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Inelastic positron scattering in an electron gas
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The positron inelastic scattering rate y in an electron gas is calculated in the full positron en-

ergy range within the random-phase approximation (RPA) using the Green's-function approach.
Both particle-hole pair and plasmon excitation are taken into account. It is found that, for posi-
tron energy E much less than the Fermi energy Eo, particle-hole scattering gives y = E,
whereas, for E much greater than Eo, plasmon scattering dominates and y = (I/E' ) ln(E/Eo).
Interestingly, the plasrnon excitation threshold energy fcr the positron is found to be the same
as that for an electron. These results for a positron are compared with those for an electron ob-
tained by Quinn.

I. INTRODUCTION

The recent development of energy-resolved high-
flux low-energy positron beams' has led to some in-
terest in the possible use of positron diffraction as a
means of studying metal surfaces. This would be
akin to low-energy electron diffraction (LEED) 3 and
would provide information complementary to that
provided by LEED. In addition, positron-metal sur-
face scattering phenomena are of some interest in
their own right. For example, recent experimental in-
vestigation ' of 1ow-to-medium-energy positron-
metal surface scattering has led to the remarkable
discovery that a substantial fraction of incident posi-
trons leave the surface as positronium atoms.

As with the case of LEED we expect that an accu-
rate calculation of low-energy positron-metal scatter-
ing amplitudes would have to take account of the ine-
lastic scattering by conduction electrons. This scatter-
ing is one of the most significant sources of broaden-
ing of sharp features in the reflection pattern. Furth-
ermore, the understanding of the positronium forma-
tion process ' requires knowledge of the mean depth
of penetration of the incident positron. This is pri-
marily determined by inelastic positron-conduction
electron scattering. '

This paper presents results of a calculation of the
inelastic positron-conduction electron scattering in
metals over the full positron energy range. The
many-body field-theoretic approach is used. In Sec.
II a positron Green's function and proper self-energy
are defined. The imaginary part of the latter, XI, is
directly related to the total collision rate of a positron
in an electron gas. In Sec. III we obtain an explicit
and manageable expression for XI within the
random-phase approximation. Two contributions to
XI are identified, one associated with particle-hole
pair excitation and the other with plasmon excitation.
These are evaluated in Secs. IV and V where useful
analytic expressions are provided in the low- and high-

energy limits. The plasmon excitation threshold is
also discussed. Quantitative results for the total Xl
and mean free path for various r, over the whole
positron energy range and a comparison between X~

of a positron and that of an electron, are given in
Sec. Vl.

II. POSITRON GREEN'S FUNCTION

e consider a uniform system of a large number,
N of electrons moving in a uniform neutralizing
background and a single positron, a11 interacting via
the Coulomb force. The second quantized Hamil-
tonian for the system may be written in the
Schrodinger picture as

PE Jl

H = H(}+ HtyT (la)

&o = — $ P ( x) t7'-„y ( x ) d'x
2m

XJ4&(x)'7'-, 4z( ) d'
2m p

II = —, '$ f y'. (r)yt{x').a i x —x'i

(1b)

x Qp(x')p (x) d xd x'

—t' $f y'. ( x ) y. ( x ).a i x —x'f

x yp( x ) @p( x ') d'xd x', (1c)

where ttI) (x) [ p (x)] are electron field operators
which create (destroy) an electron of spin n at the
position x, and where $ (x)[P (x)] are positron
field operators which create (destroy) a positron of
spin a at the position x. m is the electron and posi-
tron mass and e is the magnitude of the electron
charge.
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We seek to calculate the lifetime of the positron
quasiparticle states. To this end we introduce a posi-
tron Green's function G ~( x t, x't') appropriate to
the description of propagation of a single positron in

an electron gas and defined as follows:

G ~(xt, x't')

&H & poI T( pH~( x t ) pHtt( x 't') ) I po) H

H (+ol +o) e

where $H (xt) and tl&Ht&( x 't') are the Heisenberg
positron field operators and where ~'lto) H denotes the
Heisenberg ground state of a uniform, fully interact-
ing, N-electron gas. T denotes the Dyson chronologi-
cal operator. In our case G & is of the form GB &.

By going to the Lehmann representation' for the
Fourier transform G(k, o&) of G(x, t, x', t') = G(x
—x ', t —t') it is seen that the poles of G ( k, cu) in

the eo plane occur at the exact values of the change in

energy associated with the addition to an interacting
electron gas originally in the ground state of a single
positron such that the final system ends up with

momentum k. For example, when the interaction
between the positron and the electron gas is set equal
to zero we find

1
Gp(k, o)) =-

o& —E(k) +irt
(3)

where E(k) = k /2m is the free positron energy.
In light of the form Eq. (3) we are led in the stand-

ard fashion to the following quasiparticle approxima-
tion for the fully interacting G:

G(k, o)) = Z(k)
a) —[E(k) + i I (k) ]

(4)

y(k) =2(r(k) ( . (5)

For the quasiparticle concept to be useful the
damping rate must be small compared to the excita-
tion energy:

r(k) «E(k) .

A straightforward application of the Feynman-
Dyson perturbation expansion scheme for G using

H~NT of Eq. (1c) as the perturbation will lead to a
Dyson equation for G which involves a positron
proper self-energy X:

G(k, eo) =
al —E(k) —X(k, eu)

where we have written the complex-valued quasipar-
ticle energy 8(k) in terms of its real and imaginary
parts E(k) and I'(k). Z(k) is an unimportant func-
tion related to the strength of the quasiparticle state.

The quasieigenstates behave in time as e '~' ". The
probability density of the quasiparticle having initial
excitation energy E(k) will decay in time exponen-
tially at a rate y(k) given by:

Upon comparing Eqs. (4) and (7), we may relate
the quasiparticle energy b(k) to the proper self-
energy X(k, o&). Denoting the real and imaginary

parts of X by Xq and X( w'e have in the case of long-
lived excitations (Z (k) = 1):

E(k) = E(k) + X„(k,8(k)) (8a)

I (k) = I —„Xt&(k,o&)~ »&o& Xt(k, 8(k)) . (gb)d

i

Our interest here is in the damping rate 2~I'~. e
make the approximation in Eq. (Sb):

This is certainly valid for large k since X(k, 8(k)) O

for k ~, and is likely to be valid for small k where
X~(k, $(k)) should be relatively flat. "

III. APPROXIMATE EVALUATION OF X(

We now evaluate the imaginary part of the positron
proper self-energy in an electron gas within the
random-phase approximation (RPA). By this it is

meant that the proper self-energy is approximated by

an infinite summation of bubble-type diagrams of the
form shown in the following equation:

XRPA

l p
l jeff
I/

(1O)

A double (single) simple line denotes a free positron
(electron) Green's function; a double (single) wavy
line denotes a bare positron-electron (electron-
electron) Coulomb interaction. We have introduced
with an obvious diagrammatic identification the effec-
tive interaction, v, ff, of a positron in an electron gas.
These diagrams for X(k, eo) correspond to successive
virtual excitations of electron particle-hole pairs by

the positron. Through it it true, as with the case of
electron RPA, that this approximation for X becomes
very good (exact, in fact) only in the kinetic energy
dominated high density limit r, (( 1, ' we probably
can expect qualitative, even semiquantitative validity
for r, in the metallic range —2 & r, (—5.

We note that the exchange diagram (Fig. 1) ap-

pearing in the electron XRPA has no analog here since
there is only one positron in the system. Further-
more, since in all diagrams for v,ff there are exactly
two electron-positron bare Coulomb interaction lines,
each term is equal to the corresponding term in the
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FIG. I. Exchange contribution to electron self-energy.

(a) (b)

electron effective potential, v,'rr. %e thus have

Ueff( k, GJ) jeff( k, CO) lJ( k)

= v(k) 1 —1
&Rpw{ &

where KgpA{k, QJ) ts the RPA (Lindhard) dielectric
function of an N-electron gas 1given below, Eq. (18)]
and where n(k) is the bare electron-electron
Coulomb interaction. '

FIG. 2. Contour» t'or selt-energy evaluation. (a) Original
contour (' t'or the t'requency integration. .v denotes poles ot'

dielectric t'unclion, + denotes a pole ot the tree posilron
Green's lunclion. + occur» in the 1st quadrant when
~ ) l.'( p

—k ), e.g. , +~, «nd it occurs in the 2nd quadrant

when L'( p —k) ) ~, e.g. , +2. Note t'ron& Eq. (15) thai we

;lre «bte to close the contour in, e.g. , the upper halt' plane.
(b) Rot,ate contour in (a) by +90'. A residue contribution
.lrise» when the pole + lie» in the 1st qu;ldrant. The contour
('

noway he now det'ornied into the iniaginary;lxi».

dance with the Feynman rules, by:

( I )
4&e

k
(12)

jeff( k, ClJ ) (13)

XRpg( p, ~) =
4

d'k d~'Go(p —k, ~ —~')
(2n)4

The positron proper self-energy is given, in accor- which, using Eqs. (3) and (11), becomes

XRp (p o))= —,d k do) v(k), —1
I 3 r 1 1

(2m)' c eRpA(k m ) m —~' —E(p —k) + jg
(14)

The frequency integral appearing in Eq. (14) is along the contour C (shown in Fig. 2), so chosen so as to properly
avoid the poles of ~~pA(k, ~').

A rather convenient form for XI RpA is now obtained (we from now on omit the subscript RPA on XRpA and WgpA).
Note the free-positron Green's function in the integrand of Eq. (14) has a pole at o)'= o)t —= cu E( p —k) +i q.
Note further that since

(IS)

we may close the contour C in Eq. (14) in the upper half plane. By rotating the resulting closed contour 90
counterclockwise [see Fig. 2(b)], we have

X(p, ~) = d k do)'v(k), —1{2') c' e(k m') ~ —co' —E( p —k) +i q

—27r I
0& E( p —I() (01

1 —1 v(k)
e(k, c —E(p —k) + jq)

(16)

where C'is the +90' rotated version of C. The second term in Eq. (16) arises from the fact that the pole of the
free-positron propagator when in the first quadrant [i.e. , when &u )E( p

—k ) ] goes from being within to being
outside the closed contour as C is rotated.

It can be shown that the imaginary part of the term involving the line integral in Eq. (16) vanishes. " %'e thus
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arrive at the useful expression

Xq( p, ~)=, Im d'k1 v(k)
(2m)' 0«&' —k& &~ a(k, ~ —E(p —k) +i &)

which will serve as the starting point for the subsequent development.
The real and imaginary parts a, (k, ru) and a;(k, co) of the Lindhard dielectric function are given by":

2me pp pp.,(k, ~) =1+ 1 ——1—
2k

\

corn k

ppk 2pp

1

ln 1+ ™k

ppk 2pp

o)m

ppk 2pp

Po,
+—1—

2k

1 1

earn + k

pok 2pp

o)m k

ppk 2pp

corn k

Po& 2Po
(1Sa)

2 2me pp corn1—
pok

a;(k, cu) ='
2m ego k—~2,

Po

k

2Po

O~com~ k

po po

I r

k 1 k rom k 1 k+
Po 2 Po pp Po 2 Po

1 k

Po

(18b)

(18c)

where pp is the Fermi momentum of the electron gas IV. PARTICLE-HOLE CONTRIBUTION

po=(3' n)'

n being the electron density.
It will be seen that there are in general two types of

contributions to X& [see Eq. (17)1: one I'rom the in-

tegration over the region of k space where
a;(k, a& —E( p —k) + irt) is finite (this corresponding
to the positron's exciting particle-hole pairs) and the
other arising from any poles in the integrand (i.e.,
zeros of e) falling within the domain of integration
(this corrsponding to the positron's exciting
plasmons).

We take for the approximate collision rate 2II'I [see
Eq. (9)j twice the value of the imaginary part of the
self-energy X~(p, $( p)), evaluated at frequency
8( p) =E( p), i.e. , the on-shell value. We will thus
be evaluating

X&( p) = Im d'k1

(2~) o & &( p —k ) «(p)
~(k)

X
6(k, E( p) —E( p —k ) +i q)

(20)

As indicated in Eq. (18), the imaginary part of the
dielectric function a(k, co) is nonzero when either

pak + T~kt ~ mrs ~
I pak —T~k~l, or k ~ 2po and

0 ~ m ao ~ kpp —
2

k . Using the fact that in the in-1

tegral of Eq. (20), a(k, co) enters with frequency ar-

gument ru =(I/2m)(2pk cos8 —k') (8 is the angle
between p and k ), it is straightforward to show that
this set of inequalities reduces to the one simple ine-

quality:

I
k —p cos81~ po

The region of k space specified by this inequality is
bounded by a surface known as a Pascal limacon of
revolution. For p )pp, there are two branches of the
surface (one contained in the other) whereas for

p & pat there is a single branch [Fig. 31. The re-
gion of k space in which

Ime k, (2pk cosg —k )
1

2m

is nonzero and which contributes to the integral Eq.
(20) is then the region which is both within the Pas-
cal limacon (when p )pp this means between the
two branches) and within the sphere of radius p cen-
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tered at k = p [Fig. 3). e have then for the particle-hole contribution,

e2 1 2px
1

Im dx dk7r»» a {k,{1/2m }(2pkx —k )) +i e, (k, (1/2m )(2pkx —k )) P &Po (22a)

2 po/p 2px
1

Xl (p) =, —Im dx dk' a» a, (k, (1/2m}(2pkx —k'))+is; (k, (1/2m)(2pkx —k'))
1 pz+po

1+ dx dk p ) po . (22b)
~»i~ ~ ~» a (k, (1/2m ) (2pkx —l )) +i a; (k, (1/2m ) (2pkx —k ))

We first consider the case p && po. Entering into Eq. (22a) is then the dielectric function evaluated for
momentum and energy very small compared to p» and the Fermi energy E» ——p» /2m, respectively:

e k, (2pk cosH —k )I 2

2m

24me po . me'+i (2p cosH —k )
nk k

(23)

We readily arrive at
~ 4

Xl ( p) = — ——r,'p', p (( po60m po
(24)

We see that the collision rate tends to zero as p 0, this reflecting the decreasing phase space available to the
scattered electrons as the energy transfer tends to zero. We note that in this small momentum regime the
particle-hole contribution to the collision rate decreases with increasing electron density. This is consistent with
the fact that at higher densities, where the kinetic energy dominates the dynamics, the electrons are less able to
respond to the presence of an external charge.

We now consider the case of high momentum p ))po. Starting with Eq. (22b) it can be shown that for this
range of p, Xl ( p) varies inversely with p:

ph

Po
Xl ( p) = —C( po), p ))po

ph p
(2Sa)

p cos g+ po be pcos8+ b=pcosg —
p

0. 7

0.5—

ca.
CD

4J

04—

p ~
Po

(o)

P

(b)

0.3—

0.2—

FIG. 3. Cross section of region of k space contributing to
Xl (p). (a) p (po., (b) p ) po. 0 is the origin of k space.

ph

Shaded regions correspond to points k lying both within the
domain of integration in Eq. (20) (within the sphere of ra-

dius p centered at k = p) and within the region of k space
in which Im~(k, (I/2o~ )(2pk cosH —k2)) & 0.

O. I—

FIG. 4. Particle-hole contribution to imaginary part of
self-energy vs momentum.
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with

oo pO(M+1)
1C( po) =—Im du dk

m ~ ~ot" '~ o, (k, (1/2m)(2poku —k )) +io; (k, (1/2m)(2poku —k ))

f] 2poM 1+ du dk
K, (k, (1/2m) (2poku —k2)) +i o; (k, (1/2m) (2poku —k ))

(25b)

We present plots of IXg ( p)/EoI vs p/po for vari-
ph

ous r, (Fig. 4). For intermediate momenta we have
resorted to numerical integration. The results show
that the p dependence for small p is valid up to
-0.1po. Increasing p further, the curves rise some-
what rapidly to a relatively broad maximum at
p —2po [with values of IXI ( p)/EoI at the max-

ph

imum ranging from -0.5 for r, =4 to -0.2 for
r, =2] and then fall rather slowly. We found that the
1/p variation for p ))po becomes discernible for

20po

V. PLASMON CONTRIBUTION

As noted earlier, the plasrnon contribution to
XI ( p ) arises when the pole of e '(k, E (k)
—E(p —k) +ig) falls within the domain of integra-
tion [Eq. (20)]. The plasmon excitation energy
~~(k) solves the equation of the longitudinal reso-
nance condition: e(k, co~(k)) =0. The plasmon exci-
tation spectrum starts at k =0 with energy coo given

by

Then the conditions (28) for a pole become

' (p' Ir "I-') =~—o,
2m

k&k,',
(30a)

(30b)

with the cutoff momentum in the absence of disper-
sion, k, given by:

kg=(po +2mcuo) po

The set of points k satisfying Eq. (30a) is a sphere
centered at k = p and of radius ( p' —2m coo)' '.
When ( p —2m coo)' & po, points k on this sphere
are such that k ) k, , and thus do not satisfy the
second requirement for a pole, Eq. (30b). There
then is no plasmon contribution to XI( p) in this
case.

On the other hand, for radius ( p —2mcoo)' & po,
the sphere of points satisfying Eq. (30a) does at least
pass through regions of the domain of integration in

which Im~(k, E( p) —E(p —k) + iq) =0, namely,
referring to Fig. 5(b), the crescent-shaped region
bounded by both the outer branch of the Pascal lima-

&/2

4mne
Q)0 =

m
(26)

rises to a maximum value co~(k, ) at the plasmon cut-
off momentum k„and ceases to be a well-defined
excitation for k & k, . The cutoff is determined by

the condition that it becomes possible for a plasmon
to decay into a single pair excitation, i.e., when

kpo
+ = o)p(k)

2m m
(27) (p -2t))tgo)

&o

From Eq. (20) and the comment above, we see
that the poles of the inverse dielectric function are
encountered during the k integration for XI( p) when
both

E( p) —E(p —k) =co (k) (28a)

and

k&k, (28b)

Ql&( k) = Qlo (29)

We neglect the small dispersion of the plasmon mode
and set

P

(b)

FIG. 5. (a), (b) Plasmon-contribution to 1m X( p). The energ)
conservation condition 0)z {k) = E{p) —E{p —k ) is satisfied
for k on dotted spheres in both cases. Only when its radius
is greater than po do points on this sphere lie in regions
where (b) Im~(k, (1/2m)(2pk cosH —k2)) =0 and then, only
points such as k&, in the small oval give a zero of «(k, (1/2m)
)x: (2pk cosH —k )). (Rem(k, (1/2m)(2pk cosH —k ))
A 0 for points such as k2. ] Obviously, threshold corresponds
to the p for which the dotted sphere coincides with the
sphere centered at k = p, and of radius po.
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con and the sphere of radius p, and the oval region

bounded by the inner branch of the limacon. Only in

the oval region, however, do the points on the sphere
also satisfy the additional condition for a pole, Eq.
(30b) [Rea(k, E( p) —E(p —k) +i rt) AO in the cres-

cent region], and it is therefore from only this region
that we get a plasmon contribution to XI( p).

We conclude that the value of positron momentum
at the threshold for excitation of a plasmon is,
neglecting dispersion, given by

pth = (2m opp+ pp ) ' (32)
The same value of plasmon excitation threshold

momentum was found by Quinn" (again neglecting
dispersion) for the case of an electron probe interact-
ing with an electron gas. One might offhand say that
the value p, h is reasonable for the electron case since
the external electron cannot, after exciting a
plasmon, end up with an energy less than Ep, the
corresponding states already being occupied. This
line of reasoning would seem to lead to the following
"paradox. " For a positron scattering from an electron
gas, one is then tempted to say that the plasmon ex-
citation threshold should occur at E( p) = sop, with

the scattered positron, ending up in the E( p) =0
state.

The discrepancy suggested by the last argument lies

of course in its failing to take account of the irnplica-

tions of momentum conservation. If a positron of
energy E( p) =~p were to excite a plasmon, it would

have to give up a momentum (2m cop)
' . But this is

in excess of the plasmon cutoff momentum

k, = ( pp +2maop)' —pp, therefore implying that
such a positron is after all unable to excite a plasrnon.

Note in fact that at the actual threshold p, & [Eq.
(32)] the plasmon excited will have momentum equal
to the cutoff momentum k, . As positron momen-
tum is increased above p,h, it will be able to excite
plasmons with momenta ranging from a low of
k;„=p —( p' —2maop)' (forward scattering) to a

high of k, [the positron scattering at an angle
cos '( po/p) from its original direction]. These state-
ments follow simply from Figs. 5(a) and 5(b). Note
that k;„ tends to zero as p tends to infinity.

For p )p,~ we thus have a plasmon contribution
to XI( p) which we denote by X, ( p), and which is

pl

given by

~(k)
(p)=, Ji d'k lm p &pth

(2m) '"" &(k, E( p) —E(p —k) + iq)
(33)

In the oval region we approximate the dielectric func-
tion by its high frequency, low wave vector form
(i.e., again neglecting dispersion):

0.9

0.8—

a(k, Ql) l Qla/Ctl (34)
07—

Upon using Eq. (34) in Eq. (33), introducing spheri-
cal coordinates with p taken along the polar axis, we
eventually find

0.5—

mp Gap
2

XI (p) = — ln
pl 2p

( pp +2m')p)'~' —
pp

'

(3S)
p —( p —2mcop)'

Cl.

M
P4

0.4—

p &pth 0.3—

We remark that precisely the same result was ob-
tained for the plasmon contribution to the imaginary
part of the electron self-energy in an electron gas by
Quinn. ' Though this is consistent with our earlier
observation of the equality of the positron and elec-
tron plasmon excitation threshold momenta, the
equality of the two self-energy contributions is slight-

ly surprising. For p )& pp we find

0.2—

0. 1—

I

4

P /'Pp

mP cdp p
2

X, (p) = — ln—
2P Pp

(36) FIG. 6. Plasmon contribution to imaginary part of self-

energy vs momentum.
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momentum p =p, h
—2po (for r, of interest) the posi-

tron begins to excite plasmons (in addition to ph

pairs), this being manifested in a nonanalytic rise in

IX~( p) I there. There is then a rather broad max-

irnurn, of magnitude ranging from -0.4Ep for r, =2
to 0.9Ep for r, =4, reached at p —2 —4pp. This is
followed by a relatively slow dropoff with an asymp-
totic —(1/p) ln( p/po) dependence, originating from
the dominating plasmon excitation channel.

In Fig. 9 we present a comparison between our
result for XI( p) for a positron and Quinn's results
for the same for an electron. The larger magnitude
of the imaginary part of the positron self-energy is

readily understood: since the positron does not see
the Pauli restrictions operative for the electron, it has
more available phase space to scatter into, resulting
in its having a higher collision rate.

The mean free path A. ( p) of a positron quasiparti-
cle with excitation energy E( p) may be taken as
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FIG. 10. Mean free path vs energy.
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E(ev)

X( p) =—E( p)
d- 1

dp 7( p)
(3$)

Now E( p) is given approximately by Eq. (Sa). %e
will here ignore the p dependence of XR ( p, 6 ( p) ) and
take simply

above and that in A, is apparent

15J2E0
2 3/2 3/2 '

(E)
trE' OPS E

4 E
me'ruo In( E/Ep)

(41)

x(p) =— 1

m y(p)
(39)

A plot of X(E) vs E appears in Fig. 10. The
correspondence between the structure in Xt described

A minimum of the order of a few angstroms occurs
at E —2Ep.
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