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Dependence of the phonon spectrum of InP on hydrostatic pressure
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The first- and second-order Raman spectra of InP have been measured in a diamond anvil

cell as a function of hydrostatic pressure up to the phase transition {100kbar). The Griineisen
parameters of the LO and TO phonons at I', and also those of several optical and acoustical
phonons corresponding to critical points at the edge of the zone, have been measured. Particu-
lar emphasis is placed in the determination of the dependence of the dynamical charge as a func-
tion of lattice constant: a nonlinear decrease with decreasing lattice constant is found. The
results are interpreted in terms of the bond orbital theory and of a pseudopotential calculation
of the dynamical charge as a function of lattice constant.

I. INTRODUCTION

The development of the diamond anvil cell in con-
junction with the ruby fluorescence manometer' have
made possible light-scattering measurements under
very high hydrostatic pressure. ' The diamond and
zinc-blende-type semiconductors are, because of their
simplicity and the extensive knowledge of their vi-
bronic properties, particularly appropriate for such in-
vestigations. The small sample volumes available,
ho~ever, limit the measurements to laser frequencies
below the lowest direct absorption edge Eo. Work of
this type has so far been reported for Si, GaP, ' ZnS,
ZnSe, and ZnTe. 3 In cases in which Raman measure-
ments with conventional visible or near infrared
lasers are not possible inside the diamond anvil cell
because of the strong absorption coefficient at low

pressures, they may be possible at higher pressures as
the sample becomes transparent or nearly transparent
(indirect or forbidden transitions) to the exciting
laser. The investigation of the pressure dependence
of the phonon spectra thus becomes possible by
measuring at zero pressure outside the cell and at high
pressures in the cell. This situation obtains in most
group-IV and -III—V semiconductors where the Eo
gap has a large and positive pressure coefficient. As
an illustration of this method GaAs has been recently
investigated. 4 In this paper we present analogous
data for InP, a material with a direct gap Eo very
similar to that of GaAs (1.43 eV for GaAs and 1.35
eV for InP at room temperature). The behavior of
these gaps under pressure is also similar: they be-
come transparent to the near-ir lines of conventional
Ar lasers at pressures of =20 (GaAs) and 30 kbar
(Inp). Measurements of the complete first- and
second-order Raman spectra thus become possible up

to the phase transitions at 100 kbar for InP and 180
kbar for GaAs. 5 Hence the Gruneisen parameters of
the LO and TO phonons at the I point (first-order
spectrum) and those of a number of optical and
acoustical phonons at the edge of the zone can be
determined, the latter based on a critical point assign-
ment of the observed second-order spectra. Of par-
ticular interest is the determination of the negative
Gruneisen parameters of the TA phonons.

From the observed pressure dependence of the
LO(I') and TO(1') modes the dependence of the
dynamical charge (Born's transverse effective charge
er') on lattice constant can be obtained. Like in all
other zinc-blende-type materials measured, the LO-
TO splitting decreases with increasing pressure. The
dynamical charge obtained from this splitting also de-
creases with increasing pressure, a fact which reflects
an increase in covalency upon compression. We dis-
cuss this observed decrease in eT' in terms of the
semiempirical bond orbital model and of the micro-
scopic theory of the dynamical charge. '

II. EXPERIMENT

The Raman measurements were performed in the
diamond anvil cell described by Syassen and Holzap-
fel with a scattering configuration similar to that of
Ref. 2. The pressure was measured with the ruby
fluorescence technique. ' Both Kr+- and Ar+-ion
lasers were used in the measurements of the second-
order spectra; the exciting lines were chosen to be
close to the direct gap Eo at the pressure under con-
sideration. ~ The spectra were taken with a SPEX
double-plus-third monochromator system and an
RCA 31034 photomultiplier in the photon counting
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mode. The cell was optically aligned at pressures
above 30 kbar with the 79934 line of the Ar+-ion

laser. At that pressure the InP sample, approximate-
ly 40 p, m thick, becomes transparent to this wave-

length. Once the sample is aligned the first-order Ra-
man lines can be seen even at lower pressures, all the
way down to atmospheric, while the second-order
bands remain observable only in the region of trans-
parency and under near resonant conditions (laser
frequency tru = Es). All measurements were per-
formed at room temperature.

III. RESULTS

A pair of representative first-order spectra, ob-
tained at 33.4 and at 84.4 kbar, respectively, are
shown in Fig. 1. The corresponding peak positions
are plotted in Fig. 2 as a function of pressure (top
horizontal scale) and of relative lattice compression
—ha/as (bottom). The compression was related to
the pressure with Murnaghan's equation'
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where Bs is the bulk modulus (Bs-7.25 x 10"
dyn/cm2 (Ref. 11)] and BcI is its derivative with

respect to pressure. No measurements of Bp seem to
appear in the literature. In view of the near constan-
cy of this parameter for a given family of materi-
als't'~ we take in Eq. (1) for BcI the value reported'~
for GaAs (BcI -4.67). The horizontal scale of Fig. 2

has been chosen to be linear in cuba/as (not in p).
With this choice the observed aoLo and ~o frequen-
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FIG. 2. Frequencies of the LO and TO modes of Fig. I as
a function of lattice constant (linear lower scale) and pres-
sure (upper scale). The solid line is a least-squares fit.
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with p in kbar and the ca's in cm '. A similar effect
is observed for Si, GaP, ' and GaAs. 4 In GaAs, how-
ever, the variation of o)i.p and MTp is also slightly sub-
linear in —)La/ao. '
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FIG. 1. First-order Stokes spectra of the LO and TO pho-
nons of InP at room temperature and for two different pres-
sures (84.4 and 33.4 kbar).

for GaAs, in cm '. Nevertheless we should point out
that some nonlinear component may appear in Eqs.
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(2) if the measured Ba of InP were used in the
evaluation of Eq. (I) instead of that of GaAs. This
nonlinearity is expected to be smaller than that of Eq.
(4).

Figures 1 and 2 show a decrease in the oJLp-~Tp

splitting with increasing pressure. This decrease is
characteristic of most zinc-blende-type materials mea-
sured [GaP, ' GaAs, ~ ZnS, ' ZnSe, ZnTe, '"SiC (Ref.
13)) and will be related in Sec. IV to a decrease in

ionicity with increasing pressure. For AlSb, a margi-
nal increase in QILp-euro with increasing pressure (only
up to 8 kbar) has been reported. " Measurements on
this material with the diamond anvil cell should be
performed in order to clarify this matter. The depen-
dence of sto-pro on ( —ha/ao) and on p as mea-
sured for InP is shown in Fig. 3. Although this
dependence is nearly linear, it can be fitted slightly
better by the quadratic expressions
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FIG. 4. Second-order spectra of InP at room temperature
and for two different pressures in the region of LO and TO
overtones and combinations.
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A number of sharp structures are also observed in

the second-order spectra of InP. They correspond
mainly to overtones of the acoustic phonons and to
overtones and combinations of the optical phonons at
points of high density of states close to the Brillouin-
zone boundary (see Sec. IV). '~ We show in Fig. 4
the second-order spectra observed for two different
pressures in the region of TO and LO overtones and
combinations. The measurements at 84.4 kbar were
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FIG. 3. Splitting of the LO and TO modes of Fig. 2 as a

function of lattice constant and pressure. The solid line

represents a quadratic least-squares fit to the experimental
points.

FIG. 5. Dependence of the frequency of the features ob-
served in the second-order spectrum of InP as a function of
lattice parameter and pressure. The assignment of the
features in terms of critical points is also given.
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TABLE I. Mode Gruneisen parameters obtained for a number of critical points of tetrahedral semiconductors. The data

given are those considered to be the most accurate available. For InP they stem from the present work, for GaAs from Ref. 4,
the rest from Refs. 2, 15, 36, and 37.

LO TO LO-TO To(L) TO(X)
TA( Wi, W2)

IA(Ci, 42) TA(X) TA(L)

C
Si
Ge
GaP
GaAs
GaSb
InP
Alsb
ZnS
ZnSe
ZnTe

0.98 X0.04
1.02 X 0.02
1.12 X0.02
0.95 X0.02
1.23 aO.Q2

1.21 a0.02
1.24 a0.02
1.27 + 0.05
0.95 10.1
0.9 + 0.1

1.2+ 0.1

0.98 X 0.04
1.02 i 0.02
1.12 i 0.02
1.09 t 0.03
1.39 a 0.02
1.23 Z 0.02
1.44 Z 0.02
1.23 + 0.05
1,85 + 0.2
1.4+ 0.1
1 ~ 7+0.1

0.14
0.16

0
0
0
2 0.04
+ 0.04

1.4 20.25
1,3 Z0.2

0.9 X0.1
1.5+0.05

1.48+0.15

0.9 + 0.2
0.5+0.1
0.5 +0, 1

1.0 + 0.2
1.6 + 0.3

0.20+0.05 1.42+0.1

2.0 + 0.4
1.5+0.1

1.31+0.05
1.73 J0.07

1.42+0.1

1.0 X0.2
1.6+0.3
1.8+0.4

—0.2 + 0.1

0
—0.37 X Q. 15

—0.27 + 0.1

0.4 Z0.9
—1.4 X0.2

—0.72 + 0.03
—1.62 +0.05

—2.08 %0.1

—1.55 %0.2
—1.30 + 0,2
—1.55 + 0.2

—1.3 %0.3

-0.81+0.07
—1.72 %0.15

—2.00 ZO. l

—1,0 Z0.2
—1.5 + 0.2
—1.5 X0.2

performed under extreme resonant conditions
(geo-1.92 eV, gap fru0-1. 93 eV, see following pa-

per ). As a result the observed 2LO peak is pro-
duced mainly by phonons near I .' Correspondingly,
a LO(I ) +TO(I') combination peak, not seen under
less resonant conditions of the 33.3-kbar run, is ob-
served also at 84.4 kbar.

Not shown in Fig. 4 are the structures associated
with the TA bands which we have also investigated.
They are basically the same as those reported in Ref.
17. Their wave numbers at zero pressure are 178 (a
shoulder), 135 (a strong peak), and 107 cm ' (a
peak). The dependence of the wave numbers of
these peaks and shoulders on —ha/ao (linear scale)
and on p is given in Fig. 5. The mode Griineisen
parameters obtained from Figs. 2 and 5 are shown in

Table I in comparison with similar data for other ma-

terials of the family.

IV. DISCUSSION

The Griineisen parameters obtained for the TO(1')
and LO(1') modes fit well into the systematics of the
materials in Table I ~ Their weighted average

3 (2 yro~r ~ + yLo~r ~ ) 1.37 is somewhat higher than

the values reported for its isoelectronic group-IV ma-
terial, Ge. A number of phenomenological model
theories for the dependence of the phonon frequen-
cies on lattice constant have appeared in the literature
(see Table I of Ref. 18). They do, however, usually
take the Gruneisen parameter of the I' phonons as an
input in their calculation. A recent microscopic cal-
culation based on the pseudopotential band structure
yields for the optical phonons of Si at I a Gruneisen
parameter of 1.8.'~ Although no microscopic calcula-

tions have been performed for InP, on the basis of
the results for silicon we can see that the "average"
Gruneisen parameter found in the present work for
the TO(1') and LO(1') modes is well understood
from a microscopic point of view.

We now switch to the question of the dependence
on lattice constant of the ruLo(f')-oiro(l') splitting as
shown in Fig. 3. This splitting is best related to mi-

croscopic theory through Born's transverse dynamical
charge ey",

er' ( VM/417) e («JLO To) (6)

er'(lnP) -2.54+4.5(ha/a) —88(ha/a)',

er'(GaAs) 2.18+4.4(ha/a) —88(ha/a)i

(in atomic units), where Vis the volume of the unit
cell, M is the reduced mass (1/M =1/Mi, +1/Mp),
and e is the infrared dielectric constant for frequen-
cies well above raLo(l') and below the electronic ab-
sorption edge.

In evaluating e~ as a function of lattice constant
from Fig. 3 with Eq. (6) we encounter the difficulty
that the volume dependence of e„ is not known ex-
perimentally. Data do exist, however, for GaAs and
Ge (see Table III in Ref. 21). In view of the theory
given also in Ref. 21 for the volume dependence of

we believe the corresponding coefficients for
GaAs and InP should be nearly the same. We thuC

accordingly takeit d inc /d lna 3 and obtain from
Fig. 3 with Eq. (6) the dependence of er' on lattice
constant shown by the crosses in Fig. 6. The results
are rather similar to those found for GaAs, 4 which
we reproduce for the sake of comparison in Fig. 7.
The experimental data of Figs. 6 and 7 can be fitted
with the quadratic forms
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FIG. 6. Born's effective dynamical charge as a function of
lattice constant and pressure caloulated from the data of Fig.
3 with Eq. (6) (crosses). The squares represent the results
of the full pseudopotential calculation performed with Eq.
(10) while the dashed lines were obtained with Eqs. (8) and
(9) under the assumption that &2 ~ a . The calculated

charges were slightly renormalized to bring them into
agreement with experiment for ha 0.

As shown in Etts. (7) the dependence of er' on lattice
constant is nearly the same for GaAs as for InP.

A number of attempts at calculating the eT of
tetrahedral semiconductors have been recently per-
formed. They fall into two categories. One of them
is based on semiempirical models of the tetrahedral
bond, such as the bond orbital model. Within this
model we find6

FIG. 7. Same as Fig. 6 but for GaAs. The experimental
points are from Ref. 4.

tice constant using reasonable assumptions and avail-
able information, to replace it into Eq. (8) and to
compare the obtained dependence of er' on ha/a
with the experimental results. The polarity ap can be
written22

ap V3/(Vt + V$)'

0.5

0.45

ey —EZ +7.6ep —3.6ap (8)

where EZ is one-half the difference in core charges
between the anion and the cation (EZ I for a III-V
compound) and ap is the polarity or ionicity parame-
ter defined by Harrison and Ciraci (ap-O. SO for
GaAs, ap-0. 58 for InP}. The "experimental" points
in Figs. 6 and 7 can be used in conjunction with Eq.
(8) to obtain the dependence of ap on lattice con-
stant, a property so far unknown. We obtain in this
manner the results of Fig. 8. It is, however, maybe
somewhat more instructive to adopt an opposite point
of view, i.e., to estimate the dependence of ap on lat-

0.4

0.01 0.02
-hala0

0.03 0.04

FIG. 8. Dependence on lattice constant of the polarity Ap

of InP and GaAs as obtained with Eq. (8) from the data of
Figs. 6 and 7.
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where V~ represents a "covalent" energy gap and V3

is an ionic contribution to the gap which is similar to
those designated as Eq and C by Van Vechten. At
this point we choose to neglect the minor difference
between the points of view of Harrison and of Van
Vechten (for a discussion see Ref. 22). The parame-
ter V~ is known ' to vary with lattice constant like
a ' (the equivalent parameter Ep in Van Vechten's
treatment varies like a '5). We do not know with
certainty the variation of V3 (or C) with a, but ac-

cording to some indications in the literature ' it
should be rather small. We thus assume V3 to be in-
dependent of a. With this assumption and Vq~a
we obtain the dashed lines of Figs. 6 and 7. These
lines agree with the experimental data reasonably well
at low pressures. None of them, however, represents
the nonlinearity observed at higher pressures.

Another possible approach is to use the microscop-
ic pseudopotential expression for er' [see Eq. (4.6) of
Ref. 7 and Appendix Al:

8„k 1 —8
er'- —hZ+ —X X

"
(nk~p, (n'k) (n'k~e' ' '

~n k )G, [iu, (G) sinG r —u~(G) cosG r [~ r~p„„-„«.V-E„-„)'
(10)

v, (G) - v,„(G)—vp(G)
(12)

are the symmetric and asymmetric pseudopotential
form factors expressed in terms of the atomic form
factors. For zero pressure, we used the empirical
pseudopotential form factors given by Heine and
Cohen. ~5 As customary, only form factors for
~G ~

& (2w/ap) Jl1 are taken (ap denotes the equili-
brium lattice constant). About 60 plane waves were
included in the band calculation and 10 special k
points~ to perform the k summation in Eq. (I).
This gives e~ 1.81 for InP (expt: eT 2.55). The
effect of pressure on eT arises from the change in lat-
tice constant. This affects the pseudopotential form
factors in two ways: (i} The form factors v, ,(q) are
needed at different wave vectors

~ q ~
compared to

zero pressure, namely, at ~q ~
-(2w/a)( J3, v4, v8,

Jl1), where a -ap(1 —ha/ap) is the lattice constant
under pressure. We obtained the form factors at the
shifted wave vectors by interpolating the Cohen-
Heine values with a cubic spline; (ii) the form factors
vi„and ep are screened ionic pseudopotentials, e.g. ,

ut„, „,&,~(q) Jtd r vt„;,„( r )e 'r'+, (13)
Ape(q}

In this approach eT is expressed in terms of the
Bloch states ~n k) and energies E„-„ofthe crystal

which are obtained from a pseudopotential —energy-
band calculation. In Eq. (10), hZ = —,(5 —3) -1 for
III-V compounds, N is the number of unit cells, the
6's are the reciprocal-lattice vectors, and p is the
momentum operator. Furthermore, 8„-„-1if n is

one of the four valence bands and 8„-„-0otherwise.

The crystal potential, which enters Eq. (I} explicitly
as well as implicitly via the Bloch states, is in a plane
wave basis (k+G~v~k+G ) =v(G —G ) with

n(G) - v, (G) cosG r + u,I(G) sinG r . (11)

Here r (
p
a)(1, 1, 1) with a the lattice constant and

v, (G) -vt„(G) + up(G)

I

and depend on the lattice constant via the atomic
i

volume Qo=
8
a'. The change of the dielectric func-

tion with pressure influences eT only negligibly,
mainly because e( q ) is needed only at moments
q & (2w/a) v3, where e(q) is already close to unity.
In addition we adopt a rigid-ion approximation where
v;,„(q) does not depend on the lattice constant.

The results of these calculations are shown in Fig.
6 for InP and Fig. 7 for GaAs (squares). The calcu-
lation yields a somewhat stronger pressure depen-
dence of eT than observed experimentally. As will be
shown in the following paper9 the same type of pseu-
dopotential calculation also yields a pressure depen-
dence of the lowest gap Eo larger than observed ex-
perimentally. This can be understood qualitatively
from Eq. (10). Since er' is inversely proportional to
the band gaps, an overestimation of deformation po-
tentials will be connected with an analog overestima-
tion of the volume dependence of eT. %e find the
Eo gap to depend rather sensitively on the form fac-
tor v, (11). The dependence of the form factor on a
is largely determined by the second zero of the pseu-
dopotential which —according to Cohen and
Heine" —occurs at q = (2.23)2n/ap for vt„and at
q -2.14 a.u. for vp. A 5% shift of the second vi„
zero to smaller q values brings the deformation po-
tential in agreement with the measurement (see Pa-
per 11). Correspondingly, the decrease of er' with
pressure becomes smaller by a factor of 2, also in
better agreement with experiment.

Both types of calculations presented above, the nu-
merical as well as the bond orbital model of Eq. (8),
predict the sign and the order of magnitude of the ef-
fect observed experimentally. They can be regarded
as satisfactory in view of the crudeness of the as-
sumptions involved and to superseed the macroscopic
lattice dynamical approach of Humphreys and Mara-
dudin. It will be shown in Appendix A that the nu-
rnerical theory just described can be approximated by
a simple algebraic function of the pseudopotential
form factors [Eq. (A7)]. This expression yields the
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same trend of decreasing eT" with increasing pressure
as the numerical calculations.

%'e now discuss the data of Fig. 5. The highest
mode in this figure extrapolates to 792 cm '

2LO(1') at zero pressure. As already pointed out,
the measurements under pressure were performed at
near resonance conditions for which the 2LO over-
tone is due to phonons with k =0 {I'phonons). ' It
is thus not surprising to find for this peak a
Gruneisen parameter y 1.2+0.05, equal to that ob-
tained for the LO phonon in first order (Fig. 2,
y 1.24 10.02). We should point out that for mea-
surements performedis at a fixed laser frequency and
low pressures on GaP one has found a Gruneisen
parameter about 20% smaller for 2LO(1') than for
LO(1'). This was attributed in Ref. 28 to a change in
the degree of resonance with pressure: co —zoo in-
creased with increasing pressure. The fact that in the
present measurements, ~here the degree of reso-
nance is kept nearly constant by changing the laser
frequencies, nearly the same y is found for LO(1') as
for 2LO(I') confirms the conjecture of Ref. 28. Cor-
responding to the resonant 2LO (I') overtone mode,
a resonant LO(1') +TO(I') mode is also observed.
Since this structure is weaker than the 2LO(I'), it is
only seen under strongly resonant conditions (84.4
kbar in Fig. 4, but not 33.3 kbar). The corresponding
Gruneisen parameter, y 1.3 +0.6, agrees well with
that of the average of the first-order TO and LO
modes (y-1.34+0.03).

An inspection of the neutron data of Ref. 29, the
calculations of Ref. 30, and the infrared work of Ref.
31 suggests that the additional TO+ LO overtone
mode seen in Figs. 4 and 5 is due to phonons extend-
ing over most of the surface of the Brillouin zone:
these overtone modes are nearly degenerate at X, L,
and K We designate the mode at LO(X,L)
+TO(X,L). Although its Griineisen parameter
(y 1.35 +0.05) is to be regarded as an average over
the surface of the Brillouin zone, the measured spec-
tra do not reveal any lifting of the X-L-K degeneracy
at high pressures. %'e must thus conclude that the
corresponding y's are nearly constant over the sur-
face of the Brillouin zone.

The remaining modes of Fig. 5 show negative
Gruneisen parameters. The mode at 190 cm ' for
p -0 can only be a combination of two split TA
modes (the TA modes split along all directions except
I' and I -X. Its shape, position, and Gruneisen param-
eter enable us, in comparison with similar structure
observed at 300 cm ' for GaP, to assign the mode to
TA(X) +IAi(X) combinations and/or TAi( W)
+TAi( W) combinations (the symbol I instead of T
indicates that this mode is mixed longitudinal
transverse). The remaining two modes, at 135 and
114 cm ' for p -0, are assigned to 2TA overtones at
X and L, respectively. The L overtones are likely to
be degenerate over most of the hexagonal Brillouin-

zone faces, ' while the X overtones probably also ex-
tend over a wide area around the center of the square
faces. The y's of these 2TA modes are, as usual for
the tetrahedral semiconductors (see Table I), nega-
tive, and their magnitudes are large.

It has been suggested that there is a relationship
between the negative y's of these TA modes and the
pressure at which the phase transition {to an NaCl
phase in the case' of InP) takes place. Although this
phase transition occurs at pressures far below those
required to drive the TA modes to zero frequency,
the negative y indicates a "soft-mode" behavior which
may be related to whatever mechanism is responsible
for the phase transition. It has actually been suggest-
ed in Ref. 3 that yTA~N is a linear function of the
transition pressure. Data obtained since, including
the present ones, indicate that this law is not as accu-
rately fulfilled as proposed in Ref. 3 (see Fig. 9).
The measurement of yT~~~~ for a number of other
tetrahedral semiconductors (Ge, GaSb, InAs, AlSb,
CdTe) would be highly desirable in order to clarify
the relationship, if any, between the TA "soft modes"
and the phase transition under pressure.
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FIG. 9. Griineisen parameter y~A~~~ plotted vs the pres-
sure of the phase transition for a number of zinc-blend-type
semiconductors. ith the exception of InP (present data)
and GaAs (Ref. 4) the data stem from Ref. 3.
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We now address ourselves to the theoretical in-

terpretation of the large, negative y's of the TA
modes. A number of macroscopic model calculations
based on shell models or valence force parameters
(see Refs. 2, 32, and 33) yield negative values

(yrA&g& = —0.4) for this parameter but of a magni-
tude considerably smaller than observed. This
discrepancy is not surprising since most of these cal-
culations fail to yield the very flat TA bands and give
for TA(X) frequencies about twice as high as ob-
served experimentally. These frequencies can be
lowered to agree with the experimental ones by intro-
ducing adiabatically moving bond charges. 34 The
bond charges Z~ are related to the static dielectric
constant a„ through Zi, =2/a . ' Thus, while a„de-
creases with increasing pressure, Zq increases and
drives the TA modes further down therefore increas-

ing the magnitude of the negative yT~. A recent mi-

croscopic calculation for Si, based on the pseudopo-
tential band structure, yields yTA~N- —2.4, in reason-
able agreement with the results reported here for InP. '

APPENDIX A: DYNAMICAL EFFECTIVE CHARGES

The transverse dynamical effective charges of the
ions in a semiconductor or insulator can be defined
as follows. 'a small displacement in direction A. of a
whole sublattice (which we label by an index a) with

respect to the rest of the crystal will induce a certain
macroscopic dipole moment P„(a) in the P, direction
in the crystal. This is analogous to the piezoelectric
polarization but requires an "optical" displacement of
the ions rather than a macroscopic deformation of
the crystal. Furthermore, the macroscopic electric
field in the crystal is kept zero. This boundary condi-
tion is also used in piezoelectricity and serves to
separate the surface depolarization effects from the
intrinsic bulk dipole moment. The transverse or
Born dynamical effective charge of ions of type a,
er'» (a), is defined as the dipole polarization P„(a)
per unit displacement of sublattice e in X direction
for a fixed electric field. For cubic materials sym-

metry gives er'» (a) = er'(a) S» Let us restr.ict our-
selves to cubic crystals with two sublattices. For Si
the point-group symmetry gives er'(I) -er'(2). This

er'qq(a) =Z —Jtd r r„Sn),(r, a) (A2)

where Sn),(r, a) is the first-order change in electron
density upon a unit shift of the sublattice with ions of
type u with respect to the other in the A. direction
and keeping the macroscopic field zero. We denote
by S V~(r, a) the corresponding first-order change in
the potential. The effect of the electric boundary
condition can be understood by Fourier analysis of
the total electric potential induced by the shift of sub-
lattice a. The induced maeroseopie field is constant
over a unit cell and has therefore no Fourier com-
ponents G ~0. The boundary condition of zero ma-
croscopic electric field therefore leaves all G ~ 0
components of the induced potential unaltered while
the G 0 component is kept zero, S V„(G, a) =0 if
G =0. In terms of the electric polarizability X(r, r'),
one has

Sn„(r) = Jt d)r' X(r, r')S V),(r')

In the rigid-ion model one has

er'(a) = Z —X X„"(0,6 ) [i) (G) G„e j
G g)do

(i)(0 p) SX( q. q +6)
Bttt ~

(A3)

(A4)

Here Z =3 and 5 for a =In and P, respectively.
i) (G) is the screened pseudopotential form factor for
ions of type a and 7 =+(T~a)(1, 1, I). In the Har-
tree approximation, X(q, q + G) is given by the ex-
pression

symmetry is not sufficient, however, to guarantee
er'-0 in Si, or, more generally, er'(I) —er'(2) in
binary compounds. This is a consequence of transla-
tional symmetry and charge neutrality: If one moves
both sublattices by the same amount a polarization
proportional to er'(I) +er'(2) is induced. Since a ri-
gid displacement of the whole crystal produces no net
dipole moment, one must have

er'(I) +er'(2) =0

This property has been called the "acoustical" sum
rule. ' ey' can be expressed in terms of linear
response functions. ' By definition we have

2 "k 'k — v i — ~ &( +o) T'
X(q, q +Q) —X

"
(n k (e '+ (n' k + q')(n'k +q le"

N E~k E
Isg k ~ n k+q

(As)

Here ~nk) and E„-„are the valence and conduction

Bloch states and energies of the perfect crystal which
are obtained from a pseudopotential energy-band cal-
culation. The remaining symbols are the same as in
Eq. (10) in the main text. In the form of Eq. (A4),
the acoustical sum rule is not automatically satisfied;

I

i.e., if X is calculated in some approximation and
used in Eq. (A4), the translational invariance condi-
tion (Al) might be violated This result. s from the
fact that linear response functions like Eq. (AS) are
defined with respect to a fixed origin rather than with
respect to the actual ion positions. One can show,
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however, that the acoustical sum rule is a self-
consistency requirement in Eq. (A4). '40 It is ful-
filled if the same pseudopotential is used on the
right-hand side of Eq. (A4) as for the energy bands
and wave functions in Eq. (AS).

It is illustrative to calculate eT with a simple model
for the Bloch states required in Eq. (A4). We adopt
the band-structure model of Heine and Jones, '

where only the form factors at G -(2w/a) J3 and

G - (2w/a) J8, which are labeled v (3) and v (8),
are considered as nonzero. The bands and wave
functions are calculated by perturbation theory as-
suming that the pseudopotential is small with
respect to the kinetic energy. Since v (3) is actually
of the same order as the kinetic energy, the
perturbation treatment should give only qualitative
results.

In the long-wavelength limit, one obtains

(2q G/Er G'), G ]220}
lim X(q, q+G) = — . — V cosG r —iV sinG r
q 0 16q Ge' '', G - ]I I I }

EgE„G2

(A6)

%'e can now check whether the acoustical sum rule is
fulfilled. Since Z&„+ZP=8, then

Xer'(a) - XZ —8 =0 (A9)

In Eq. (A6), Er represents the average energy gap
which is in this model

Er - u)„(8) + vp(8) + (I/E~) [uf„(3) + vp(3) ], (A7)

and E„- t (2w/a) . This gives for er',

er(a) -Z —(8/Ee)] v (8) + u', (3)/E„]
-—hZ —(8/Er)]v, (8) +2v, (3)v, (3)/E„]

(AS)

I

In Si, one has Zt -Z2-4 and Eq. (A7) correctly
gives eT -0. It is interesting to note that the transla-
tional invariance condition (Al) restricts the possible
analytical forms for er' Once we. infer from Eq. (AS)
that X ~E~ ', and use for Eg the perturbation expres-
sion of Eq. (A7), the acoustical sum rule alone al-
ready leads to the form of Eq. (A8).

The dependence of eT" on lattice constant results
from the corresponding dependence of the factors as
discussed in the main text. With Eq. (AS) we find a
dependence some~hat larger than that obtained with
the numerical calculation but the dependence found
with Eq. (AS) is very sensitive to the exact value of
u, (8) and its derivative. However, the trend of de-
creasing eT" with pressure is also found.
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