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'9F spin-lattice relaxation in the cubic antiferromagnet KNiF3
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The temperature dependence of the ' F spin-lattice relaxation in the cubic quasi-isotropic anti-

ferromagnet KNiF3 is studied experimentally and theoretically. Quantitative agreement with

measured relaxation rates is obtained over a considerable temperature range by assuming a

two-magnon relaxation process in the "domain-flopped" state.

I. INTRODUCTION

The mechanisms of nuclear spin-lattice relaxation
(NSLR) in antiferromagnetic insulators have been
extensively studied both theoretically and experimen-
tally over the last decade. Theoretical predictions'
about the temperature dependence and field depen-
dence of the spin-lattice relaxation time T~ have been
very accurately confirmed experimentally in the
uniaxial antiferromagnets' ' MnF2 and FeF2. Anoth-
er type of compound reasonably well understood as
far as the proton NSLR is concerned is the family of
hydrated halides of transition metals. At present the
central role of various scattering mechanisms involv-

ing magnons is well established and in many cases ac-
counts quantitatively for the observed NSLR rates in

various systems. It is then rather surprising to find
that ' F NSLR in the family of model antiferromag-
nets of the perovskite type, including RbMnF3, "
KMnF3, and KNiF3, ' appears to be rather poorly
understood below the Neel temperature T~. Except
for KMnF3, which exhibits structural phase transi-
tions at low temperatures, the other two crystals are
known to remain basically cubic at all temperatures.
In addition to cubic symmetry, another distinctive
characteristic shared by KNiF3 and RbMnF3 is that
they are almost perfect Heisenberg antiferromagnets
with very small relative anisotropy. The ratio H&/HE
of anisotropy to exchange field has the value 7 x 10 '
for KNiF3 and an even smaller value of 5 x 10 for
RbMnF3.

Of importance for the interpretation of the NSLR
data in these systems is the fact that, unlike uniaxial
antiferromagnets, cubic crystals lack a sharp "spin-
flop" transition at a field H„=(2H~HE+H~)'I'. In-
stead, domain-wall movement takes place as the field
is increased until a domain structure with the sublat-
tice magnetization perpendicular to the applied field
is attained. This "domain spin flop" may be complet-
ed" ' at fields well below H,„.

In Sec. III of this paper the results of measure-
ments of ' F NSLR rates in KNiF3 as a function of
temperature are presented and the analysis of the
data is discussed. In Sec. II a theoretical calculation

of the temperature dependence of the relaxation rate
is presented. The proposed relaxation mechanism is

a two-magnon scattering process in the domain-

flopped state accompanied by a nuclear spin flip via

the F—Ni hyperfine interaction. Using a spherical ap-

proximation for the magnon dispersion relation,
quantitative agreement with the measured relaxation
rates was obtained over a considerable range of tem-
peratures. A different and not yet understood relaxa-
tion mechanism appears to be effective at the lowest
temperatures both in KNiF3 and RbMnF3. "

II. THEORY

A. Magnetic interactions in KNiF3

Figure 1(a) shows a crystal unit cell of KNiF3.
Each Ni'+ ion is surrounded by six other Ni'+ ions in

opposite sublattices and is coupled to them by an ex-
change interaction. With an external field Ho applied
along [100] it becomes necessary to distinguish
between two types of '9F spins. F]] denotes '9F spins
whose bonds to its two-nearest neighboring Ni'+ ions
are parallel to Ho, whereas F~ denotes the twice-as-
abundant fluorines, whose bonds are perpendicular.
In an applied field Ho ——7415 Oe the resonances of
both types of ' F spins are separated by a splitting of
59 Oe, and perpendicular domains are known to pre-
vail. '

Each fluorine spin interacts via a hyperfine cou-
pling with two Ni'+ ions in different sublattices. Fig-
ure 1(b) shows a Ft spin in a d„-type domain where
the sublattice magnetization is essentially along the x
axis, although d~-type domains are equally probable.
The hyperfine coupling between the Fq spin shown in

Fig. 1(b) and its two neighboring Ni'+ ions can be
written in the local (mvr'o. ) coordinate system' in

the form

3C, =A, I S,(A) +A [I S (A) +I„,S,(A)]

+ A ill, S,( 8)

+At [I,S,(B)+I S (B)]
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ilz I IIFIG. 2. Canted coordinate system. The z and z axes
are parallel to the sublattice magnetizations.

B. NSLR by a two-magnon scattering process

Spin deviation operators a, (A) and a, (A) are in-

troduced into the relaxation Hamiltonian X, through
the transformations

FIG. 1. (a) Crystal unit cell of KNiF3. (b) F~ nucleus

with its two-nearest neighboring Ni2+ ions and coordinate
system used in the text.

S, (A) +iS, (A) =(2S)'i'a, (A)

S, (A) —iS, (A) = (2S)'i'aj (A)

S (A) =S—ai (A) a, (A)
2 J

(4)

where I denotes the nuclear spin operator of the
fluorine nucleus (I = —, ) and S (A), S (8) denote

electron spins of the Nit+ ions (S =1). The hyper-
fine coupling constants are well known experimental-
ly" and have the values 3[[=50.5 x10~ cm ' and

W, =25.6 x10~ cm-'.
It is convenient to introduce new sets of coordi-

nates' as shown in Fig. 2, such that the z' and z"
axes of the new sets are parallel to the slightly "cant-
ed" sublattice magnetizations. Transforming from
the local coordinates to the "canted" coordinates
yields

X,=ApI, [S (8) sin8+S (8) cosg

—S (A) cosH —S (A) sin0]

+Agly[S (A) +S „(8)] (2)

X =ApI [S (8) S (A)]

+AgIy[S, (A) +S -(8)] (3)

where terms containing I, have been dropped because
they do not contribute to NSLR. Since the exchange
field HE, =3.6 x 10 Oe is much larger than the ap-
plied field the canting angle 8= arcsin(Hp/2') is
very small. One is then allowed to neglect terms in

sing in Eq. (2) and set cos8=1, obtaining

Similarly the spin deviations localized on ions in

the opposite sublattice are defined by

S „,(8) +iS „,(8) = (2S)'i'b, (8)

S,(8) —iS „,(8) = (2S) 'i'b, '(8)

S, (8) =S —bi (8)bi(B)
z I

Magnon operators a-„, b k are now introduced by a

spatial Fourier transformation

a(A)= ge ' a-„
k

(6)

bI(B) = $e ' b-„

The magnetic lattice of KNiF3 is fcc, and the primi-
tive magnetic cell is a parallelepiped of volume 2a'
containing one Ni + ion of each sublattice. N in Eqs.
(6) denotes the number of primitive cells, and the
sum extends over k vectors of the first Brillouin
zone of the bcc reciprocal lattice.

The electronic energy involving Zeeman, exchange,
anisotropy, and hyperfine energies can be expressed
in terms of magnon operators. Furthermore, in the
case of KNiF3 one can neglect hyperfine interactions
between Ni electronic and nuclear spins because the
natural abundance of Ni nuclei with nuclear spin dif-
ferent from zero is only 1.25%. Hinderks and
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Richards' found a transformation giving the
normal-mode operators e-k, d-k from the previously

defined magnon operators a-k, b-k. In terms of the
normal-mode operators the electronic Hamiltonian
becomes

X,=t $ ( Q, -„c-„c-„+Q, -„d-„d-„)
k

where the eigenfrequencies for the two branches
are given by

Q 2
y

2H 2 ( I y t ) +~2 + y
202

Q2& =y'H'(I —y~g) +~1~ .

(8)

y-„= 3 (cosk, a +costa +cosk, a)1

The frequencies cotq and co2& in Eqs. (8) are of the
order y(2HqHq)'i', and y is the gyromagnetic factor
of the magnetic ion,

The required transformation to the normal-mode

For the cubic lattice of Ni'+ ions in KNiF3 (Fig. I),
y-„ in Eqs. (8) has the form

operators is given in Ref. 16 and has the form

a-
k

t
a -„

h-
k

tb—

p 1k

p 1 I&

p 1k

p 1k

p
1 I&

p lk

p 2k

p 2k

p 2k

p 2k

p 1k p p2k 2k

v v p1k 2k 2k

C k

t

, (10)
k

t
d -„

where

1+= l„+i'
Substituting into Eq. (12) magnon operators

through Eqs. (5) and (6) and normal-mode operators
through Eqs. (10) and (11) yields

where
1/2 1/2

yH, 1 yH,
V p

2 n- ' '" 2 0-
Since the term in Eq. (3) containing the operators

S (A) and S (B) gives only rise to one-magnon

processes which are inhibited by energy conservation,
it can be ignored. The remaining term which is the
effective two-magnon relaxation Hamiltonian 3C,2 can
be written in the following form:

X,2= —A~~l+[S „(B)—S,(A) ] +H.c.

1

X,2=2iA~~I+/t/ ' g v, -„v,-„sin[ r ( k —k')] c-„c-„+X v, -„v,-„sin[ r .(k —k )]d-„d- +H.c.
~~r
k k

~~/
k k

k
(13)

where r is the Fj—Ni internuclear vector shown in

Fig. 1(a). In Eq. (13) only processes involving crea-
tion and annihilation of normal-mode magnons in the
same branch are included. Processes involving mag-
nons in different branches are seen from Eqs. (8) to
involve energy differences of at least order ytHO,
much larger than the nuclear Zeeman energy y„tHO.
F—Ni magnetic dipole interactions make a relatively
small contribution to the two-magnon relaxation rate
and are also neglected.

Applying conventional first-order time-dependent

perturbation theory, ' the spin-lattice relaxation rate
of the fluorine spin shown in Fig. 16 can be readily
calculated.

Since the probabilities of the processes involving
magnons in each branch can be considered to be ad-

ditive, one has

(14)

where

167'A [2[

g v, -„v,-„sin'[ r ( k —k')] n(n, -„I+) ( 8Qt,f-„fQ,-„—ir~, );—i =.1, 2.
k k

(15)

n, „=I/[exp(lrQ. -,q/nT) —1] in Eq. (15) is the Bose
factor corresponding to a particular branch and
~„=y„HO is the nuclear angular frequency.

The relaxation rate given by Eq. (15) was derived
for a particular fluorine nucleus of type Ft [Fig.
1(b)]. For a fluorine of F~~ type [Fig. 1(a)], a simi-

lar calculation leads simply to an exchange of A II by

Aq in Eq. (15). Since the resonances of Fj and F~~

spins are partly overlapping, there exists the possibili-

ty of cross-relaxation effects, as will be discussed Sec.
III. Moreover, the particular Fq spin shown in Fig.
1(b) corresponds to a d„-type domain and is charac-
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terized by a F—Ni bond parallel to the sublattice mag-
netization. The same F~ spin in a d~-type domain or
an adjacent Fq spin in a d„-type domain would have
its F—Ni bond directed perpendicular to the sublattice
magnetization and would relax at a rate proportional
to A~2. However, since the resonances of these two

types of F~ spins completely overlap, "a common
spin temperature is established in a very short time
of the order of T2, and the system can be assumed to
relax at the fastest of both rates which is governed by
3[2] =3.853 2

C. Spherical approximation

In the spherical approximation, ' the exact mag-
non dispersion relations Eqs. (8) and (9) are substi-
tuted by approximate expressions depending only
upon ~

k (. This has the great mathematical advantage
of allowing one to transform the sums in Eq. (15)
into integrals over a spherical Brillouin zone and still
retain some realistic details such as a peak in the
magnon density of states. It is expected that a spher-
ical approximation should be more appropriate in a
cubic crystal with only a single exchange constant like
KNiF3 or RbMnF3 than in MnF2. In fact the exact
density of states in MnF2 for kll(100) has two peaks
rather than one, and this has been shown' to cause
some additional discrepancies with the predictions of
a spherical model.

The application of the spherical approximation to

y» = cos(ka/ J3) (16)

As k is varied from k =0 to k,„=J32r/2a, the ap-
proximate eigenfrequencies resulting from Eqs. (8)
by using y» in Eq. (16) change from the exact
minimum values to the exact maximum values.
Moreover, the exact dispersion relations coincide
with the approximate ones for k ~~[111].

Conservation of the total number of modes dictates
that the following substitution be made in Eq. (15)

Jt4/3 rrk, „
(17)

This allows one to reduce Eq. (15) after some
manipulation to a one-dimensional integral over fre-
quencies of form

the KNiF3 lattice involves the substitution of the ex-
act Brillouin zone, a truncated octahedron of volume
4(rr/a) by a spherical Brillouin zone of radius

k,„=err/2a B. oth surfaces are tangent along
[111]directions. Since the total volume of the spher-
ical Brillouin zone is smaller than the correct value by
a factor 8/J32r, we adopt the procedure of Butler
et al. of distributing uniformly the "missing" states.
This conserves the total number of modes but intro-
duces an error in the density of states for small k
which is increased from the exact value by a factor
8/JX~

The sperical approximation on the dispersion rela-
tions consists of replacing y-„given by Eq. (9) by

5123 i/a ~t'"ar v»k (n»1+) n[1»—(sinka/ka)']d Qf»

(d Q;»/dk)(d Q „/dk')
"ia'~"'

(18)

where the minimum and maximum frequencies
ca; and Q;»r obtained from Eqs. (8) are given by

Q =( 'H'+cd' + 'H')'~'

~im=(~1A+y'W)'" .

Q2M ('Y H» +)A) ~ 2m =~2w

(19)

dO, . r

ikdk'

ho~ever, it must be taken into account to have a
convegent integral in the full frequency interval in-
cluding the maximum frequency Q~.

The nuclear angular frequency co„appearing in the
8 function of Eq. (15) has little effect and can be
neglected in most terms appearing in Eq. (18). In
the term

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. NSLR measurements in KNiF3

' F spin-lattice relaxation measurements were per-
formed at 30 MHz using a conventional pulsed NMR
spectrometer. The crystal was aligned with a [100]
axis parallel to the external field and mounted at the
end of the cold finger of a closed-cycle refrigerator
cryostat. ' In the range 250 K ~ T ~33 K, T~ varied
over four orders of magnitude but at lower tempera-
tures T~ appears to be much more slowly varying.
The dominant relaxation mechanisms in this low-
temperature region, however, is not well understood
at present.

The analysis of the data requires some care because
of the presence of two slightly overlapping reso-
nances corresponding to F~~ and F2 spins [Fig. 1(a)].



4980 M. ENGELSBERG 21

The spin-lattice relaxation time is measured by apply-

ing a sequence of four saturating 90' pulses at the
resonance frequency of the more abundant Fq spins
and measuring the recovery of the magnetization.
The radio-frequency pulses, however, also nutate
partially the F[[ magnetization. Figure 3 shows the
recovery of the magnetization after a series of waiting

times following saturation. The periodic pattern ob-
served on the free-induction-decay (FID) signals has

a period of 4.5 p, sec corresponding to the expected"
splitting AH =59 Oe at a frequency of 30 MHz.

Denoting by S~(r, t) the measured signal amplitude
(Fig. 3) and assuming identical line shapes for the
resonances of both types of fluorine spins, a simple
analysis yields

Sg(r, t) =g(r) [M,(t) +(1 —f')'"M~~(t)

x cos(y„ttHr) ], (20)

Mj(t) =Mp(1 —e )

M~~( t) = Mp[1 (1 f")e "]—(21)

(22)

where f in Eqs. (20) and (22) denotes the fraction of
[

F]{equilibrium magnetization
~ Mo remaining along

the z axis after applying a single 90' pulse at the res-
onance frequency of the Fq spins, the number of sat-
urating 90' pulses is denoted by n in Eq. (22) and
vz= (1/T&)z, v~~ = (1/T&)~~. The signal amplitude
SJ ( Tot ) at time rp = 27r/y„hH (Fig. 3) obtained from

where g(r) represents the decay of the transverse
component of magnetization for either type of
fluorine and Mq(t), M~~(t) denote longitudinal com-
ponents of magnetization at time t after saturation.
Assuming that the cross-relaxation" rate v is much
smaller that the spin-lattice relaxation rates, each type
of fluorine spin relaxes independently. Thus

resulting from Eq. (23) and from the data shown in

Fig, 3. It can also be obtained from the shape of the
decay through Eq. (20). For n =4 both methods
yield approximately coincident values of f =0.9.
Substitution of this value of f into Eq. (23) yields

[Sg(&o, ~) —Sg(rot) ]/S, j(rp~)

=0.82e -0.061e (24)

The second term on the right side of Eq. (24) only
amounts to a small correction and the recovery of the
Fq magnetization is expected to follow a single ex-
ponential with time constant ( T~)z= 1/vz.

At sufficiently low temperatures, the temperature-
independent cross-relaxation rate v may become
comparable with the spin-lattice relaxation rates v}[

and vj and should be taken into account. One can at-
tempt to estimate the cross-relaxation rate v from the
overlap' between the resonances of Fq and F[{spins,
although this overlap is known to be extremely sensi-
tive to the details of the wings of the resonance line
shapes. For that purpose it was assumed that both
resonances corresponding to Fq and F}[ spins had
identical shapes and a single fitting function centered
at each resonance was used to numerically compute
the normalized overlap. The Fourier transform of
the fitting function' used was of the type
g(r) =exp{C[A —(A +r )' ']},where the parame-
ters C and A were determined from the observable
part of the FID signals. The value of the overlap ob-
tained in this manner was of order 10 . Since one
expects" v to be smaller than 1/T& = 10' sec '

by a
factor of the order of the overlap, the value of the
cross-relaxation rate can be estimated to be v =0.1

sec '. Such a value of v would justify the assumption
implicit in Eqs. (21) and (22) in the temperature
range 250 K & T & 33 K and would explain the
single-exponential time dependencies observed.

Eqs. (20)—(22) is given by

Sg( Tpoo ) —Sg( Tpf)

s(., )

e +-'(1- f )' (1-f")e
(23}

1+-,' (- f')'~'

The numerical value of f can be obtained empiri-
cally from the expression

S,(.,-) -S,(.,0) 1+ -,
' (1 —f') '"(1-f")

(&0~) 1 + —(1 —f2)

24 7 {psec]

FIG. 3. ' F magnetization recovery at various times fol-
lowing saturation. The top and bottom traces correspond to
t = ~ and 0, respectively.

B. Discussion

Figure 4 shows a plot of the logarithm of the mea-
sured relaxation rate (1/Tt)q as a function of inverse
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temperature. Also shown in Fig. 4 is the result of
the numerical integration of Eq. (18). The numerical
values of the parameters used in the calculation of
the theoretical relaxation rate were A

~~

= 50.5 x 10~
cm ', "AQ~M=t02M =356 cm '. This last value is
somewhat smaller but within the experimental error
of the value 3'73 +17 cm ' obtained from the ex-
change constant quoted by Lines. " The adopted
values of the lower limits of the integrals were' co2

=4.5 cm ' and co~ =4, 6 cm '. This difference
between the minimum frequencies in the magnon
spectrum of the two branches is caused by the exter-

FIG. 4. The logarithm of the ' F NSLR rate as a function
of inverse temperature. The circles are experimental points
and the solid line is the calculate two-magnon relaxation
rate.

nal magnetic field HO=7415 Oe. Its influence upon
the calculated relaxation rates, however, is negligible
in the temperatuare range of the measurements
shown in Fig. 4. Thus both branches contribute
equally to the calculated rates and no field depen-
dence is expected. Also negligible is the field depen-
dence introduced by the 8 function in Eq. (15).

The good agreement between theory and experi-
ment strongly suggests that in the temperature range
considered a two-magnon scattering mechanism is
responsible for the observed NSLR rates in the
"domain-flopped" state. It is expected that the same
mechanism will quantitatively explain the higher-
temperature field-independent ' F NSLR mechanism
in RbMnF3 (Refs. 7 and 8). One can also conclude
from the results presented that the applicability of the
spherical approximation is not limited to relatively
dispersionless antiferromagnets as was suggested in
Ref. 4.

It is somewhat intriguing the relatively small depar-
ture of the experimental data shown in Fig. 4 from
the predictions of noninteracting spin-wave theory at
the higher temperatures. This suggests the magnon-
magnon interactions in this system would play a com-
paratively minor role in the ' F NSLR even relatively
close to T~. A more careful theoretical analysis
would be needed to further clarify this point.
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