figuration resulting from the penetration in the edges
and in the bulk, which happens as the applied field
Hp is larger than the migration threshold H . Striped
areas represent volumes in the intermediate state. It
should be recalled that the internal equilibrium of
these regions requires the magnetostatic field H to be
of constant magnitude and the lines of force to be
straight. This results in a fanlike configuration of the
field and of the domain walls in the edges and, be-
cause of symmetry, in a uniform field with lines of
force parallel to Oz, in the median region. The re-
markable points of the configuration are noted
1, 2, 3, . . . , co, and symmetrically.

As in previous papers, we begin with the Schwarz-
Christoffel transformation between the u plane and
the f plane, defined by

ting((2k 2)1/2(g21)1/2
df,

which transforms the contour 1234567ao7'6'5'4'3'2'1'
into the real axis g'('. By choosing the square-root
real and positive when ( is real and larger than 1, the
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FIG. 1. Half cross section of the superconducting slab
with flux penetration both in the edges and the median re-

gion, (a) in the u(x, z) plane; (b) in the conformally
transformed f(g, q) plane.

FIG. 2. Half cross section of the slab simplified by drop-
ping penetration in the edges, (a) in the u(x, z) plane; (b) in

the ((g, q) plane; (c) and (d) in the p($.A/~) plane.

B = a/2Gk'= I/2Gk = (la/4GkGk')' (2)

b =2BG„(sin 'p'/k') =aG„(sin 'p'/k')/Gk' . (3)

where

Gk=E(8, k) —k' F(8,k)

k'=(I —k')'~~. F(8,k), E(8,k) denote, as usual,
elliptic functions of the first, second kind, of
modulus k and argument 8. If 8= —, m the elliptic

functions are said to be complete and the argument is

dropped for brevity, F(—m, k) = Fk, etc.1

The problem of seeking the complex potential of
the external field distribution matched to the internal
configuration of Fig. 1(a), is now reduced to a
Dirichlet's problem for a half-plane with definite
boundary conditions on the real axis and at infinity.

outside right part of the slab cross section corre-
sponds to the upper half-plane q ~0. The abscissa
of the points 2, 3, . . . , are denoted by (q = I, (3 =p,
. . . , as indicated Fig. 1(b). The constants 8, k, and p
are related to the dimensions a, I of the slab and to
the width b of the median region

dg dp df
du df du

(6)

Concerning the field behavior in the neighborhood
of the vertices of the median structure cross section,
such as 3 (Fig. 1), similar arguments as those
developed in Ref. 2 hold. To a fine scale the tangen-

%'ithin the above-mentioned simplification for the
thin slab (I ((a), the sketches of Fig. 1 are replaced
with the ones of Figs. 2(a) and 2(b), in which 5,7
and 5', 7' are missing.

As in the previous papers, the field distribution will

be represented by an analytic function P(u) of the
complex variable u =x+iz

Q = $+iA/yp

$ is the scalar potential and A the vector potential of
the field (mks units). The scalar potential is chosen
equal to zero on the equipotential line along Ox, as is
the vector potential on the equiflux line along Oz.
will also be regarded as a function of the complex
variable g /+i q.

The complex field is derived from P by
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tial field along 23 varies greatly on a characteristic
length of the order of the domain spacing (Fig. 3 of
Ref. 2). The local component H„at point 3 is con-
tinuous and of magnitude H, . The averaging process
of the macroscopic model entails a discontinuity, but,
as discussed in Ref. 2, the overall macroscopic equili-
brium is not sensitive to the value of the field on the
diamagnetic side. We will also ignore complications
arising in a thin perturbed sheet below the free sur-
face, along 23 (and 2'3'), where the internal
uniformity of the field is broken. Finally, in the ma-
croscopic model, the segments 23 and 2'3' belong to
symmetrical equipotential lines. In addition, the con-
tour of the flux-free volume in the diamagnetic state,
necessarily belongs to a line of constant flux

A is the total flux passing through the slab. Note
that this line meets the sample surface somewhere
between 3 and 6 at point 4 (Fig. l).

As discussed in Ref. 1, the derivation of the ther-
modynamic potential is conducted by assuming that
volumes of matter in the superconductive and normal
state are initially "frozen" in a definite configuration.
The intermediate state in the field penetrated region
thus consists of linear laminas parallel to Oz (Fig. 3).
Laminae in the superconductive state are assumed to
be made of perfectly diamagnetic material. Laminas
in the normal state are assumed to be made of matter
with a linear and uniform magnetic susceptibility, in-

stead of taking a zero susceptibility, as for studying
penetration in the edge, in Ref. 2. The reason for
this is that when domains have penetrated in the bulk
of the sample, the volume in the diamagnetic state is
no longer simply connected, and a macroscopic
current may exist a priori. The magnetic moment as-
sociated with such a macroscopic current gives rise to
a finite value for the magnetostatic polarization inten-
sity J„ in normal domains. In the fictitious magneti-
zation process which leads to the magnetic energy of
the true final state, supercurrents are, at any time,
proportional to the applied field so that, in the
equivalent magnetostatic description, J„ is, at any
time, a linear function of the fields. Thus, the nor-
mal matter can be described by a finite, constant and
uniform susceptibility; uniformity is convenient but
not essential since, as is well known, a great deal of
arbitrariness prevails in the magnetostatic description
of a given current distribution.

Finally, the internal structure (Fig. 3) is character-
ized by the uniform field HI, such that

(s)

and the following value of the induction in normal
domains

B„=p,p( H(+ J„) (9)

in which J„ is a linear function of the fields. The
internal thermodynamic equilibrium will require B„ to
be of strength p.oH, .

The macroscopic current 9, as derived from the cir-
culation of the induction vector along the closed con-
tour 33'6'63 (the internal path 33' being described in
normal matter), is given by

y= J„dz=J„l .
33' " (10)

X

The boundary conditions ('7) and (8) which must
be obeyed by the imaginary and real part of the po-
tential are very simple. This leads us to introduce, as
an intermediate step, the complex potential profile in
the p($, A leap) plane. The possible profiles are
represented Figs. 2(c) and 2(d).

The problem of determining the complex potential
P(g) is now reduced to writing down the Schwarz-
Christoffel formula which conformally transforms the
nonhatched area of Figs. 2(c) and 2(d), bounded by
the contour 12346ao6'4'3'2'1', into the upper-half g
plane, r/~0 [Fig. 2(b)]. The most general potential
involves a linear combination of the Figs. 2(c) and
2(d) cases, which can be written as follows:

[BH ((2 (2) + C] (g2 2)-I/2((2 l )-t/2
d(

FIG. 3. Sketch of the intermediate state structure in the
median region of the slab, resulting from flux penetration.

where C is a constant, and the square-root determi-
nation is taken to be real and positive when $ is real
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and larger than 1. 8 is the dimensional parameter
defined in Eq. (2).

The complex field is then deduced, with the help
of Eqs. (1) and (6), as

H, +—iH, =i [Hp($2 —t') + C/B]

normal area S„. Making use of the Legendre iden-
tity"

FPFp'+ Ep'Fp —Fp Fp' = —~

which entails

x [(g'- p') (g'- k') ]-'"

At large distance ($ ~)
(12) ( Ep —t' Fp) Fp + ( Fp —t Fp') Fp = —m

we can still write from Eq (18)

H. +/—H. =/Hp 1 — [—I ——(k +p )] +1 2 1 2 2 iC
(2 2 8~2

t

(13)

which shows that the field reduces to the applied field
Hp. The 1/$ term will be used below, in the calcula-

tion of the magnetic moment.
a. Freefllux distribution. The first term in the

right-hand side of Eq. (11) refers to the distribution
deriving from the profile 2(c). The field tends to the
uniform applied field Hp(O, Hp) at large distance.
The amount of flux which penetrates into the median
structure is proportional to Hp. Therefore, in that
distribution, flux penetrates freely and, as a result,
no macroscopic current can exist; i.e., J„=O. It will

be referred to as the "free flux distribution" and la-

beled by the subscript f. Upon integration with

respect to (, along the real axis, the potentials

/f2 /f3 and Af are obtained as functions of the di-

mensions a, I, b, and the parameter t

II f2 QI f3

Ep —t' Fp=2rl /2(Fp'I +F~S„)

Et, ' —t Fp'= wS„/2(F~'l2+ FpS„)

(2O)

(21)

4(2 = 4(3
1

(g2 p2) 1/2(g2 ] ) 1/2

= —CFp (22)

1A3=A6=Ace
2 At

p
((2 p2) —1/2(1 g2) —1/2 d(

1

b. Trapped flux distribution. The second term in
the right-hand member of Eq. (11) refers to the pro-
file of Fig. 2(d) which leads to a distribution charac-
terized by a vanishing field at infinity and a definite
amount of flux passing through the median region,
proportional to the constant C. This distribution will

be referred to as a "trapped flux distribution" and will

be labeled by the subscript t. In a similar way, as be-
fore, the potentials are given by

p
BH J (/2 (2)(p2 $ 2)1 /2( 1 (2) 1/2

p

= BHp(Ep —t'2F~) (i4)

1

A =BH J ($2 —t2)($2 — 2) '/2(l —(2) '/2dg
2 p

= ppCFP',

A, is the total trapped flux through the slab.
The induction in normal domains is given by

Btl = I/p(2tlti2/I + Jn) = l~~/Sn

(23)

(24)

tt pBHp(Ep' —r F~')

(p' = 1 —p, t' = 1 —t ). S1nce Jn =0, )hp 1nduct1on
in normal domains is simply J„=2C(Fp'I2+FqSn)l/S, (25)

whence, on substituting Q, 2 and A( from Eqs. (22)
and (23), respectively,

Bf„=2 ppd1I2/I

Moreover, denoting by n the local fraction of
matter in the normal state, we have the following
condition of internal consistency:

t b/2

Bf„j n dx= = —Af
p 2I

S„ is the total area of the slab cross section in the
normal state. On account of Eqs. (14)—(16), Eq.
(17) yields

(16) A macroscopic current now exists and, from Eq.
(i0), is given by

9 = 2C ( Fp I'+ FpS„)/S„ (26)

We now proceed to determine the constant C of
the complete distribution. It will be chosen so that
the flux amounts to a given value A1. This can be
achieved by the following two-stage magnetization
process (Fig. 4). (i) 0 ~ Hp ~ H1. flux penetrates
freely in the median structure up to the value

S„=I'(E, —t2F~ )/(E, —t'F, ) A1= ttprrBS„H1/(Fp'I +FpS„) (27)

The parameter t is thus directly dependent on the (ii) H1 ~ Hp.'further increase of flux is stopped by
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(26) is written, on account of Eq. (28)

S- wB(Hp H&)/F
p

lt is evident from Eq. (12) that the field rises to in-

finity at points 3 and 6. An infinite field at 6 results
from our simplifying assumption of neglecting pene-
tration in the edges, whereas the field at 3 will be
shown to drop to a finite magnitude at thermodynam-
ic equilibrium, as is the case in Ref. 2.

III. THERMODYNAMIC POTENTIAL AND
INTERNAL EQUILIBRIUM

0 Ho

superimposing a trapped flux distribution. The suited
value of the constant C is readily seen to be

C = rrB(Hp ——Hi)S„/2(F~ I'+F~S„)F . (2S)

On account of Eqs. (11), (28), (21), and (2'7), the
explicit expression of the complete distribution can
now be written

FIG. 4. Plot of the magnetic moment (M) of the slab and
of the polarization intensity in normal domains (1„),vs the

applied field Hp, along the magnetization process used for
the calculation of the magnetic energy, in the magnetostatic
model.

The thermodynamic potential, already considered
in Refs. 1 and 2, involves the condensation energy
W~ and the magnetic energy, in the form

Hp

G = Hg —pp MdHp (33)

wc= ——2 (1 —n) dx dz
la half cross section

M is the magnetic moment of the slab, obviously
parallel to Oz. The integration is carried out along
the magnetization process of the previously defined
frozen-in structure,

The condensation energy can be deduced from the
local fraction n of matter in the normal state. Per
unit volume, in units of —,p.pH, 2

T

=BH ~' — ' +
E' A]

dg Fp' 2@pFp'

pb/2= —1+—
~

ndx = —1+—"
a la

(34)

X ((2 — 2) '/2((' —1) '/2

and the complex field as

(29)
The simplest way of calculating the magnetic mo-

ment is based on the behavior of the polarization
field at large distance, '

M = lim 2rrz [H, (z) —Hp]

H, +i H, =i [H—p(]' —Ep /Fp') + A )/2izpBF~']

x ((2 — 2) ]/2((2 —k ) '/ (3O)

The induction in normal domains is derived from
Eqs. (17) and (24)

The behavior of H, (z), when z ~, is given by Eq.
(13). Since from Eq. (l), ( z/B, we o—btain for
the moment per unit volume of the slab

2 B
[r ——(k +Pz)]Hp —— . (35)

B„yp[2(gfz+@g )/zI + I„]= IA /S„ (31)

whereas the macroscopic current, still given by Eq.
In the two-stage magnetization of Fig. 4, I takes on

the following values:

Ip= — [t —
2

(k +p )]Hp if Hp H)
2mB

la
(36a)

t2

lt= [r —(k +p )]Hp+ (Hp H&) if Hp~ Hi
2mB F. F

la 2 F
p

(36b)
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whence, for the magnetic energy in the final state under consideration, in units of —IJ]pH,

I

g~ = —
Ji IpdHp+ t lt dHt / —laIIpH = [r ——(k +p )] +

pHi pHp 2mB 2 i 2 2 Hp Ep' —t Fp (Hp —Hi)
P Hi la H2 F H2

t C P C

2trB &' t 2 & Hp Ep' Fp' Ht Ht —2Hp2

k +p), +
Ia F, H,2 F, H, H,

P P

On substituting E,—t F from Eq. (21), Hi from Eq. (27), and using the expression (34) of 8'g, the following
P P

expression of the reduced thermodynamic potential is finally obtained

t 'I

2mB p' i 2 2 p i i p 2mB' )Hp
g(Hp, At, b, S„)= —1+—+ ——(k2+pt) + +

la la F H, a ppH, S„ la @AH, Fp' la pp&& F
P

(37)

g is thus calculated as a function of the applied field

Hp, the flux A i, the internal dimension b through the
parameter p [cf. Eq. (3)], and the normal area S„.

a. Internal equilibrium. For given values of Hp,
A i, and b, a minimum of g occurs when the normal
area takes on the following value:

S„=IA t/p. pH, (3S)

whence, from Eq. (31), the resulting value of the in-

duction in normal domains

E ~2mB ~ t (k2+ 2) H
la F,

P

E,—t F,
P P

P

2~B' E,
la F,

P

—
—,'(k'+p') H, + ' . (39)

la ppF,

Similarly, from Eqs. (37) and (38)

8„=IA t/S„= p,oH,

This is the usual requirement of internal equilibrium
in the intermediate state.

We are now able to rewrite the expressions of the
moment and the thermodynamic potential involving
internal equilibrium. From Eqs. (36), (21), and
(28), we obtain the moment in the form

would be the value of the flux if the free flux distri-
bution were alone, in the applied field Hp.

We are left with functions of the flux A i and the
width b of the median region which allows us to
analyze in detail the magnetization process, in Secs.
IV and V, along the lines of our general discussion of
Ref. 1.

The macroscopic current given by Eq. (32), will

also be rewritten, with the present variables, as

9 = n8(Hp 'IF&'H&/rrB F&A t/pp7rB)/F&',

=F,(At Ao)/ oF, ' .— (42)

Since we have ignored the penetration in the edges,
the whole sample remains in the diamagnetic state
until the penetration in the center is allowed. The
corresponding value of the magnetic moment during
this stage can be derived from the first expression
(36), with b =0, I =p =1, which gives, per unit
volume

lg = n'8 k' Hp/Ia = —n k'Hp/4GkGk . (43)

This is the law of perfect diamagnetism of the slab.
Similarly, the related value of the reduced thermo-

dynamic potential is readily found to be

IV. DIAMAGNETIC AND THERMODYNAMIC PHASES

g(Hp, ~, , b) = —1
2 E ~ H'2KB p i (k2+ 2) p

la F 2 H,2

g~= —1+mB k' Hp/IaH,

1+mk Hp l4GkGk Hc (44)

where

Fp~, (a, -2W p)+
la IJ/.,pHc Fp'

A p
= p.p(wBHp F~ IH, )/Fi, —

(40)

(41)

a. Thermodynamic phase. We now proceed to
analyze the stability of the penetration in the median
region. It has been shown in Ref. 1 that if domains
could spontaneously appear in the bulk of the sam-

ple, they would do so as the potential difference
between 2 and 2' reached the value lH, . The width b
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would then increase with the applied field. %e are
going to bring out this behavior in the slab.

First of all, since the flux is assumed to penetrate
the bulk of the sample freely, A i is an independent
variable, and equilibrium occurs as Bg/8A &

=0
whence A ~

-Ao, which means that the free flux dis-
tribution is alone, as obviously expected. The poten-
tial g reduces to

On the other hand, Eq. (20) in which S„-IAp/IApH„
gives

rg 1 l2

Ep —t Fp
Fn'I + FpIAp/IlpHc

1 l2

Fp'I'+ (I/H, ) (rrBHp Fp'IH—, )

T 'I

gr(Hp, b) = —1+ ——(k'+ p')2n 8~ p' i q ~ Hp

la F,
P C

I

lH,

28HO

whence, by comparing with Eq. (48)

(50)

(~aH, —lF,H, )'
laFpF rH,

(45)

t =p
which means that 4 coincides with 3 (Fig. 5). The
complex potential and the complex field defined by
Eqs. (11) and (12) (with C-0), then reduce to

From Eq. (42), the macroscopic current g is zero,
in accordance with the free penetration hypothesis.

The equilibrium value of the internal dimension b,

i.e., the parameter p, is next given by minimizing g
with respect to p. The derivation is carried out by

making use of the derivatives of the complete elliptic
functions"

dFp Ep Fp dEp Ep Fp dp

pp' p
'

dp p
'

dp p'

Let us first establish the result for any given A i.
Calculations are straightforward and yield

( g2 p2) 1/2( g2 ] ) -1/2

d(
—H +iH ~ iHO(( —p )' (( —k )

(51)

(E,—p F,)BHpQg 27K Ai

ap lapp' FpH, 2p.o
(46)

whence the equation defining the equilibrium value
of b

0.1

G, -E, pF, -A t/2It—pBHp
p p p

(47)

In the thermodynamic phase under consideration
At Ap. Substituting Ap from Eq. (41)

G&' (rrBHp F~'IH )/2FpBHp

rr/2 F& F&'IH /2 F&BHp

and using the Legendre identity (19)

G&'F& —G&F&'+
&

rr =
&

rr F~'IH/2BHp
1 1

0

2 j1

or

Gp = IHq/2BHp = Gk Kq/Hp (48)
Hz

The resulting value of the thermodynamic potential
is, from Eq. (45) (b)

GkFp
gg(HO) = —1—

Gk'Fp

1

+ m 2GkHc g p Ho
+p —k

4Gk Gk' Ho H,
(49)

0

FIG. 5. Potential profiles (a) and field components (b) as
functions of the abscissa cr along the contour 236&v of the slab
section, in both the thermodynamic and the metastable phases.
The related field configuration is represented in the inset.
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which entails that the field at point 3, in the diamag-
netic side, is zero. In a more detailed form, the po-
tential and flux profiles along 23 are given by

[A (g) —A3)
y(g) +I

P,p

= BHp(E& —p' Ep) I'BHp E sin, ,p'((2 p2) 1/2

(p
0.5

2 2) 1/2—p2F sin-t (~

(52)
I/HG

(a)

(b)

H& = IHr/2B = Gk H~ (53)

where we have used Eq. (2).
A thermodynamic transition, indeed, could occur

as Hp=H, , since the thermodynamic potential gf of
the free flux phase [Eq. (49)] is just equal to gq [Eq.
(44)l, as p =1(E =F = , rr, F~=~); i.e.—,

1

The first term on the right-hand side is /f2 and the
second defines the flux profile represented in Fig. 5.

Thus, the tangential component of the field is con-
tinuous on passing through 3, along the surface of
the slab. This result is in accordance with the con-
tinuity of the tangential component of the macro-
scopic field at the ends of the edge structures, previ-
ously established in Ref. 2. Let us recall that this
continuity, which is a consequence of the mathemati-
cal treatment, is not in agreement with the actual ma-

croscopic situation. This disagreement, however, can
be ignored for it is ruled out by an infinitely small
rearrangement of the adjacent domain structure,
which has no bearing on the macroscopic equilibrium
of the system.

We now turn to the determination of the thermo-
dynamic threshold H, . The latter is expected to be
defined as the value of Hp for which b =0; i.e.,
t =p =1. Since G1=1, we then have, from Eq. (48)

Hi Hm 0 5

FIG. 6. (a) Plot of the reduced thermodynamic potential
vs the applied field Hp counted in units of H, , in the di-

amagnetic (g&), thermodynamic (gf), and metastable (g~)
phases, for I/a =0.1. (g) Related values of the reduced
magnetic moment. Also shown are the potential and mo-
ment variations along two selected "diamagnetic paths"

(A/~aH, =0.2 and 0.5), obtained in decreasing field. The
final part of the returning magnetization curve coincides
with the axis I =0, in the present model. Note the strong
hysteretic behavior.

g,(H, , I =O) =g, (H, ) .

This is the equation of the ideal transition. Further-
more, from Eqs. (14) and (49)

2@f2 = IHc

The potential difference between 2 and 2' is IH„at
the transition, according to the general rule given in
Ref. 1.

Elimination of A1 between Eqs. (39) and (4'7)

yields the moment expression

b/a

0.5

/
/

/
/

/
I

b) II

I
I
I
I
I
I
I

I

I

I
I

H
t

I 1 I 1 I 1

0.5 H

I = rrB Hp(p k )/la = WHO(p k )/4GkGk'

(54)

whatever the value of A1 is. In the thermodynamic
phase I takes on the value If obtained by substituting

FIG. 7. Plot of the reduced width b/a of the median
penetration region in the thermodynamic (bf) and meta-
stable (b~) phases, vs the applied field Hp counted in units
of H, . Transverse curves represent the variations of b/a
along the selected diamagnetic paths.



21 MAGNETIZATION OF A TYPE-I SUPERCONDUCTING SLAB IN. . . 5073

p from Eq. (48).
In Fig. 6 equilibrium values of the functions

graf gf lg, and lf are plotted versus the applied field
Ha, in the case I/a =0.1. Note the increase of stabil-

ity in the state of free penetration, beyond the transi-
tion Hp- H, . Variations of the dimension b with the
field are represented in Fig. 7. We observe a rather
sharp increase, as the field has just overcome the
threshold H„which looks like the trend of the disor-
der parameter in a phase transition of the second
kind.

0.140

0.145

0.150

V. METASTASLE PHASE

Since a domain is prevented from appearing spon-
taneously by the fluxoid theorem, ' the sample wi'. 1

remain in a metastable state until a value of Hp is
reached, such that domains are able to migrate from
the peripheral region towards the central position 22'.
This problem has been investigated for the slab, in a
realistic way in Ref. 2, up to the calculation of the
migration threshold as a function of dimension.

We will proceed further, in this section, by means
of some simplification of the migration condition. At
the starting of the migration process 7 and 7' (Fig. 1)
meet at co. 5co5' is then a critical wall, this condition
we can simplify in the present model, for a thin slab
(I (( a) by taking H to be equal to H„

K (Hp, At, b) =H, (55)

Bg (Ho, A, .b)/8b 0 (56)

The set of states m(Hp), which will be referred to as
belonging to a metastable phase, completely deter-
mine the migration stage in an increasing field, as

The migration field H will be defined by the
lowest value of Hp for this condition to be satisfied.

Instead of what happens in the thermodynamic
phase, A ~ and b are no longer independent variables,
but are now related by Eq. (55). This leads, at first
sight, to the state mp of lowest potential, on the set
of g(Ha, A t, b) functions, shown in Fig. 8. This state,
however, is not open to the system. Let m be the
point where the locus of points connected by Eq.
(55), is tangent to the external envelope of the
g(Ha, At. b) functions (Fig. 8). Assume an infinitely
small displacement from m to m', requiring a small
increase of the flux A t. The system cannot remain
in m' because a more stable state m" is practicable,
for the same amount of flux. The transition m'm"

only needs a small rearrangement of the intermediate
state structure, in which b is varied from some value
b to another one b . But in the state m", the rni-

gration condition is no longer fulfilled (H„& H, ), so
that the system cannot proceed further towards m p.

It follows that the system gets hung up close to the
state m, which is defined both by Eq. (55) and

0.155
0.245 0.300 0.305

yo "c

FIG. 8. Set of curves showing the dependence of the
thermodynamic potential g(Hp, A), , b) on the flux A

&
and

the dimension b, for a fixed value Hp=
2 H, of the applied

field. The g curves are represented by small arcs of parabola
(close to straight-line segments in the range of interest), la-

beled with the selected values of b/a. Also shown is the
locus of the points obeying the migration condition
(H„=H, ).

p kH, /Hp (57)

The dimension b is deduced with the help of Eq. (4).
Variations of b as a function of Hp are shown in Fig.
7 in the case I/a =0.1.

Equations (47) and (57) both determine the
parameters A t and p, at any value of Hp, along the
migration process. The threshold H is obviously de-
fined by the additional condition b -0, or p = I,
which yields

Hm = kHc (5S)

The same is obtained if we impose H„-H, in the di-
amagnetic phase, which is. not at all surprising.

The expression (40), in which we take into account
Eqs. (47) and (57), defines the potential g of the

emphasized in Ref. l.
The metastable equilibrium value of b is defined by

Eq. (56). The calculation of the partial derivative,
early performed, yields Eq. (47).

Let us now examine the potentials and fields in the
metastable phase. Taking Eq. (47) into account, Eqs.
(29) and (30) give formally the same as Eq. (51).
The parameter p, however, is no longer defined by
Eq. (48). From Eq. (51), for (=0

H„= Hap/k

which leads to the following expression of the simpli-
fied migration condition (55)
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metastable phase in the true state

m(p —k ) —4GpG

urn value of b is smaller than a. Therefore, the mag-
netization is governed by a constant value of the
flux, equal to the initial one

2Gp' Ho

Gi, ' H,
(59)

H is the true transition field, instead of the ideal

H, , and corresponds to a thermodynamic equilibrium,
in the usual sense, between the diamagnetic and the
metastable phases; i.e.,

g (H, b =0) =gg(H )

as it can be easily verified with Eqs. (44) and (59).
The expression (54) of the moment still remains.

On inserting p from Eq. (57), we obtain the value I
pertaining to the metastable phase.

As Ho approaches H„ the median region in the in-

termediate state spreads over the whole volume and
finally, the sample transits into the normal state. %'e

have, indeed, in Eq. (59), when Hp= H„p =k

g (H)=0 ~

g is plotted in Fig. 6 versus the applied field Ho,
in the typical case 1/a =0.1 [Fig. 6(a)], along with

the moment I [Fig. 6(b)]. g (Hp/H ) is seen to be
higher than the ideal value gf in the whole range.
This is why we have regarded the states obtained in

the migration stage as metastable ones. Note that,
because of the irreversibility of the migration
mechanism, g can take on positive values and the
magnetic moment, beyond H, is no longer derived
from the slope of the g(HO) law. Also it is worth
while to note the strong departure of the moment
function —I (Hp) from the ideal one, as experimen-
tally observed. '

a. Field distribution and macroscopic current. Be-
cause the field distribution is formally given by Eqs.
(51), the trend of the fields, in the metastable phase,
is still represented by Fig. 5. Thus the thermo-
dynarnic and metastable phases are quite similar for
the field distribution, but differ by the amount of
penetrated flux and by the equilibrium value of the
internal dimension b (Fig. 7).

The main consequence of the flux A ~ to be dif-
ferent from Ao is the occurrence of a macroscopic
current 9 in the metastable phase. This current is
given by Eq. (42) in which At and p are substituted
from Eqs. (47) and (57).

b. Diamagnetic paths in decreasing field and hysteret-
ic behavior. Assuming that the system has reached
some state q in the migration stage [Fig. 6(b)], let us
lower the field from H~. This decrease entails a
reduction of H below H, and, as a result, domains
cannot enter the slab. But they do not escape from
the inside either, as long as the metastable equilibri-

A» = 2 p, p BH& G& ' = p,pa H& G& '/ G~ '
Pq

where p, = kH, /H, The. related values of the mo-
ment I are still given by Eq. (53), in which p is a
function of Ho (H, defined by

A, = p paHpG~ /G„

Examples of constant flux paths for two selected
values of the flux, A /ppaH, =0.2 and 0.5, are shown
in Fig. 6. The moment curves [Fig. 6(b)] are nearly
parallel to the initial diamagnetic law whence the
name of "diamagnetic path" currently used. ""They
cross the ideal curve If at a point where the related
thermodynamic potential curve tangents the ideal one
[Fig. 6(a)]. The system, however, remains in a me-
tastable state even below the crossing point.
Domains indeed are not able to leave the slab in that
range either, because of H„& H, or, in a more real-
istic way, 7 and 7' are distinct from cu (Fig. 1). It fol-
lows that the flux remains equal to A, until the state
r, in which b = a, or p = k, is reached. In this state
Hp = H A&/@pa and I =0. From this point on-
wards, if the field is decreased further, the returning
magnetization curve is the axis I -0. In fact, the
same result is obtained whatever the q starting point
1s.

Experimentally, diamagnetic paths, such as qr, are
currently observed, but the return magnetization
curve does not coincide with the axis I =0. This
disagreement is a consequence of the simplifying as-
sumptions of the present model. Before reaching the
state i, the moment is critically dependent on the
possibility that the domains can be expelled out of
the sample which, in turn, depends on the detailed
configuration of the penetration in the edge. The
question must therefore be revised in a more realistic
treatment.

In summary, it can be ascertained that most of the

magnetization law of the slab is contributed by the
metastable mechanism which is responsible for a

great deal of hysteresis,

UI. CONCLUSION

A complete illustration of the thermodynamics of
the magnetization of a type-I superconductor has
been worked out in the geometry of an infinite flat
slab, of rectangular cross section, in a perpendicular
magnetic field.

The metastable character of the magnetization pro-
cess, previously discussed in a general way, has been



21 MAGNETIZATION OF A TYPE-I SUPERCONDUCTING SLAB IN. . . 5075

emphasized by a detailed analytic calculation of the
suitable thermodynamic potential, which permits the
analysis of the migration mechanism, the occurrence
of a macroscopic current, and of the hysteretic
behavior. Comparison is made with the underlying,
but unattainable, thermodynamic process.

More precise calculations, taking into account
penetration in the edges, should be possible, by
means of a more elaborated analytic solution of the
relevant Dirichlet's problem. Our model, however,
brings out the physics of the magnetization in a quite
simple mathematical scheme.
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