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New calculational scheme for particle range and an application to a positron entering a metal
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A new scheme for evaluating the stopping distance of a particle in a uniform medium is

presented. The input is the bulk (inelastic) differential transition probability per unit time of the

particle in the medium. The range is determined as the mean penetration depth associated with

all possible paths available to the particle in the course of its slow down. The totality of possible

paths is represented approximately by means of a tree-type construction which takes account of
the role of angular deflections. The rms deviation in the penetration depth is also given. The
procedure is applied to a positron entering a metal. We find that for medium energies the range

is determined principally by positron-conduction-electron scattering while the spread in penetra-

tion depths is limited by positron-phonon scattering. Results also show that for incident ener-

gies & 25 a.u. significant numbers of nonthermalized positrons reach the surface.

I. INTRODUCTION II. GENERAL COMPUTATION SCHEME FOR RANGE

X (p) = .f(p, p )d'p', (Ia)

(&b)

Such expressions for XI arise naturally out of many-

body perturbation-theoretic approaches. We note
that this identification of the differential transition
probability rests upon the interpretation of XI as pro-
portional to the total transition rate of the particle in

the medium. Such an interpretation is legitimate pro-
vided that the quasiparticle picture is valid. This will

generally be the case in practice. As an example of
the use of our procedure we conclude with a compu-
tation of the range of a positron entering a metal. '

We present in this paper a new general approxi-
mate procedure for the evaluation of the range (stop-
ping distance) of a particle entering a homogeneous
medium, e.g. , a uniform many-body system. This
scheme differs from others' mainly in the manner in

which the angular deflection of the slowing particle is

taken into account. The procedure is very simple to
implement and, though having a recursive character,
will often be amenable to hand calculation thereby
offering a major advantage over more involved albeit
more accurate numerical procedures, e.g. , Monte
Carlo simulation.

The input to the procedure is the bulk' differential
r

transition probability from momentum state p to pI

per unit time o-(p, p ), for the particle in the given
medium. This quantity is most conveniently identi-
fied as twice the magnitude of the integrand of an ex-
pression for the imaginary part of the self-energy Xq

as an integral over momentum space:

The total transition rate for a particle of momen-
tum p in the given medium, 6 (p), is given by

n(p) = o(p, p )d p' (2)

E(p) = o.(p, p ) E(p ) —E(p) jd'p',

)))p) =J (p. p )&(p )d'p'

where
2

E(p)= p
2m

(3)

(4)

(s)

8(p) =cos '

, pp
(6)

For a homogeneous system, 8( p ) is independent of
the direction of p.

Using Eqs. (2), (3), and (4), we arrive at the fol-
lowing expressions for the mean energy change per
collision dE( p)/dn and the mean angular deflection
per collision di)( p )/dn:

( p ) ~ ( p, p ) [E ( p ) —E ( p ) ]d'p

dn (p )d3

dp(p) o(p ~ p )8( p )d p'

dn ( p p )d3p

I

In view of our interpretation of cr(p, p ) the average
time rate of change of energy E( p ) and average time
rate of change of angular deflection 8( p ) (where 8
is the polar angle of deflection about the direction of
p) are expressible as
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Finally, the mean free path between collisions is

given by

~ ( )
[2mE(p)1'~'

I

cr(p, p )d3p'

while the mean collision time is given by

(IO)

%e now introduce a geometric construction which
corresponds to the totality of possible paths taken by
a particle entering a uniform medium in the course of
its slowing down and coming to thermal equilibrium.
Recall that our main purpose here is the determina-
tion of the mean depth of penetration of a particle
entering the system. As such we will be concerned
with computing the average component in the direc-
tion normal to the interface (assuming normal in-
cidence) of all position vectors corresponding to the
endpoints of all possible paths taken by the thermal-
izing particle.

%e take the point of view that the thermalization
proceeds as a discrete succession of scatterings, each
scattering separated in time by the (energy-depen-
dent) mean collision time. The chain of scatterings
ends when the particle energy has been degraded to
thermal energies. Of course as the particle slows
down it suffers angular deflection which in the case
of a positron entering a metal will be shown to be
quite significant during the most important phase of
the thermalization process, namely, that associated
with the slow down from a few tenths the Fermi en-
ergy to thermal energies. In this range of energies
the mean free path is quite large and therefore strong
diffuse scattering will play an important role in reduc-
ing the mean penetration. A calculation of range
must therefore take proper account of angular deflec-
tion.

The construction mentioned above is shown in Fig.
i. The particle enters the system at energy Ep. It
travels a distance ko ~ k(Ea) without deflection. It
then undergoes its "first" collision whereupon it loses
an energy h, Ei, taken as the mean energy loss per
collision at the energy Ep.

hE, = dE
dn E-E0

[see Eq. (7)]. In addition, the particle will undergo
an angular deflection 8i which is taken to be the
mean angular deflection per collision at the energy
Ep.'

d8
dn,

0

The particle is allo~ed to scatter with any azimuthal
angle around the original direction of momentum.
The particle then travels undeviated a distance

Dl

r
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FIG. 1. Tree of possible paths available to particle up to
fourth scattering. This is a 2D cross section showing only
links on those 3D cones which have vertices in the plane of
the paper. Py is the mean incremental advance hz2 due to
the four 2 links shown and to all other 2 links (i.e., all

remaining ones on the cones with vertices at B and B and2 an

all those on all other 2 cones centered on the rim of the 1

cone). Similarly y8 is the mean incremental advance Lkzz3
due to the eight 3 links shown and to all other 3 links. The
particle energy drops at each node and the tree continues
until the energy has degraded to thermal energies.

z2 = Ap + A, ] cos8i (i4)

After the particle has traveled a distance A. i along
the first cone, it scatters a second time, loses an en-
ergy

dE
l1 E E

1

and suffers an angular deflection 82 given by

d8
dn z-E

1

(is)

X(Ei) with

Ei —Ep+ LLEi

i.e., a distance equal to the mean free path at the re-
duced energy.

Thus, within this model up to the second collision
[i.e. , after the total path length is k(EO) + k(Et) ]
there is an infinite number of possible paths available
to the particle each of which is comprised of the ori-
ginal undeviated link of length Ap plus a link of
length h, t (the "I link" ) lying on the surface of a

cone (the "I cone") having apex angle Ht, side k~,
and axis parallel to the original momentum. Refer-
ring to Fig. I (which is a two-dimensional cross sec-
tion of the three-dimensional tree of paths chosen
such that only the two-dimensional cross sections of
those cones with vertices in the plane of the paper
are shown), the mean penetration in the z direction
z2 just before the second collision is clearly given by
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and the mean net advance in the z direction z3 just
before the third collision is given by [using Eqs. (14)
and (17)]

z3 = Ap + A, 1 cosH1 + A2 cosH) cosH1

The pattern is now apparent and it is straightfor-
ward to induce the following result for the mean net
advance z„ in the z direction just before the occur-
rence of the n th collision:

z„= g )t; g cos8,.
IW JW

(19)

where Hp=0. Entering in Eq. (19) are the energy-
dependent mean free paths

Note that these changes in energy and angle are
evaluated using the reduced energy E1 along the 1

link. Now each point on the rim of the 1 cone gives
rise in turn to a new cone of possible 2 links each
with the same apex angle H2 (due to the homogeneity
of the system) and with axis parallel to the side of
the 1 cone. From Fig. 1 it is clear that the mean in-

cremental advance in the z direction arising from all 2

links is the z component of the vector mean of the
vector means of all vectors along the surface of each
2 cone. That is, the mean incremental advance aris-
ing from all 2 links is the z component of the mean
of all vectors of the type B;y;, each of these in turn
being the mean of all vectors of the type B;C,. Now
clearly, 8;y; = A2COSH2. The mean of all vectors of
the type B;y; is py, given by B;y;COSH1, . and is equal
to its z component. Thus the mean incremental ad-

vance, hz2, in the z direction arising from all 2 links
is given by

Az2 = A, 2 cosH2 cosH1

0,
g = r

n —2

g S „sin Jl „sin'8„
m 1

» (3
n ~3

(23)

where the S „are generated by

S~ „=COSH„—~+1S~ 1 „+A„

has degraded to thermal energies that the mean in-
cremental advance in the normal direction due to all

n links with n = n„will be negligible.
Two remarks are in order concerning the averaging

procedure by which the angular deflection has been
taken into account. We first note that the above
scheme yields consistent results for range in the limit
where the angular deflections per collision are ex-
tremely small throughout the slow down (pure
forward-scattering limit). In that case, the particle
moves along a straight line and, again regarding the
slow down process as a discrete succession of scatter-
ings, it is clear that the range is given by

n
R = $,. '0 )t, , The general result, Eq. (19) conforms
to this when H; =0, i =0, . . .»„—1. Going to the op-
posite limit of extreme diffuse scattering it is again
true that the reasoning employed above yields a con-
sistent result. For example, let us suppose that

H, = —m, i =nr, nr +1, . . . , »r'. It is immediately

clear from the construction of Fig. 2 that the mean
incremental advance associated with this set of links
is zero and that therefore there is no net penetration
of the particle.

We finally determine the root-mean-square devia-
tion o-„ from the mean penetration z„. It is straight-
forward but rather tedious (the proof is analogous to
the preceding derivation of z„) to obtain the follow-
ing result by induction:

X, = (2mE, ) 1/2, (E) (20)
SG „=0 (24)

and energy-dependent mean scattering angle per colli-
sion

dH

dn E Ei-1
with the set of link energies E; satisfying

E; =E; 1+DE;

(21)

(22a)

I+2

I+2

(22b)dE
dn E E.i-1

with Ep = incident energy.
The range is given by z„where n, is chosen such

that E„ is less than the thermal energy ( —,k~T)3

while E„1is greater than the same. It will turn out

that for a positron entering a metal, the range will be
independent of the specific choice of n provided it is
near n„ the reason being that in general the scatter-
ing will be sufficiently diffuse well before the energy

I+2 I+2

Xl 2„

FIG. 2. Branch of tree construction corresponding to ex-
treme diffuse scattering limit. Note net advance in: direc-
tion associated with any set of » links shown is zero though
spreading of cloud of possible trajectories continues.
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and where

n-m-1
(25}

In order that our interpretation of z„as a range of a

particle entering a medium with a surface at z =0 be
reasonable it is necessary that

cr„(z„, n =1,2, . . . , n, (26)

i.e., that the "cloud" of possible trajectory endpoints
not extend to the surface. This will generally be
true for higher energies.

III. APPLICATION: RANGE OF A POSITRON
ENTERING A METAL

We calculate the range of a positron entering a
metal using the above theory. We take into account
both positron —conduction-electron and positron-
phonon scattering. Although in general it is not clear
how important elastic ion-core scattering is in deter-

mining the stopping distance, it is neglected here as a

first approximation. It should be noted, however,
that since (as will be seen) the mean penetration
depth is determined in this approximation mainly by
the slow down from the incident energy (typically a
few keV) to —100 eV and that since the core elastic
scattering at these energies is (as is electron and pho-
non inelastic scattering) rather peaked in the forward
direction (forward elastic scattering does not give a

finite stopping depth) and is occurring at a rate com-
parable to the electron plus phonon scattering rate, '
our results are probably accurate to within —25%
within the overall tree construction framework.

The starting point is Eq. (19) which when evaluat-
ed at n = n, gives the mean penetreation depth to
thermalization. We require the energy-dependent
mean free paths X; [Eq. (20)] and energy-dependent
mean scattering angles per collision tt; [Eq. (21)]
which in turn require the mean energy losses per col-
lision hE; [Eqs. (22) and (7)1.

Positron —conduction-electron scattering has been
discussed at some length in an earlier paper. ' Given
there is an expression for the imaginary part of the
positron self-energy from which we are able to identify

2 2
Im 0 & E(p —k) & E(p),.apA(k, E(p) —E(p —k) + I 8)

0, otherwise,

(27)

2

mph(p, p —k) = kh(E(p) —ao(k) —E(p —k))
4m2

x 8(o)p —o)(k)) (28)

where e is the electron charge and aspic, (k, cu) is the
wave-number and frequency-dependent Lindhard
dielectric function.

Positron-phonon scattering has been evaluated
(within the Debye model) by Perkins and Carbotte6
who give an expression for the phonon contribution
to the imaginary part of the positron self-energy from
which we can identify (with the introduction here of
a Debye cutoff factor)

me m~o2

15E
'

ri,i(E) = '

m e o)p

23/2E1/2
ln

E ((EF,
E E)) EF

F
t

(29)

where m is the positron mass, ap the Bohr radius, EF
the Fermi energy, and cop the plasma frequency. Us-
ing Eqs. (2) and (28), we find

I

where ru(k) = ck, with c the speed of sound, cup = cko
is the Debye frequency, and y is the positron-phonon
coupling constant. ' The total differential transition
probability for the positron in the metal is taken as
cTt 0 1 + cTph It was shown in Ref. 5 that

2m 1/2

mph(E) = ~,
/

x,
6&2mE

8[(2mE)' —mc]', E ( ( —k&+mc)
2m

ko, E ) ( —ko+mc)'
2m

(30)

We thus see that at low energies the phonon scattering dominates the total collision rate n(E). In fact, at ther-
mal energies ( —, ka T) with T =300 K (1000 K) we find for the case of Al n h =1.0 && 10 a.u. (3.8 && 10 a.u. )
and n,~=9.2 x 10 a.u. (4.6 x 10~ a.u.); i.e., np1, is about two orders of magnitude larger than n, ~. On the other
hand, for larger energies n is dominated by n, 1. Figure 3 is a plot of mean free path versus energy for Al allow-

ing for both positron-phonon and positron —conduction-electron scattering.
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We note

A. (E) —
]/2, E «E1

El/2 '

We next evaluate the time rate of energy loss E(E) = E,~(E) + E,h(E). Using Eqs. (3) and (27), it can be
shown that

4ne map E' —E', E «EF,
105Ef

E„(E)=
e cvpm'

2 E EF E3/2]/2 ln ——,
/2

lnE, E»EF

(32a}

(32b)

For E»(E), using Eq. (28) it is found

E E y m c2 1/2

g //ATE'r

16[(2mE)'~t —mc] —E, E & (—kD+mc)
2m

kp ]/2 ~ E & (
2

kp+m&)4 1 1
(33)

the E ' behavior being valid provided E »
2

mc'. Positron-phonon scattering is thus the dominant mechanism

for energy dissipation at typical thermal energies. The mean energy change per collision dE/dn is expressible as

dE Eel + Ep

dn n, l+ nph

dE Ep —C
dn „,„4 2[(2mE)' —mcl, E & ( —ko+mc),

2m

kp, E & ( kp+mc)1 2

2m

E «Ey (3S)

dE Eel-- = —cuP, E » EF,
dn n)

i.e. , at very high energies, each scattering is associat-
ed with the emission of a single plasmon. Numerical
results for dE/dn for Al in the entire energy range
appear in Fig. 4.

Finally, we evaluate the time rate of change of
scattering angle 8(E) (8 & ]+Hph) In view of Eqs.
(4), (27), and (28) we need the angular deviation

H(k) associated with a virtual scattering as function

(36)

a(k )
. ,

' k(1 —x')'r'
i (@2+k2 —2pkx)]/2,

(37}

1.0

I

of the momentum transfer k. Now H(k) is the angle
made by the virtual final-state momentum p = p

—k

with respect to the direction of p. We obtain

I QOQ I I I I I i r I I I I I I I I I I I
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FIG. 3. Positron mean free path vs energy in Al

(positron —conduction-electron and positron-phonon scatter-
ing taken into account; T =0).

.0. 001 I I I I I I I

.001 .01 0. 1 I 10 100
E (a.u. )

FIG. 4. Mean energy loss per collision vs energy for a

positron in Al {positron —conduction-electron and positron-
phonon scattering taken into account; T =0).
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~here x is the cosine of the angle between p and k.
Results of numerically integrating Eq. (4) using Eqs.
(27) and (37) show that H, l(E) —E for E « E,.
Using Eqs. (28) and (37) in Eq. (4), and changing
variables to 8(k,x(k)) in the Ik I integration gives
after some algebra

4000—

3000—

i„(E)= (~ ——) -E,y28m'E
3m 3

2
1 kD—mc «E «—
2 4 2m

t

(3S)
UJo 2000

Again, phonon scattering dominates at low energies.
%e find

. (39)de ~ph 4 1 I kD
2—m ——, —mc «E «—

dn
3' 2 4 2mfl ph

Plots of de/dn for Al obtained numerically over the
full energy range appear in Fig. 5. %e note that the
slight nonanalytic kink noticeable at E =1.16 a.u. in
the A., dE/dn, and d8/dn vs E curves arises from the
onset of plasmon excitation.

%e are thus now able to generate the E s of Eq.
(22) and in turn, the 8 s and k s of Eqs. (21) and
(20). Results for range versus energy for Al appear
in Fig. 6. The results are insensitive to temperatures
within the range T =300—900 K. The rms deviation
from the mean penetration depth also appears in Fig.
6. These results indicate that the minimum incident
energy required in order that most positrons thermal-
ize prior to escape is —25 a.u. For lower energies,
an increasing fraction of particles will reach the sur-
face and escape prior to thermalization. Thus our
results for range are valid in the intermediate energy
range and above (E )—25 a.u.).

Returning to the medium energy case, we point out
that our calculational scheme provides us with more
information than just range and dispersion. By exa-
mining the successive values of z„and o.„as function
of the mean collisioin number n we are in fact able to
follow the entire development of the slowing cloud of
particles. Plots of z„and a„ for a representative case

1000—

I I I I I

IO 20 30 40 50 60 70 80

E(p U)

FIG. 6. Range R and rms deviation in range o. vs energy
for a positron entering Al (positron —conduction-electron
and positron-phonon scattering taken into account; T =0).
The intersection at E = 25 a.u. indicates that most particles
thermalize before returning to the surface for E P 25 a.u.
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FIG. 5. Mean angular deflection per collision vs energy
for a positron in Al (positron —conduction-electron and
positron-phonon scattering taken into account; T =0).

FIG. 7. Mean penetration depth ..„and dispersion cr„vs
mean collision number for a 35 a.u. positron beam incident
on Al. z„saturates at n =35 while a.„continues to grow.
This indicates complete randomization of velocity direction
and increasing spread of the slowing cloud of positrons.
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FIG. 8. Energy vs mean collision number for a 35 a.u.

positron beam incident on Al.

(E =35 a.u. ) appear in Fig. 7 while E vs n appears in

Fig. 8. We notice that the range begins to saturate at
about n =35(E =2 a.u. ); i.e., there is essentially no
net further advance of the centroid of the cloud of
particles by the time the mean particle energy has de-

graded to E =2 a.Q. This of course means that by
the time the mean particle energy has dropped to this
level, the directions of all particles have been com-

pletely randomized. Note however that the rms devi-
ation continues to grow beyond n =35 until thermal-
ization is complete. This manifests the expected
spreading in the by now diffuse cloud of particles.
We observe further that for this medium high in-

cident energy, cT„&z„ for all n; i.e., the cloud is con-
fined to the interior of the metal throughout the slow
down.

The saturation in range occurs before the positron
energy has degraded to the point where the positron-
phonon interaction is important (E -0.2 a.u. for
Al). Thus the positron-electron scattering is the pri-

mary determinant of the range for energies E & 35
a.u. (for Al). The phonons do play a role however in

reducing the rms deviation in the range during the fi-
nal stages of the thermalization since they reduce the
mean free path by two orders of magnitude (while
still giving rise to large angular deflections). This
reduction is significant since the positron-electron
mean free path is —10 —10 a.u. for thermal ener-
gies and thus considerably greater than the range in

the —30—50 a.u. regime.
Generalization of the above ansatz to the more

realistic case where the particle is allowed to scatter
into more than one polar angular channel and to
travel any one of a number of different path lengths
at each scattering node twith the distribution in polar
angles and path lengths determined by the current
value of (i.e. , link) energy] will be the subject of a

future publication.
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