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Effect of surface roughness on the image potential
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We have calculated the electrostatic potential of a point charge located near a rough dielectric-vacuum
interface. The system consists of a vacuum in the region x»f(x~l) and a dielectric characterized by an

isotropic dielectric constant e in the region x, & f(%II). Here ((xll) is a random function of %II
——x,i, + x,~,

such that (~(xll)) O' d (~~"ll)~{"II)) ~ +("II x II)' where 5 is the root-mean-square
deviation of the interface from flatness, and the angular brackets denote an average over the ensemble of
realizations of $(xll). We obtain the electrostatic potential of a point charge q, situated either in the vacuum

or in the dielectric, at any point of the system by joining solutions of Poisson's equation above and below
the interface at each point of the interface, and then averaging the result over the ensemble of realizations
of the function ((XII). Corrections to the results for a planar interface are obtained to O(5'). Analytic

asymptotic expressions are presented for the averaged potential when the distance from the image charge to
the point at which the potential is determined is small and large, respectively, compared with the average
distance between consecutive peaks and valleys on the surface, for a Gaussian form of 8'(xll), These results
are used to obtain the probability for electron-surface-plasmon scattering in the case of an electron moving

along a specified trajectory above the rough surface, Although surface roughness increases the energy loss
suffered by the electron, the effect is qualitatively different from that required to explain the results of a
recent experiment by Lecante, Ballu, and Newns.

I. INTRODUCTION

@(hen a point charge is situated in the vicinity of
the plane interface between vacuum and a dielec-
tric medium, characterized, for simplicity, by an
isotropic dielectric tensor, the potential at any
other point of this composite system can be ex-
pressed as the sum of the d ire ct C oui omb poten-
tial of the point charge, and the Coulomb poten-
tial of an effective, fictitious charge situated at
the position of the image (reflection) of the true
charge in the interface. The latter potential is
the well-known image potential.

This concept of the image potential can, of
course, be generalized to the case in which the
interface separates not a dielectric from vacuum,
but separates two different dielectric media, each
of which can be characterized by an anisotropic
dielectric tensor, and/or to the case in which the
interface is not planar but curved.

The image potential enters into any physical ef-
fect in which a charged particle, e.g. , an electron
or an ion, is situated in the vicinity of a solid sur-
face under conditions when the discrete nature of
the solid can be assimilated into a continuum. For
example, the image potential is effective in binding
electrons near the surface of liquid He,"and in
the case of an inversion layer at a semiconductor-
oxide interface, the image potential causes a shift
in the electron energy levels. ' An interesting
experiment in which image potential effects play
a role was carried out recently by I ecante, et
g$. ,

' who studied the inelastic scattering of an elec-
tron traveling along a parabolic trajectory just

above a clean metal surface, and showed by direct
measurement that the electrostatic potential of a
surface plasmon does extend into the vacuum out-
side the metal, as predicted by theory.

In the majority of cases in which image-poten-
tial effects have been studied it has been assumed
that the interface between the two dielectric media
is planar. However, even with a great deal of ef-
fort, it is almost impossible to create a perfectly
smooth surface. It is, therefore, interesting to
determine the extent to which the image potential
is affected by the roughness of the interface be-
tween two dielectric media, in one of which a point
charge is located.

In this paper we present a calculation of the
image potential associated with a system consist-
ing of vacuum above the surface ~, = g(x„) and a
dielectric, characterized by an isotropic dielec-
tric tensor & below this surface. The calculations
are carried out for the two cases: (a) the point
charge is situated in the vacuum [x,& f(x„)]; (b)
the point charge is situated in the dielectric
[~, &g(x„)]. The surface profile function g(x„) is
assumed to be a stationary stochastic function of

xixg + x2 x2, where x, and x, are unit vectors
along perpendicular axes. It is characterized by
the following two statistical, properties:

(g(x„))= 0,
g'(x„)g(x,', ))= O'W(x„—x,', ) .

In these equations the angular brackets denote an
average over the ensemble of realizations of the
surface roughness, and 5'= (t'(x„})is the mean-

1980 The American Physical Society



EFFECT OF SURFACE ROUGHNESS ON THE IMAGE POTENTIAL 505

square deviation of the surface from flatness. In
our calculations we will assume a Gaussian form
for the correlation function W(x„),

W(x„)= exp( —x'„!a').
The constant g appearing in this expression is
called the transverse correlation length. It is a
measure of the mean distance between consecu-
tive peaks and valleys on the surface. The value
of the image potential averaged over the ensemble
of realizations of f(x„) will be obtained, and the
influence of surface roughness on it determined.

We elaborate in Sec. II on the mathematical pro-
cedure that we have adopted to solve the Poisson
equation for the region under consideration. In
Sec. III we obtain the solutions for the coefficients
that emerge in Sec. II and introduce the averaging
over the ensemble of realization of g(x„). In Sec.
IV the averaged image potential is obtained from
the results of Sec. III, and analytic asymptotic ex-
pressions for it are derived in the limits that the
distance between the image charge and the point
at which the potential is determined is small and
large compared with the transverse correlation
length. The results of Sec. IV suggest a simple,
three-layer model of surface roughness, that can
reproduce the effects of roughness on the image
potential. This model is described and its prop-
erties studied in Sec. V. Finally, in Sec. VI, we
extend the analysis of Secs. II-V to calculate the
dynamic energy loss by electrons moving in a
parabolic path above a rough vacuum-dielectric
interface. We find that, contrary to the proposi-
tion of I ecante et aI, ' surface roughness does not
explain the discrepancy between their theoretical
and experimental results.

II. THE POISSON EQUATION

The electrostatic potential qr(x l
x') at the point

x due to a point charge q at x' is the solution of
Poisson's equation. This equation takes different
forms depending on whether the charge is outside
or inside the dielectric medium:

-4mq5(x —x'), x, & ((x„)
x,'& ((x,',):v'y(X lx') =

0, x, &t(x„),

(2.1a)

0, x, & W(x„)

x,'& g(x,', ):v'p(X lx') =
~ 5(x-x'), x, «(x„).

(2.1b)

The boundary conditions on the scalar potential
are its continuity across the surface xg f(x„),

(2.2a,)

and the proper jump discontinuity in its normal
derivative across this surface,"vq(xlx') I. e&- &-=n v~(xlx') I. -t, &-. &'

(2.2b)

In Eq. (2.2b) the unit vector normal to the surface
x, = g(x„) at each point is

yg= — —,—,1 1+ + . 2.3

The solution of the partial differential equations
(2.1) for the case of the external charge lying out-
side the dielectric medium [x,'& g(x,',)] can be writ-
ten as

exp &k ~ x„—x,', — exp -p„x, -x,' + ", A k~, exp ik„x„exp -k )x, , x3

y(x lx') = (2.4a)

, B(k„)exp( ik„x„)exp(k„x, ), x, & f(X„) ~ (2.4b)

In these equations k, =x,k, +x,k, is a two-dimensional wave vector parallel to the xyx2 plane. The first
term on the right-hand side of Eq. (2.4a) is the particular integral of the first of Eqs. (2.1a), while the
remaining terms are solutions of the corresponding homogeneous equation.

In a similar fashion, when the external charge is inside the dielectric medium [x, & f(x„)j, the scalar
potential can be written in the form

~
~

KPA

(
)-', C(k„) exp( ik„x„—k„x,), x, f(x„)

p(x lx') =

exp jk„x„x', exp P„x x,' + " k, exp gk„x„exp
II

(2.5a)

(2.5b)
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ln Eqs. (2.4) and (2.5), A(k„), B(k„), C(k„), and D(k„) are unknown coefficients that are to be determined
with the aid of the boundary conditions [Eels. (2. I)]. The resulting equations for the coefficients A(k„) and
B(k„) can be written in the following matrix form:

A(k„)

iB(k„)~

cf q", q„j(k„-q„)

k„q„+e -e(k„q„-1) 'A(q„)

—(q„Q„+-,'q„)+ —.'e —(q„Q„+-.'q„) --.'~ A(j„)-
II II

, ~
(q„Q„+aq„)-~a

II
~

(q„'Q„+-.q„)+a
II

iB(j„),

k ~

q —q I

27/ g(&+1)k„"" "&+1(21Texp(- ik„x,', ) exp(-k„x,') + , exp( —iq„' x,', )f(k„—g„) exp( —q„x,')
, k„'q„+].

p (ai'Qii+ ~q ) —~ e
II

. ~—(q„Q„+kq„)+-'
II

(2.6)

where k„and q„are unit vectors along the directions of k„and q„, respectively.
The corresponding eciuation for C(k„) and D(k„), obtained in a, similar fashion, is

C(k„)

i D(k„)

1 cPqg ~~(f m
)(2p)2

q + e —ek, q„+ ~ ' C(j„)

—(q„Q„+aq„)+r &

II

—(q„'Q„+2q„) 2 ~ C(D
II

+

(%i
'
Qii + & %i)

II

—(q„Q„+aq„)+ a,
II

.D(q„)

CP
exp(- ik„x,', ) exp(k„x,') —,,", exp( —ij„x,',)exp(q„x,') f(k„—g„)

q„+1

—(q„Q„+xq„)+r

»q
(2

q)',
( ), q„exp(- ij„x,',)exp(q„x3) &(Q„)j(k, —q,„-Q„)

6+ 1 .~ (q„Q„+aq„)—
2,

Il

(2.7)
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In obtaining Eqs. (2.6) and (2."l), we have assumed
that the surface roughness can be treated as a
small perturbation to the plane surface, and thus
have retained only terms of up to O(l') in the ex-
pansion of the exponential functions exp[a k„f(x,))]
entering the boundary conditions. In addition, we
have replaced the surface-roughness profile func-
tion by its Fourier integral representation

i(*„)=f (t )exp(",ip) x )„p(p)„). „ (2.8)

In Sec. III, we proceed to solve Eqs. (2.6) and
(2.V) to obtain the coefficient functions A(k„), B(k„),
C(k„),D(k„) averaged over the ensemble of realiza-
tion of the surface roughness.

III.- DETERMINATION OF THE COEFFICIENTS

(3 2)

The equations for the coefficients A(k„), B(k„),
etc. , obtained in Sec. II contain the Fourier coef-
ficient of the surface -roughness-prof ile function
g(x„). We do not know this function in any given
case. The best we can do in this situation is to
solve for these coefficients and then average the
results over g(x)() or, more precisely, over the
ensemble of realizations of its Fourier coefficient
f(k)) The latter is characterized by the properties

(g(k„))=0, (3 1)

( t(k„)&(k,', ))= 6 (2v)'g (k„)6(k„+ k,', ),

invariance to the system we are studying, i.e. ,
the averaged image potential will depend on the
coordinates x, and x' only through their differ-
ence.

In this section we solve for the averaged values
of the coefficients A(k„), B(k„),C(k, ), D(k„) by two
different methods, the first perturbative, the sec-
ond nonperturbative. The results of the first ap-
proach are particularly useful for obtaining the
change due to surface roughness in the image po-
tential caused by a static point charge. This case
will be discussed in Sec. IV. The results of the
nonperturbative approach are necessary for the
discussion of the energy loss suffered by an elec-
tron moving along a prescribed trajectory above
a rough metal surface that will be presented in
Sec. VI. Although the perturbative results can
be obtained from the nonperturbative results by
expanding the latter in powers of the mean-square
departure of the surface from flatness 0', we
outline an independent calculation of the perturba-
tive results. This is because results obtained at
an intermediate stage of such a calculation have an
independent interest in situations where the sur-
face profile function g(x„) is a prescribed function
rather than a random function characterized by
the properties (1.1) and (1.2).

To obtain the perturbative solutions of Eq. (2.6)
we expand A(k„) and B(k„) formally according to

which follow from Eqs. (1.1), (1.2), and (2.8). The
surface structure function g()t, „) is the Fourier
transform of the correlation function W(x„) and, in
the present case, is given by

A(k„) =A"'(k )+A"'(k )+A'"(k„)+

B(k ) = B"'(k ) + B"'(k ) + B' (k ) +

(3.4a)

(3.4b)

g(0„)= )&a' exp(-a'k'„/4) . (3.3)

Averaging over the ensemble of realizations of
the surface roughness in the way just described
will be seen to restore infinitesimal translational

where the superscript denotes the order of each
term in g(k„). When these expansions are substi-
tuted into Eq. (2.6), and terms of the same order
in g(k„) on both sides are equated, the solutions of
the resulting equations are

A(0&(k )'
exp(- ik„x,', ) exp(-k„x,')

&0&(k )

(3.5a)

A( &(k ) ' E+k„'q„

= —4ep
( ) ( ( I

exp( —i x,'t, () exp(-ti„x,')E(E, —t(„).B (k„). &+ 1 2' -1+ jg„q„
(3.5b)

A('&(k )
d2 d2

= -4vq, ), (
~)',

( )", exp(- iQ„X,', ) exp(-q„x,')q„j(k —q„)j(q„-Q„)
iB(2&(k„)

X

a(e —1)+ 2& j„(q„+$„)-(S„j„)(j„q„)(e1)

-(e —1) 2q)) g() + 2 $()&il)) (I) ()x!() (I )))((I)) q ~)(E 1)
(3.5c)
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Evidently the results given by Eq. (3.5a), when
substituted into Eqs. (2.4), yield the ima. ge poten-
tial associated with a planar vacuum-dielectric
interface. As they stand, the coefficients
A,
"~ "(k„) and B" "(k„) can be used with Eqs. (2.4)

to yield the corrections to the planar-interface
image potential in the case that the surface-pro-
file function g(x„) is a known function of X„and
not a random function. This is the situation if, for
example, f(x„) is due to a grating ruled on the sur-
face of the dielectric or to the passage of a Bay-

(A(k„))=A' (k„)+ &A" (k„)),

&B(k„))= B"'(k„)+&B'"(k„)),

(3.6a)

(3.6b)

leigh wave along the surface of the dielectric. '
Equations (3.5b) and (3.5c) can also be used to ob-
tain the energy of interaction of an electron above
the surface of liquid helium. '

The expressions for the averaged values of
A(k„) and B(k„) obtained with the use of Eqs.
(3.1)-(3.3) are

where

&B'"(k„))
(3.'7)

(f& = e ' ."f du e ' ' ' u I (u), '„
0

&. &&. /2e-4 /8~5]f (1 [2)
16

+ I1+ (4/$ ) —(4n/(') ] I„„(-',]')),
wher e

(3.8)

(3.9)

The &ntegrals g„($) appearing in these expressions
are defined by

$= ak„, (3.10)

and f„(u) is a modified Bessel function.
%'hen the charge q is inside the dielectric medi-

um, it is the coefficients C(k„) and D(k„) appear-
ing in Eqs. (2.5) that are required. If we expand
these coefficients formally in powers of f(k„), as
was done in Eqs. (3.4), we find that the contribu-
tions to C(k„) and D(k„) of zeroth, first, and sec-
ond order in g(k, ) are

Co(k )
'

2
27TQ ~ .~

~
~Iexp(;k ~ x ) exp(k„x~/ 1 —1/k„(c+1).D'(k, ) .

(3.11a)

' C" '(k„) '
= —47&q—, ", exp(-iq„x, ', ) exp(q„x,') &(k„-q„) (3.11b)

e —1' d'

—(e —1)+ 2q~~ (f/' k~~) (e l)(kg qp)(q„Q„)

1 —1/~ —2q„(k„+q„) —(~ —1)(k„q„)(q„Q„). (3.11c)

(3.12a)

(3.12b)

The values of C(k„) and D(k„) averaged over the ensemble of realizations of the surface roughness are

&C(k„))= C"'(k„)+&C"'(k„)),

&D(k„))= D"'(k„)+ &D"'(k„)),
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where

(C (k(() -'g.(&) —2g, (h)+k 8.(h)

(3.13)
(D"'(k~~)& " .(-.' — / )a.(&)+ /(e — )4,(h)+ 'J.-(h)

PV —= (V), (3.15)

and the operator Q= 1 —P. On applying both of
these operators to Eq. (3.14) in turn we obtain the

pair of equations

PV+ PLV = Pf, (3.16)

QV+ QLV= Q f . (3.1"I)

Since the vector V can be written in the form

In Sec. IV, we will use these perturbative re-
sults for the coefficients A(k„), B(k„), C(k„), and

D(k„), in combination with Eqs. (2.4) and (2.5), to
obtain the effect of surface roughness on the image
potential to second order in the ratio 6/a. How-
ever, for some applications, particularly in the
study of resonant phenomena (an example of one
such application will be studied in Sec. VI), it is
necessary to have nonperturbative expressions for
the average values of the coefficients A(k„), B(k„),
C(k„),D(k„). We will conclude this section by show-

ing how such expressions can be obtained for
(A(k„)) and (B(k„)), and will simply state the cor-
responding results for (C(k„)) and (D(k„)).

We denote the column vector [A(k„),B(k„)j by

V(k„), and write Eq. (2.6) schematically as

(I+ L)V=f, (3.14)

where f is a, (random) two-component column vec-
tor, I is the 2 x 2 unit matrix, a,nd L is a (random)
2 x 2 matrix integral operator. We next introduce
the averaging operator P,

and substitute the solution into Eq. (3.16) to ob-
tain the equation satisfied by (V). We write this
equation in the form

M(V&= g, (3.21)

with the formal solution

(V)= M 'g,
where

M=I+ ((I+ LQ) 'L),

g= ((I+ I Q) I).

(3.22)

(3.23a)

(3.23b)

Equation (3.21) is exact. It has something of the
character of a Dyson equation, with ((I+ LQ) 'L)
playing the role of the proper self-energy. As with
the Dyson equation, we can obtain a nonperturba-
tive solution for (V) by obtaining M and g in a per-
turbative fashion and substituting the resulting ex-
pressions into the solution (3.22).

In the context of Eq. (2.6) we can write

L= L~+ L3,

f=f + f, +f, ,

(3.24a)

(3.24b)

where the subscript denotes the order of each term
in g(k„). From Eq. (3.1) it follows that (L,)= (f,)
= 0, so that to second order in g(k ) the matrices
M and g reduce to

M= I+ (L2) —(Li), (3.25a)
V= PV+ QV,

we can rewrite Eq. (3.17) as

QV+ QLQV= Qf —QLPV.

We solve this equation for QV,

QV=(I+ QL) 'Qf —(I+ QL) 'QLPV,

(3.18)

(3.19)

(3.20)

g= f0+ (f2&- (Lit& (3.25b)

The expressions for L„L»f„f»f, are obtained by
comparing Eqs. (3.14) and (3.24) with Eq. (2.6).
The ensemble-averaged values of the combinations
of these quantities appearing in Eqs. (3.25), ob-
tained with the help of Eqs. (3.1) and (3.2), are

(3.26a)

&(a4o —28~+ 2 8,)

(3.26b)
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271 (ff, = exp(- ik„x,',) exp(-k„x,')e+ 1)k„ (3.27a)

(f,)= — — 5'k„exp(- ik, .x,', ) exp(-k„x,')
2

(3.27b)

g2+ (2m+ 1)g0

(e+ 1)
0)2 { ]) ~1 0IO

(3.27c)

where we have suppressed the argument «of the
g„'s appearing in these expressions to simplify the
notation.

We note from the results given by Eqs. (3.25)-
(3.27) that although 1 is a matrix integral opera-
tor, M is simply a scalar matrix. The averaging
operation has converted the integral equation
(3.14) for V into an ordinary matrix equation for
(V), whose solution is simply obtained.

The ensemble-averaged forms of the coefficients
A(k„) and B(k„) a.re now readily obtained from Eqs.
(3.22) and (3.25)-(3.27). We find finally that

(A(k(I)) = exp(- jk(I x,', ) exp(-k„x,')g(k„), (3.28a)
II

(B(k„))= exp(-ik„x, ', ) exp(-k„x2)b(k, () (3 28b)
II

where

and

16 2
521 q —1

M„(k„)=1+-—,«'22 II 2 2 2 «2 (~ 1)2

2 & —2 $0+ 4+2&$2, 3 30d

(3.31a)

&' (1 —c) 1 4(&+1)
a' (c+ 1) «' ' (e —1) ~'

(3.31b)

5'1 1
h, (k„)=(1-~) 1+-—,«'+2 —,—,

2 a' a2 «' (e+ 1)

x [II,+ (2&+ 1(2,( )
] Q2

h, (k„)= 2 1+——,«'

M„(k„)h,(k„) —M„(k„)h,(k„)
('+1) ~M(k„)

~

M„(k„)h,(k„) —M„(k„)h, (k„)
«+1) ~M(k„)

~

(3.29a)

(3.29b)

The functions M, ,(k„) and h, (k„) appearing in these
expressions are given by

The ensemble-averaged forms of the coefficients
C(k„) and D(k„), for the case when the charge q is
located in the dielectric are obtained in a similar
fashion with Eq. (2.7) as the starting equation. The
resulting expressions are

(C(k„))= exp(-ik„'x, ', ) exp(k„x,')c(k„), (3.32a)
II

1&'
2

621 Z —1
M (k )=1+——«'-4 ——

11 II 2 g2 a2 «2 (g~])2

4~
X f-2 $0+—

6 —1

5' 1 g(g 1)
12 II 2 (2 ~~ 1 2 2 0 l 2 2

(3.30a)

(3.30b)

(D(k„))= ~ exp(-ik„'x, ', ) exp(k„x,')d(k„),
Il

M„(k„)h,'(k„) -M„(k„)h,'(k„)
&+1 IM(k)

~

(s.s2b)

(s.ssa)

M„(k„)= 4 —,—, 1, (-,'g, —2g, +-,'g, ), (3.30c)
1 g —1

)
1 M„(k„,(u)h2'(k„) —M„(k„)h,'(k„)

(3 ssb)
iM(k„)

i
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and

Q2

A] (kII) 2 1+

+ —,—, 3, -4 I 3, —3,), (3.344)
5' 1 e —1 (a+1)

g —-1

I,'(a„)= 1+-—,g'

+2, —, Ig, + g, I
. (334b)

6' 1 g ( &+2
e+ 1

where

q 1(~ 1)' 5'+8- — ' —8 (z )a e (a+I)' a' (4.2c)

00 e-(c
8,(z, p)= «J.(hp)

0

&-2 40 + -8~ -292

q1 1 q (» —1) 1
q'iv( I

' =~ e(p'+d2)'i' a e(e+l. ) (p'+z')'~'

We note finally that the perturbative results for
(A(k )), (B(k„)},and (C(k„)), (D(k„)) given by Egs.
(3.5a), (3.6)-(3.7), and by Egs. (3.11a), (3.12)-
(3.13), respectively, can be obtained by expanding
the results given by Eqs. (3.28)-(3.31) and by Eqs.
(3.32)-(3.34), respectively, to the first nonvanish-
ing order in (5'/a'). However, as we have pointed
out earlier, this way of obtaining the perturbative
results does not yield the results given by Eqs.
(3.5b)-(3.5c) and Eqs. (3.lib)-(3. 1lc), which are
of interest in themselves.

00 e-fg
8„(z,p) = «Z, (&p)jI I 0 g2

x [-,'8,(5) —28,(h)+-,'g, (5)],
00 e"8„(., p) = «~.(&p)

0

4g

(4.3a)

(4.3b)

IV. IMAGE POTENTIAL IN THE PRESENCE OF SURFACE
ROUGHNESS

In Sec. III we have obtained the ensemble-av-
eraged values of the coefficients A(k„), B(k„),
C(k„), and D(k„) that determine the image potential
in the four regions of (x„x,') space defined by the
possibilities ~, ~ 0, x,' ~0. To distinguish the dif-
ferent forms the electrostatic potential takes in
these regions we introduce the definitions

(q3(%IX')) -=q3,(RIx'), x, &0, x,'&0

=—q3„(xIx'), x,&0, x,'&0

—:Ip„,(x Ix'), I x, &03 x,'&0

—= q3gv(X IX ), x3 &0, x3 &0.

(4.1a)

(4.1b)

(4.1c)

(4.1d)

g(p +d) I g q+1)(p pz ) I

q (e -1)' 52-8-, „—,8,(z, p),a (6+1) a
(4.2a)

,
)

q 2 1 q (e —1)' 6'
g ey1 ( yz ) / g (Z+]) 7I. II 3p)

q3trt(x Ix ) (4.2b)

When we substitute the results given by Eqs.
(3.5a), (3.6)-(3.7), and (3.11a),(3.12)-(3.13),
into Ecis. (2.4a), (2.4b), (2.5a), (2.5b), respectively,
we obtain. for these four potentials the following ex-
pressions to 0(5'/a'):

(4.3c)

In Eqs. (4.3) J,()p) is a Bessel function, and we
have introduced the following dimensionless vari-
ables:

z = ( Ix, I+ Ix,
' I)/a,

p= Ix„-x„I/~.

(4.4a)

(4.4b)

(4.4c)

The expression given by the first line of each of
Eqs. (4.2) is the direct Coulomb potential of the
charge q and/or the image potential associated
with a flat dielectric-vacuum interface. The ex-
pression given by the second line of each of these
equations is the contribution to the image potential
due to the roughness of that interface, to 0(5 /a').

Thus the contribution to the image potential from
the surface roughness depends on the functions

8,(z, p) -8»(z, p) defined by Eqs. (4.3). In general,
the evaluation of these integrals as functions of the
two variables z and p must be carried out numer-
ically.

However, in certain limiting cases it is possible
to obtain the asymptotic forms of these integrals.
One such case is that for p=0, which arises, for
example, in obtaining ihe effect of surface rough-
ness on the energies of the electric subbands in

an inversion layer at a semiconductor surface. ' In
this case it is possible to obtain the leading terms
in the asymptotic expansions of 8,(z, 0) —8,v(z, 0)
for both z «1 and g» i. We now turn to a deter-
mination of these expansions.
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The integrals 8z(z, p) —8,v(z, p) contain the func-
tions 8„(«) in their integrands. These functions
are defined by E(ls. (3.8)-(3.9). Their asymptotic
forms in the limits of large and small «are needed
for the analysis that follows and are obtained from
those of the modified Bessel functions. ' Thus, we
have that for case (a), where «» 1:

g,(«) --,' «'+ —,
' «'+ —,'+ -', 1/«'+ o(«-'),

a,(«) =-.'«',

~ («) 1 «4 3 «2 9 15 1/«2+ O(«4)

For case (b), where «(&1:

g,(«) -~'i'[-', «'+ —,', «' —„'„«'+o(«') ],
g, («) =-,'«',

8,(«) -~'i'[ —;,«' ——,'„«'+ o(«') ] .

(4.5a)

(4.5b)

(4.5c)

(4.6a)

(4.6b)

(4.6c)

We now proceed to calculate the asymptotic
forms of the functions 8,(z, 0), 8«(z, 0), and

8, (z, 0) for large and small values of the param-
eter z.

A. Largq z

Recall that z is defined a.s the ratio ( Ix, I+ Ix,
a, where the magnitudes Ix3 I

a"d Ix,
'

I
indicate

roughly the distance from the surface at which the
potential is measured and thai ai which the point
charge is located, respectively, and g is the
rough-surface transverse-correlation length. In
the limit z»1 one is therefore obtaining the image
potential far from the,".urface.

It is clear from the form of the functions 8(z, 0)
given by E(ls. (4.3) that for large z (z» 1) only
small values of «can contribute significantly to the
integral. We can therefore use the asymptotic
forms in E(I. (4.6) for 8„(«) to obtain the following
result:

d, (z, 0) f d(, — (2d —()('.+

&1 /2
(2d —5)('+ .

)

B. Smallz

1 OQ

8&(z 0) = d«e "f,(«)+ d«e "f,(«),
0 1

where

f,(()=—. (d-l)d, (()+, ) ( ) dl(( ))d. (-1, 4&

(4.6)

(4 9)

In the first integral the exponential factor can be

expanded in powers of z and the series integrated
term by term, to yield the formal result that

For completeness we present here an outline of
the derivation of the forms of the integrals
8$(z, 0)—8/v(z, 0)» the»mit that ( Ix3 I+ Ix3 I) ((&,
although the results may have only a limited sig-
nificance. This is because in obtaining the equa-
tions for the coefficients A(k„), . . . , D(k„), E(ls.
(2.6)-(2.7), we expanded exponentials of the type
of exp[+k„g(x„)] in powers of k„f(x„) up to second-
order terms. This presupposes that k„g(x„) is
small, of the order of, or smaller, than unity.
This in turn means that k„ is of the order of, or
smaller, than [f(x„)] ', and, as an order-of-mag-
nitude estimate of this inequality, we can say that
the expansion is valid for k

i

+ 5 '. Now, the small-
y behavior of a function determines the large-z
behavior of its Laplace transform, which is the
form of the integrals (4.3) defining the functions
8,(z, 0)-8,v(z, 0) when p= 0. Conse(luently, it is
only the large-z behavior of these integrals that
we can hope to obtain accurately by our proce-
dures. In particular we expect the preceding anal-
ysis to be valid when ( fx, f+ fx,

' I)) 6, i.e. , when
z& 0/p. The requirement that z be much smaller
than unity mea. ns that Ix,

I
and Ix,

'
I

each have to
be smaller than g. Consequently, the results to
be obtained in this subsection are expected to hold
only for values of Ix~ I

and Ix'I satisfying the in
equalities 5(~3 g3 Q.

We begin the derivation by breaking up the range
of integration in the integral for 8,(z, 0) into two
parts according to

(2e —1)—+
8 z' q-]. z'
3~1/2

+ (2a —5) ~+. ~ ~

64 z
(4.7a)

1 1

8,"'(,o) = d«f («) — d««f («)
0 . 0

1
+2z' d««'fg(«) —.

0
(4.10)

The asymptotic expansions for 8»(z, 0) and 8»(z, 0)
in the limit of large z are obtained in the same way
with the results that

In the second integral we use the iarge «expansion
for f,(«) to obtain

8 (z 0) --7) ~ ——+ —w ~+ ~ . .3 1/2 27 1/2
z z 6 z

8,v(z, 0) - -', ~"'(c—2) —,+ (3& —1)—,

(4.7 b) 8,"'(z, 0)= d«e" «'+-,'((.+1)(&+ 1)'
4(a —1)

+-(') (~ —5) —,+
If we define the integral

(4.11)

+ —'v'i'(5(. —4)—+
64 z4 (4.7c) d'„(a)= I d(("e ",

1
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that satisfies the recurrence relation

F„(z)= F,(z)+(niz)F„,(z),
with

F,(z)=e 'lz
= 1/z —1+ —"z ——'z'+ —'z'+ 0 & z & 1

2 6 24

F,(z) = Z, (z)
1 2 1 3=-I.nz-y+~--z + —z — - 0&~&1. ,4 18 7 '

In a similar way the leading terms in the small-
z expansion of the function 8&v(z, 0) are found to be

8, (z, 0) - —,——', (&+1)—+O(z'). (4.l.5)
(&+ I)' 1, 1

In contrast the function 8„(z,0} is found to ap-
proach a constant value as z tends to zero. The
leading two terms in the small-g expansion of this
integral are

where E,(z) is the exponential integral and y
= 0.577216 is Euler's constant, the small-z form
of the integra18', "(z,0} is readily obtained. We
find that

(e+ 1) 1 1 1

q„(a, q)- f d f„q(4) -',al a+aa0( ),a
0

where

f„($)= —,[ l8.(h) 2a,—(&)+l8,(5)] ~

(4.16)

(4.17)

+ (' + —,'(e —5)z lnz + O(z),

where the constant 6 is given by

(' = — - -,' (e+ 1)
(e+ 1)'

12 e —1

(4.12)
The value of the integral is readily obtained if the
integral representation in Eq. (3.8) for 8„(g) is
used in E(I. (4.16) and the orders of integration are
interchanged. In this way we obtain finally

(4.»)

8 (z, 0) —+ d (e+ 1)—+O(z') .(&+ I)' I
2(~-I) z (4.14)

+ d g 4 /+1

It follows from Eqs. (4.8), (4.10), and (4.12) that
the leading terms in the small-g expansion of
8,(z, O) are

&5~&~2
8„(z,0)- + —,'zlnz+O(z). (4.18)

Thus, in the two limits of large and small values
of the parameter z, the expressions for the scalar
potential in the case that p= 0 are as summarized
below. For case (i), where z»1:

8 (a (a')= — q —8—,—.
)

(24 —1)—,+ —,+ (24 —8)~a }, (419)( la) (e.—1) ( la) q (e —1}'5' fv'/' 1 2z 1 3m'/'2 1
d (@+1) z a (@+1)2a (, 8 z2 e —1 z 64 8

2(q/a) 1 q (e —1)' 5' /3v'i' 1 1 2Vv'i' 1
8 (. l. )= '' -+84 .—.

I
———.+ —.+ )=all(a la.), (4.20)zz '' ' e+I z a (&+1}'a' ( 8 z' z' 64 z'

(q/a) (/4
—fl q/a 8(q/a) (4 —()' 8* a"*

( 2) 1 a(84 —1) 1 8a"' 1

)1m+I& ez e (&+1)' a' 8 z' z —1 z' 64 z
(4.21)

We note that the first term in the expansion of 4, and 4,& is the direct potential term while the rest of
the terms constitute the image potential. Of course, there are no direct potential terms for 4„and 4„,.
Also note that these expansions have the form of the terms in the multipole expansion (dipole, (Iuadrupole,
etc.) of the potential of a charge distribution. It is as if the surface roughness has smeared the image
monopole into an extended charge distribution.

The results for case (ii), where z «1, can be summarized as follows:

d &+1 z a (t+1)' a' &2(z —1) z' z

2(q/a) 1 q (e —1)' 5' &15w'/'
c„(x2Ix2)

( 1)
+8

( 1)2 2 I
+zlnz+ )

41211I(x3 Ix&)

(q/a) (q/a) t'» —1 1 (q/a) (e —1)' 5' ~)'(e+ 1)' 1, 1
ad 4 (4+1 a 4 (4+1)'a' '(2(a 1)P ' a )'

In Figs. 1 and 2 we have plotted 4~(xs Ix,') when z» 1 and z «1, respectively.

(4.22)

(4.23)

(4.24)

(4.25)
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FIG. 1. The variation of the surface-roughness con-
tribution to the image potential g, for large z, plotted
for different values of 6/a. Here p= 0.

FIG. 2. The variation of the surface-roughness con-
tribution to the image potential with z, for small z,
plotted for various 6ja values. Here p= 0.

V. A SIMPLE MODEL OF SURFACE ROUGHNESS

We see from the result given by Eq. (4.19) that
one consequence of surface roughness for the
image potential is to make it more attractive, when
both x, and x,' are outside the dielectric medium.
A simple physical model of surface roughness that
helps to explain this result and those obtained for
the remaining three potentials p„(x, ~x,'),
p«z(x, ~x,'), p, v(x, ~x,') is the following. The region
of our physical system in which the roughness is
confined is defined by the inequalities r(X„) „&x,
&g(x„) . In view of the assumption that (g(x„))
= 0, we have that half of this region is filled with
the dielectric whose dielectric constant is &, while

I

the remaining half is occupied by vacuum. We
therefore represent this region by a film of thick-
ness L, straddling the plane g, = 0, whose dielec-
tric constant E, is intermediate between 1 and &.

In particular, we assume that the film occupies the
region nI. &x, &—(1 —n)L, where 0& n&1, and the
appropriate values of L, n, and &, will be obtained
below. The space above this film [x, &(1 —n)I, ] is
occupied by vacuum, and the space below it (x,
& -nL) is filled with the dielectric whose dielec-
tric constant is z. If now a charge q is placed at a
point x' in the vacuum, and the electrostatic po-
tential at a point x, either in the vacuum or in the
dielectric, is sought, the results can be expressed
in the forms

cp,(x~x')=, exp[ik„(x„—X,', )] (exp(-k„~x, -x,'~)+a(k„) exp[-k„(x, +x,')]j, x, &(1 —n)L, x,'&(1 —n)L
II

(5.la)

y„(x ~x') =
(2 )', exp[ik„(x„-x,', )]

k
b(k„) exp[k„(x, -x,')], x, & - nL, x,'&(1 —n)L,

II

where

(k ) ( 2 )
(1+6,)(», —e)+(1 —e,)(e,+ e) exp(2k~~L)

(e+ e,)(e,+ 1)+ (e —e,)(e, —1) exp(-2k„L) '

(5.1b)

(5.2a)

k(k„) =
(e+ e,)(e, + 1)+(e —e,)(e, —1) exp(-2k L)

' (5.2b)

In a similar fashion, when the charge is in the dielectric (x, & —nL), the potentials to which it gives rise in
the vacuum and in the dielectric are given by

d2k
yz, I(x ~x') = ", e p[ikx„'( xx,', )] c(k„)exp[-k„(x, -x,')], x,&(1—n)L, x,'& —nL

II

(5.3a)

y, v(X ~x') = Jl ", exp[ik„(x„-x,', )] „(exp(-k„~x,-x,' ~)+ d(k„) exp[k„(x,+x,') ]j,x, & —nL, x,'& —nI. , (5.2b)
II

where
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c(k„)=
(«+ «,)(«, + 1)+(« —«,)(«, —1) exp( —2k„L}'

d(k ) ex (2k nL) (« —«)(&,+ 1)+(«+ «)(«, —1) exp(-2k„L)
(«+ «,)(«,+1)+(«—«,)(«, —1) exp(-2k„L} '

(5.4a)

(5.4b}

c —1 1
«+1 " «,(«+1}'

x [(«, —1)(«'+ «,) + n«, («' —1)] + O(L'), (5.5a)

a(k„) =-

k(k„) = + 2k„L ' 1, + 0(I.') = c(k„),
2 (« —«,)(«, —1)

&+1 " 6 6+1

(5.5b)

» the»mit that ( lxs l+ lx,'l) i»»ge, only sma»
values of k„contribute significantly to that part of
each of the integrals in Eqs. (5.1) and (5.3) that
yields the image potential. Alternatively, we can
assume that the thickness L of the layer whose di-
electric constant is E, is small, and that the image
potential can be expanded in powers of L. In either
case we have to expand the coefficients a(ks) k(k )s,

c(k„),d(k„) in powers of L. To first order in L we
find that

so that the susceptibility X is given by

g=(« —1)/4w.

It is X that characterizes the dielectric medium
from a microscopic standpoint. C onsequently,
since the layer of thickness L and dielectric con-
stant &, is a model for the region to which the sur-
face roughness is confined, and which is only half-
filled with dielectric, we must have that

«, = 1+ 4m X,= 1+ 4v(s' X) = —,
'

( «+ 1) . (5.9)

2(q/a) 1 q L (« —1)' 1
«+1 x'a a («+1) ~"

We see from Eq. (5.6b) that q„(xs lx,') = q&»gxs lx,')
is independent of the parameter o.. Thus, when
we substitute Eq. (5.9) into Eq. (5.6b), we find that

e —1 1
d(ks) 1

+ 2k Ls( 1)s
—q'xn(xs lxs} . (5.10)

x [n «,( «' —1) —«(«', —1)] ~ 0(L') . (5.5c}
When we compare this expression with the one
given by Eq. (4.20), we see that they agree com-
pletely to this order in z ' if we take L to be

The electrostatic potentials that follow from
these results, in the case that x„=x,', are given by

I.= Bm'~s6(6/a). (5.11)

pg(xs lxs)

(q/a) q « —11 q L
d a E+1z aa

We have been unable to devise an independent argu-
ment that yields this value of L.

When Eqs. (5.9} and (5.11) are substituted into
Eqs. (5.6a) and (5.6c), we obtain the results that

[(«s —1)(«+ «s) —n«s(& —1)j 1

«,(«+ 1)' 8'

2(q/a} 1 q L (« —«,)(«, —1)
«+1 z a a &(«+1)'

—q'z~i(xs lxs) ~

q„(x, lx, )

(q/a) (q/a) «-1 1
cd 6 6+1 z

, (5.6a)

~abase + ~ ~ ~

Z2

(5.6b)

(q/a) q « —11 qq, (x, lx,') =
d a 6+1@ a a

(« l)[2«'+ «+1 2n(«+1)'] 1
(«+ 1)' g'

(q/a) (q/a) « —1 1 (q/a)

(5.12a)

2(q/a) L [n«,(«' —1) —«(«ss —1)j 1
a «(«+ 1)' zs

(5.6c)

(«-l)[2n(«+1)'- «(«+2)] 1
(«+ 1)' g' " ' ' '

(5.12b)

6= 1+41TX y
(5.V)

where we have used the variables defined in Eqs.
(4.4).

We now have to specify e, and L. The dielectric
constant E of the substrate can be expressed as

It follows from a comparison of these results with
those given by Eqs. (4.19) and (4.21) that the choice
n= 3 yields agreement between the two sets of re-
sults for the roughness contribution to the image
potential to leading order in z in the limit of large

With this choice of n, Eqs. (5.12) become
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( ), (q/a) q e —11

q, &,
&' (e —l)(2&' —5e —1) 1

a a' (~+ 1)' z'

(q/a) (q/a) e —1 1
d e @+1z

(5.13a)

(5.13b)

We can improve this model by letting n be a func-
tion of c. For example, by choosing o.=(2/3) —f1/
(3&)] we can make Eqs. (5.12) agree with the exact
results (4.19) and (4.21) through the first two
terms in the large-a form of the roughness con-
tribution to the image potential. However, such
refinements seem to us to be asking a simple mod-
el to carry more weight than is warranted by that
simplicity.

Thus, we see that the introduction of a thin layer
of a dielectric material, whose dielectric constant
e, = —,'(e+ 1) is the mean of that of the substrate &

and that of the vacuum above it, into the region
3 L +x3 + 3 L, makes the image potential in region

I more attractive, and the image potentials in re-
gions II, III, IV more repulsive. The addition of
this dielectric layer can be said to "stiffen" the
dielectric constant of the vacuum because it cor-
responds to replacing the layer of vacuum 0&x3
& 3L, whose dielectric constant is unity, with a
layer of dielectric whose dielectric constant E, is
greater than unity. At the same time the dielec-
tric constant of the substrate is "softened, "be-
cause the layer —3 L &x, & 0, whose di.electric con-
stant is e, is replaced by material whose dielectric
constant z, is smaller than e. Because the latter
layer is twice as thick as the former, the net ef-
fect of introducing the layer of dielectric constant
e, is to soften the dielectric constant of our vac-
uum-dielectric system.

A second effect of this layer can be described
by saying that it moves into the vacuum by a
distance z, = z v'~'(5'/a')(e —1)'/(» +1)' the surface
with respect to which the image potential is mea-
sured. This is because the results given by Eqs.
(5.10) and (5.13) can be obtained to a reasonable
approximation by replacing z with (z —z,) in the
expressions for the image potential associated
with a flat surface at x, = 0. Since the new surface
relative to which the image potential is measured
is in the vacuum and not in the dielectric sub-
strate, an implication of this result is that it is
the stiffening of the dielectric constant of the vac-

uum by the thick layer of dielectric constant &,
tha, t determines the position of this surface, rather
than the softening of the dielectric substrate.

These results suggest that the reason that sur-
face roughness makes the image potential more
attractive in region I and more repulsive in re-
gions II, III, IV is that by partially filling the re-
gion g(x„) „&x,«(X„) above the substrate of di-
electric constant & with some of the same material
it moves out into the vacuum the reference plane
with respect to which the image potential is deter-
mined.

It appears to us that the simple three-layer mod-
el just described can be used to mimic the effects
of surface roughness at vacuum-dielectric inter-
faces whenever the fact that it is an intrinsically
translationally invariant model is not important
and when the distances from the surface where
these effects are determined are large compared
with 6(5/a). Thus, while it can be used to de-
scribe image-potential effects, it cannot be used
to provide the angular distribution of the intensity
of electromagnetic radiation scattered away from
the specular direction by a rough surface, since
this model would predict only specular reflection.

Finally, the results of this section also help us
to understand why the effects of surface roughness
are as s,mall as they are. For it might be thought

that the thickness L of the dielectric slab mimick-
ing the surface roughness should be of the order of

5, the root-mean-square deviation of the surface
from flatness. In this'case the correction to the
image potential from surface roughness would be
of the order of 5/(x, +x,'), returning to dimensional
variables. Thus if 5 were of the order of 25 A and

3 and x,' were each of the order of 50 A, surface
roughness would give rise to a 25% correction to
the flat surface value of the image potential. In

fact, as we have just seen, the thickness of this
layer is the generally much smaller quantity 6(5/a),
so that the roughness induced correction to the
image potential is only of the order of 5(5/a)/(x,
+x,'). This is clearly seen when we rewrite Eq.
(4.19) in the form

q ~-1
lx x'I & & x+x'(x ~)x')=- 3- 3 3+ 3

„,(c —l)(2& —)) 6 il

}(e+ 1)' a x,+x,'

(5.14)

VI. APPLICATION TO ELECTRONS MOVING IN A
PARABOLIC TRAJECTORY OVER A ROUGH SURFACE

In Secs. II-IV we have concentrated on the static
situation of a fixed charge located in either the
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vacuum or the dielectric. We shall now extend the
technique developed therein to study the dynamic
situation of a beam of electrons moving over a
rough surface in a prescribed trajectory. This
application ha. s been inspired by the experiment of
Lecante et aL,' in which the energy loss from a
beam of electrons moving in a parabolic trajectory
over a metallic surface is measured. They sug-
gest that surface roughness may be responsible
for the larger shift in the peak frequency of the
energy-loss function, with changes in the energy
of the incident electrons, as compared mith the
semiclassical calculations of Muscat. " In this
section we extend Muscat's calculations to the
case of a rough vacuum-dielectric-metal inter-
face. We proceed as follows.

In the presence of a time-dependent charge den-
sity in the region )(,'& g(x,', ) Eq. (2.1) is replaced by

4mp(-x, (o), x, & g(x„)
V ((t)(xt (t)

0, x, & C(x„), (6.1b}

where

(e(x, re)= f dttr(x, t)e' ',
«00

p(x, re)= f dtp(x, t)er ',

(6.2a)

(6.2b)

are the Fourier transforms of the electrostatic
potential and of the charge density that establishes
it, respectively. The solution of Eqs. (6.1) can be
written as

t(x, re)= f G(x, x')re)p(x', re)d'x', (6.3)

where the Green's function G(x, x' ~+) satisfies the
following equations:

-4~6(x -X'), x, & g(x„), &,'& g(x,', )
v'G(x, x' i(o) =

0, ~ «(x„), ~'&f(x,',),

We need here only the coefficient A(k ), since
the beam of electrons is in the region above the
dielectric and the image potential that comes into
play is that calculated at the location of the elec-
tron itself.

The external charge density resulting from an
electron moving in a parabolic trajectory is nom

a function of both space and time and can be
mritten as

p(x, t) = -e6 [x, —Qt) ] 6(x„—V„t),

where V„ is the horizontal velocity, and

(6.6a)

(6.6b)

In the above equations e and m are, respectively,
the magnitude of the charge and the mass of the
electron, x03 is the classical turning point of the
orbit and I" is the magnitude of the vertical force
on the electron that keeps it in parabolic motion.
We assume that the maximum height of the surface
profile function is smaller than xQ3 This assures
that the electrons mill not penetrate the dielectric
medium.

We refer the reader to Muscat" for a detailed
derivation of the probability P(k„, (d} that an elec-
tron is scattered into a unit volume of k, co space
about (k„, (t)), where hk„ is the momentum of the
electron parallel to the surface, and @co is the en-
ergy loss of the scattered particle. Here, me pre-
sent only the essential steps.

The r'ate at which a charge density p(x, t) does
work in the presence of a time varying external
electric field E(x, t) is given by the classical ex-
pression

W= d3xpx, t Vx, g E x, g, (6.7)

where V(x, t) is the velocity of the charged parti-
cle. With the help of Green's theorem and the con-
tinuity equation this equation can be rewritten in
the following form

together with the boundary conditions

(6.4) W= — d'xyx, t px, t . (6.8)

G(x, x'
~

&)
~ „, ((g„) = G(x, X

~
N) „((g ), (6.6a)

The work done by the charge density is obtained by
integrating Eq. (6.8) over all times so that

and

c((u))( VG(x, x i(u) i„,(-„)

= )(' V G(x, x'
~
(t))

~ „
where e(&u) is the frequency-dependent dielectric
constant of the medium in the region x, & P(xtt).
The Fourier component G(x, x'

~&u) is then equiva-
lent to (p(X ~x') in Eqs. (2.1) with q=1, e-e(v),
and hence is directly obtainable from Eq. (2.4)
with d4(k„) and B(ktt) satisfying Eq. (2.6).

W= —i dx d'x'G x, x' ~

x p(x', (u) p(x, -(u), (6.9)

where we have used Eq. (6.3) for (p(x, &u).

Before we proceed to calculate the probability
P(k„, u) for the energy loss suffered by electrons
moving in a parabolic trajectory over the surface
of a metal, we should point out that our main in-
terest lies in estimating the effect of surface
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roughness on this energy loss. Since we do not
know the exact profile of the rough surface, we
shaH. assume it to be randomly rough. Thus all
quantities that we calculate will be averaged over
the ensemble of realizations of the surface rough-
ness profile function. The function G(x, x i~) in

Eq. (6.9) is therefore to be replaced by its en-
semble a-veraged value, denoted by (G(x, X' i(d)).

%e obtain the expression for the probability
P(k„, &u) by comparing the ensemble-averaged form
of Eq. (6.9) with the quantum-mechanical expres-
sion for the quantum mean-energy loss of a par-
ticle

W=h mdm d'k, k„, m .
0

Thus, with the help of Eq. (6.5), we have

Im

~03 XQ3

x p(-kp, -~ Ix,)p(k„, &u

(6.10)

(6.11}

where we have used the following Fourier trans-
forms

d'k
(G(x, x' i(e))= ", exp[jk„(x„-x,', )]

xg(k„, (g ix„x,'),

p(X, ,
tp ~x )= „f, xpex(-pi Xx „)p(x, tx). (e.lp)

It follows from earlier remarks that the expres-
sion for the ensemble-averaged quantity

(G(X, x' i~)) can be obtained from Eq. (2.4) with the
replacements q= 1 and «= e(&u), and the substitu-
tion of the ensemble-averaged value of the coeffi-
cient A(k„). Whether (A(k„)) is obtained perturba-
tively or nonperturbatively the Fourier coefficient
g(k„&u ix,x,') can be written formally as

2m
g(k„(d ix~,') =—(exp( —k„ ix, -x,' i)

II

+ a(k„, (u) exp[-k„(x, +x,')]). (6.14)

Note that here we show an. explicit dependence on
the frequency ~ for all quantities that involve the
dielectric constant e(&u). This is because we are
now dealing with a dynamic phenomenon, in con-
trast with the situation considered in Sec. III.

For the form of the external charge density given
by Eq. (6.5) the Fourier transform p(k„, (d ix, ) is
given by

2m
p(k,„,te(x,)=-e(

( )

2m
x cos ( (i) + k)( V))) (x, —x(„)

[

(6.15)

1 —&((u)
a(k„, (u)=

( )
(6.I't)

and Eq. (6.16) becomes the expression for P(k„, &u)

obtained in this case by Muscat. " It follows that
for a flat surface

-Ima(k„, (u) = '. . . (6 18)2«,(~)
[«,((u)+ 1]'+ «,'((d)

where e, (&u) and «, (&u) are the real and imaginary
parts of &((()), respectively. We see from the re-
sul. t given by Eq. (6.18) that —Ima(k„, &u) has a res-
onant-type peak at a frequency close to that at
which «, (&u)+ 1=0. This is essentially the frequen
cy of the surface plasmon in the metal. [Strictly
speaking, the surface plasmon frequency is the
complex root of the equation «(&u)+ 1=0, the real
part of which is well approximated by the root of

«, (cu)+ 1 when the damping described by e,(~) is
small. ] This means that in obtaining a(k„, ~) for
a rough surface we must use the nonperturbative
expression for (A(k„)) given by Eqs. (3.28)-(3.29).
This is because in the perturbation series for
(A(k„)) each succeeding term has one higher power
of [«(up)+1] in the denominator. This means that
in each order of the perturbation theory the result-
ing expression for a(k() (d) will have a pole at the
same frequency as in the case of a flat surface,
but of increasing order. We expect on physical
grounds, however, that one of the effects of sur-
face roughness on a(k„, v) will be to renormalize
the resonant frequency but to retain the simple
pole structure of a(k„, (()), now at the renormalized
frequency, and with a renormalized residue. The
nonperturbative approach to obtaining (A(k„))
sums the perturbation series to all orders, but

keeps only the lowest order (in 6/a) approximation
to what we have called the analog of the proper
self-energy in Sec. III. In this way the resonant
structure of —Ima(k„, v) in the presence of sur-
face roughness is preserved. Thus, in what fol-
lows we will use the result for a(k„, &u} obtained
from Eq. (3.29a).

I ecante et a/. make contact between the theo-
retical and experimental results by defining an

The probability P(k„, &u) for the energy loss
from the moving electron is then obtained by sub-
stituting Eqs. (6.14) and (6.15) in Eq. (6.11). Thus,
we obtain the result that

e'm exp(-2k„x„)
')(

II

x exp[-(&a+ k„' V„)'mF/k„] Ima(k„, (d) .
(6.16)

When the metal surface is flat we see from either
Eq. (3.5a) or Eq. (3.29) that
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integrated probability, or rather a differential
linear cross section, according to

tfxp3 d'k,
}

k{„4) . 6.19
dX

Here z is the vertical distance above the metal
surface at which the potential felt by the electron
is a maximum. In writing Eq. (6.19) it has been
assumed that all trajectories with gp3 ~ g are
equally probable. Thus, with the further assump-
tion that the Gaussian in Eq. (6.16) can be replaced
by a 5 function, we find that

dX e' /m ' ' " exp(-2}'t, z„)
„(jf„)

- ~-I,„F By3/2(y. l, a (g~)t/2

9.0

8.0

7.0

I&60
oC[

5.0
3

4.0

~ 30

80A

x ima(k„, tc) . (6.20) 2.0

The exact evaluation of the integral in Eq. (6.20)
is not trivial. We therefore use numerical meth-
ods to compute the quantity c9/d(jf&c) for electrons
traveling in a parabolic trajectory over a molyb-
denum plate. ' A beam of electrons of kinetic en-
ergy 2Ep is incident at 45' at an aperture in the

upper plate of a capacitor whose plates are sepa-
rated by a distance D and have a potential differ-
ence of E, volts. The electrons leave the conden-
ser at 45' through another aperture on the upper
plate.

In Figs. 3-6, we plot the differential linear
cross section for the energy loss suffered by these
electrons, as a function of 5w, for various values
of Ep and the surface-roughness parameters 6 and

a. We take D to be 0.1 cm and use the values of
the dielectric function for Mo from optical-reflec-
tion data. " We calculate the vertical distance g

from the maximum of the potential V(x3) given by

I/(a'a) = Fxa 2 et(+3 ~+st P (6.21)

where the image potential @, is given by Eq. (4 16).
Thus

1.0

0 { I I I

04 06 08 10 12
'hn/ (eY)
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36

28
I0
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o+ 24

FIG. 3. The differential linear cross section for en-
ergy loss by 800-eV electrons moving in a parabolic
trajectory above a rough Mo surface. Here a=200/( and
the curves are labeled by the value of 0.

z = q/4F+ m' '(6'/a) . (6.22)

VII. CONCLUSIONS

The correction term m'/'6'/a in Eq. (6.22) has very
little quantitative influence on our calculated re-
sults. For 5=10 A, and a=500 A, this correction
term shifts z only by 0.4 A, while q/4F is rough-
ly 150 A for the parameters relevant to the ex-
periment. Thus, while one might wish to improve
the roughness induced shift in g through resort
to a more sophisticated calculation, the results
will surely not change meaningfully.

203

16

12

0 } i I

0.4 0.6 0.8 1.0
fin/ {eV}

l {

I.2 1.4 1.6

We find the effect of surface roughness on the

image potential to be significant (see Figs. 1 and

2). The effect is most pronounced when z «1 (Fig.
2) because the roughness parameters are now com-

FIG. 4. The differential linear cross section for ener-
gy loss by 1600-eV electrons moving in a parabolic tra-
jectory above a rough Mo surface. Here u =200 A and

the curves are labeled by the value of 4.
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FIG. 5. The differential linear cross section for energy
loss by electrons moving over a perfectly flat surface.
The curves are labeled with values of the energy of the
incident electrons (in eV).
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FIG. 6. The differential linear cross section for en-
ergy loss by electrons moving over a rough Mo surface.
Here 6 = 50 A and a =-200 A. The curves are labeled with
the value of the incident energy of the electrons (in eV).

parable to the distance between the location of the
chargeq and thepoint at which the potential is cal-
culated. In the other limit, when'» l (Fig. l), the
contribution to the image potential from roughness
can still be as high as 30%. As is expected the effect is
greatest at points near the location of the charge and
decreases as one moves away from this point. More-
over, the image potential for a rough surface is
more attractive than that for a flat surface.

We have also presented a simple„phenomeno-
logical model of a rough surface that is capable of
reproducing qualitatively and semiquantitative1. y
the forms of the image potential obtained from our
detailed calculations for a rough surface, in the
limit of large z. We feel that this model should be
useful in providing useful information simply and

quickly about the effects of surface'roughness on
a number of other physical properties of solids.

Surface roughness has a quantitative and a qual-
itative effect on the dynamic energy loss from
electrons moving in a parabolic trajectory over
a metal surface. As is expected, the energy loss
increases as the ratio 6/g is increased. For ex-
ample, in Pig. 3, the peak of the energy loss
cross section enhances from 2.46'I (AeV ') for
flat surface to 3.059(AeV ') when 5 is changed
to 40 A, with a further increase to 3.897 (A. eV ')
for 5=60 A. A similar trend is observed in Fig.
4, where the incidence energy of the electrons is
1600 eV. In this case, the magnitude of the energy
loss at a given frequency is larger than that for
the 800-eV electrons, for same values of 5 and g.

Thus, the energy loss is enhanced when either the
incident electron energy is increased or the ratio
6/g is made larger.

We also find that with either the increase of the
electron energy or of the roughness ratio 5/z the
peak of the energy-lass spectrum shifts towards
higher frequency. However, this shift is not suf-
ficiently pronounced to explain the data of Lecante
et gl. ' What is interesting is that even for the
perfectly flat surface our calculations (Fig. 5) do
not predict as large a shift in the energy at which
the differential linear cross section is a maximum
as is obtained by Lecante et pl. ' Also, our use of
a realistic dielectric function, which departs
dramatically from the free-electron model, gives
rise to more structure in the curves than in Pig.
2 of Ref. 5. It is unclear to us how the latter has
been calculated.

%e are thus led to conclude that by increasing
5 from 0 to 60 A for a fixed energy of the incident
electrons and g= 200 A, the magnitude of the dy-
namic energy loss suffered by the electrons is
enhanced significantly but there is no pronounced
effect on the frequency at which the energy loss is
maximum. If in the samples used by Lecante et
gl. ' the ratio 6/a is of the order of that considered
here, then, contrary to their suggestion, we can
conclude that surface roughness cannot explain the
large shift in frequency observed by them when the
energy of the incident electrons is changed slight-
ly. On the other hand, if 5/a is much larger for
their samples, the conclusions reached here do
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not apply and we cannot comment on the effect of
surface roughness on their results.
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