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Defect modes due to substitutional anion-pair and cation-pair impurities in ionic crystals
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Defect modes due to substitutional anion- as well as cation-pair impurities aligned in the [110]direction
in various alkali-halide crystals have been computed using the Green s function technique and compared
with experimental results, The following systems were studied: KC1:H -H, KCl:D -D,
KBr:H -H, KBr:D -D, RbC1:H -H, NaC1:H -H, KI:H -H, KI:El -Cl, KI:Br -Br,
KI:Na+ —Na+, KI:Rb+-Rb+, NaC1:F -F, NaC1:Ag+-Ag+, and KC1:Na+-Na+. We have considered the
vibrations of 12 particles, viz. , the two-defect ions and their ten nearest neighbors; i.e., a 36X36-
dimensional defect space has been used. Mass changes as well as the changes in the short-range interactions
due to the introduction of defects have been taken into account. The system has D» site symmetry around
the defect ions which has been used to block-diagonalize the relevant 36 X 36 matrix by employing group
theory. Six irreducible representations thus obtained were used to compute the defect modes, three of which

are infrared active while the remaining three are Raman active. Numerical values of the required Green's
functions calculated on the basis of the neutron-fitted shell-model parameters were used. The computed
modes are found to be in good agreement with the experimental values.

INTRODUCTION

%'hen isolated point defects are introduced in an
otherwise perfect crystal, it exhibits new vibra-
tional modes called defect modes. In these modes
the mode frequency lies outside the allowed bands
of frequencies for the phonon propagation in the
host crystal and hence the vibrations remain lo-
calized near the defect ions. Such modes are ac-
cordingly termed as the localized modes. Besides
these, so-called resonance our qualilocalized
modes can also occur, whose frequencies lie in
the bands of allowed frequencies and which are
characterized by a large amplitude of vibration of
the defect atoms or of those atoms with which they
interact directly. The experimental and the the-
oretical study of these modes has acquired much
importance recently, owing to the fact that the in-
troduction of an impurity as a "probe" in a lattice
provides a direct technique for investigating the
lattice forces. ' '

A wide variety of experimental techniques, such
as specific-heat and thermal-conductivity mea-
surements, infrared absorption, Raman spectro-
scopy, Mossbauer effect, etc. , can be used to
study these modes experimentally. Several ex-
periments have recently been carried out on the
localized and resonant modes due to pair impur-
ities in ionic crystals. De Souza et al. ' ' used the
infrared-absorption method to measure the local
mode frequencies in KCl and KBr containing
H -H, H —D, and D -D pair impurities along the
[110] direction and also localized modes due to
H -H pairs in the [110]direction in NaCl, RbC1,
and IG. From polarized-light measurements they

have given unambiguous assignments to the ob-
served peaks. Becker and Martin' observed re-
sonant modes due to F -F pairs in NaCl. Their
experiments on infrared absorption revealed six
peaks apart from the main resonant peak due to a
single F ion impurity which they attributed to the
presence of F -F pairs in two configurations,
viz. , the [110] and [200] configurations. Resonant
modes due to Na ion pairs aligned in the [110]di-
rection in KCl have been observed by Templeton
et al.' while gap modes (localized modes whose
frequencies lie in the gap between the acoustic
and optical bands) due to Cl, Br, and Na' ion
pairs in KI have been observed by Ward and Clay-
man" using the impurity- induced infrared-absorp-
tion method. Resonant modes due to Ag' ion pairs
in NaCl have been observed by Moiler et al." us-
ing Raman spectroscopy.

To account for the observed modes due to H -H,
D -D, and H -D pairs, theoretically, de Souza
et al. employed a coupled-harmonic-oscillator
model. Ward and Clayman" have applied the
molecular-model method to compute the gap
modes due to Rb' ion pairs in KI. Haridasan
et al."'"applied a Green's-function technique
to explain theoretically the observed defect modes
of the systems KCl:H -H, KCl:D -D, and
NaCl: F -F, but they considered the vibrations
of only four particles, namely, the two defect ions
and their two nearest neighbors only; i.e., they
used only a 12 x 12-dimensional defect space,
whereas a more realistic model would have been
to consider the vibrations of the defect ions to-
gether with all their nearest neighbors. Ear-
lier, we had reported" the results of our calcu-
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lations of the defect modes due to H -H and
D -D pairs in RbCl using a Green's-function
technique and considering the vibrations of the
defect atoms only, i.e. , using only a 6 x 6-dimen-
sional defect space.

In this paper we present our calculations of the
defect modes, using a Green's-function technique,
for the systems KC1:H -H, KCl: D -D,
KBr:H -H, KBr:D -D, NaC1:H -H,
RbC1:H -H, KI:H -H, KI:Cl -Cl, KI+Na-
Na', KC1:Na'-Na', NaC1: F -F, NaC1:Ag'-Ag,
KI:Br -Br, and KI:Rb'-Rb', taking the defect
ion pairs to be in the [110)direction. We consid-
er the vibrations of 12 particles, viz. , the two de-
fect ions and their ten nearest neighbors, i.e.,
a 36 x 36-dimensional, defect space is used. The
system has D» site symmetry around the defect
ions which can be exploited to block-diagonalize
the relevant 36 x 36 matrix. Six irreducible re-
presentations are thus obtained in terms of the
Green's functions of the perfect crystal and the
elements of the perturbation matrix consisting
of the mass changes and changes in the short-
range interactions at the defect sites. These ir-
reducible representations are used to compute the
defect modes, three out of which are infrared
active while the remaining three are Raman active.
The calculated modes agree very well with the
experimental values.

METHOD OF CALCULATION: THE GREEN'S-FUNCTION

APPROACH

It is appropriate to begin with a brief resume of
the dynamics of crystals containing point defects.
It is well known" that in the harmonic approxi-
mation, the time-independent equation of motion
for a perfect crystal containing N unit cells each
of which has r atoms, can be written as

L U=O,

where L denotes a 3rN x 3rN matrix whose ele-
ments are given by

L,q(lk)l'k';uP)=M„uP5„, 5~„5 q
Poq(lk)-l'k')

and U is a column vector with 3rN elements
U (lk). Here U, (lk} denotes the ath Cartesian
component of the displacement from the equil-
ibrium position for the kth atom in the lth unit
cell, and the other symbols have their usual
meanings. With the presence of the point defects,
the corresponding equation for the perturbed crys-
tal can be written as

(L —5L)V =0.
The elements of the perturbation matrix 5L are
given by

Here J, g, and U, are in the 3n x 3n space. The
set of SrN equations (2} now separate into two sets
of equations, viz. ,

(3)

(4)

U, =gJU, ,

U, =g„JU, .
The set of equations (3) comprises a set of 3n

homogeneous equations for the 3n displacements
of n particles constituting the defect space. A
nontrivial solution for these 3n displacements
exists only if the determinant of their coefficients
vanishes; i.e.,

(5)

where I is the 3nx 3n unit matrix.
The determinantal equation (5} is the basic equa-

tion for the computation of defect modes due to
point defects in otherwise perfect crystals. Fur-
ther simplification is achieved by exploiting the
symmetry involved in the problem. Figure 1 de-.

5L N(lk, l'k') sP) = (Mq —M, ~) )))25„.5~~, 5
q

[-P ))(lk) 1'k ) )f)et)(lk) l k )1

Equation (1) can be written as L '5LU= U or as

(2)

where G-=L ' is called the Green's-function ma-
trix or the host crystal. An explicit expression
for the elements of the matrix Q is given by

1
G e(lk)l'k', (o') =

( )„,
e (klRj) e~(k'IRj)

4P —(d~(R)

x exp(iR ~ [X(lk) —X(l)k))]) .
Here N is the number of unit cells in the crystal,
X(lk) is the equilibrium position vector of the kth
atom in the 1th unit cell, M~ is the mass of the
kth kind of ion, re~(R) is the normal-mode frequen-
cy of the crystal, described by the wave vector
R, andbranchindex j audie (k ~R~} is the o.-Car-
tesian component of the associated unit polar-
ization vector.

The matrix 6L can have at the most 3n x 3n non-
zero elements where n is the number of lattice
sites directly touched by the presence of the de-
fect ions including the defect ions themselves.
For the present case n =2+10=12. Here 2 is the
number of defect ions and 10 is the number of their
nearest neighbors. We can now partition the 6L,
G, and U in terms of the Snx Sn space (called the
defect space} and the rest of the space as follows:
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FIG. 1. 12-particle system comprising the defect
space.

picts the defect ions together with their nearest
neighbors in the equilibrium configuration. Par-
ticles 1(0,0, 0) and 2(1, 1,0) are the defect iona
while the remaining 10 particles are their nearest
neighbors in the host crystal. The system has D»
site symmetry around the point P. The character
table of the D» group can be used to construct the
normal coordinates for the system from which
one can construct the unitary matrix U, which
would, by a unitary transformation, block-diag-
onalize the 36 x 36 (I —GJ) matrix into eight ir-
reducible representations as follows:

I'36= 6A +5B, +3B2 +4B3

+ 2Av+ 5B,v+ 6B2~+ 5B,~.
The determinantal equation {5) separates into eight
determinantal equations:

0,

In the present case, the determinants ~B,, ~

and

~A„~ are seen to be identically equal to unity, and
hence the equations ~B, ~=0, ~Au~=0 give no
modes.

The defect modes are thus analyzed in terms of
the three Raman-active modes {A„B„,and B„)
and the three infrared-active modes (B,u, B,U, and

B.v~-
The elements of the six determinants are in

terms of the elements of the g and J matrices.
The elements of the g matrix for the anion-pair
impurity can be written in terms of the following
26 independent Green's functions:

g, =G,„(000,—;000,—;&),
gm=G„(000, +;000,+; uP),

g~ =G„„(000,—;100,+;uP),

g~=G„„(000,—;100,+;uP),

g, =G (000, —;110,—;uP },
gs=G (000,—;110,—;u2),

g, = G „{000,—;110,—;uP ),
g, =G„(000,+;110,+;uP),

g, =G,„(000,+;110,+; u2),

g„=G „(000,+;110,+; u)~},

g„=G„,(000, —;111,+; (u ),
g„=G,„(000,—;111,+; (u'},

g» = G„(000,+;200, +; &v2),

g„=G„„(000,+;200, +; (u ),
g„=G„(000,—;210,+; (a&2),

g, ~
= G,„(000,—;210,+; (u'),

g»=G„,(000, —;210,+; &u ),
g, s

= G„(000,—;210, +; uP),

g, 9
= G„(000,+;220, +; a2),

g,o
= G,„(000,+;220, +; uP ),

g2, = G„(000,+;211,+; uP ),
g»=G„(000,+;211,+;e'),
g»=G„(000,+;211,+; uP),

g24=G, „(000,+;310,+; uP),

g» = G„(000,+;310,+; uP),

g„=G„(000,+;310,+; &u') .
For the cation-pair impurity the g matrix can

be written in terms of similar 26 Green's func-
tions obtained from the above by an interchange
of plus and minus signs. g„ for example, is now

G ~(000, +;000, +; uP) instead of being
G ~(000, —;000, —;uP), and so on.

The perturbation matrix J contains the mass
changes and the changes in the short-range forces
at the defect sites. The short-range forces can
be expressed in terms of Kellerman" coefficients
A and B. To make the situation simple we assume
that Chere is no relaxation around the defect ions
making the changes in B to be zero.

Let AA be the A parameter for the defect-host
bond minus the A parameter for the perfect lat-
tice, and &M be the mass of the substituted host
ion minus the mass of the substituting defect ion.
The elements of the Jmatrix are then written in
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terms of the following two quantities:

J,=~M~'+2aA, J,=zA.

ANALYTICAL FORMULAS

Analytical expressions obtained for computation
of the three infrared-active modes and the three
Raman- active modes after block-diagonalizing the
$6 x 36 (I -gZ} matrix are given below.

B,„mode (transverse infrared ac-tive mode)
defect ions moving inPhase in [001) direction
The mode frequencies are given by the determin-
antal equation

IB„I=o.
As noted earlier, IB,„I is a 5 x 5 determinant,
but in view of several of its elements being zeros,
it is seen to be equal to a 2 x 2 determinant whose
elements are given below:

bll Jl(gl g7} 2(g3 gll)»

12 ~2(gl gV g5 gll)»

b21 ~2(gs g13 g 10 g21) 1(gs gll)»

baa =1+Js(y»gs-gs-gls +2gll glo g21) ~

B,„mode (longitudinal infrared-active mode)—
defect ions moving in Phase fn [110]direction
The mode frequencies are given by the determinan-
tal equation

IB, I=O ~

Here IB,„I
is a 6 x 6 determinant, but it is found

to be equal to a 4 x 4 determinant owing to several
of its elements being zero. The elements of the
4 x 4 determinants are as follows:

C„=1 —J,(gl+ g 5+ge} ' Js«3+g4+gi5+gie}»

Cia. (JR» ~}(g5 ge gl gs g15 g16)»

Cls J2(gl g5 ge g3 g4)»

C,4
= LT2g, 2

21 ~2(gs gs gso gi3 g24)

~1(gs g15 gle)»

g15+gle gso}»

CQS =Js J2(gs-ge- g9+gls+gle g'ls)»

C24 = 2»fmJQ(gss —gs)»

Csl =Js(gs+ 2gs+g'13) Jl(gs+g'4)»

C32 ( 2 )(g3+g4 ge gs g13)»

Css 1 Js(gs+g'8 gs gs
C34 = 2J~g

4l lg12 QgRQ &

CBQ= JXTQ(gss-gis-gs}»

C4, = 2JQ(gs-g, s)»

C« = 1+Js(gls+glo g'2 -gsl} ~

B,v mode (transverse infrared a-ctfve mode)—
defect fons moving in phase in [110]direction.
The mode frequencies are given by the determin-
antal equation

Here IB,„I
is a 5 x 5 determinant but in view of

several of its elements being zero, it is seen to
be equal to a 3 x 3 determinant whose elements
are given below:

dll = 1 Jl(gl+g'5 ge) +Js(2gs+gls gie+g4}»

dla = (JsfM(gl+g5 ge g's g'15+g'le)»

dl3 2(gl gS gB g3 g4)»

dsl ——~Jl(gs+g15 gle)

2~(gs gB gis g24 g20)»

d22=1 —J'2(gs-g, +g'9 gao g15 glB+ g24)»

d23 Ja~(g15 giB gs ge g9 gls)

dsl =Ja(gs+gis+ 2ge} Jl(gs+g4)»

des= (JsfJ }(gs+g4 g8+gs 'gls)'
das = 1 —Js(gs —gs —g4+gs+gs) .

A mode (Roman active -longitudinal mode) de-
fect ions moving out of Phase in [110]dfrection.
The mode frequencies are given by the determin-
antal equation

IA, I=o.
Here IA I

is a 6 x 6 determinant, but in view of
several of its elements being zero, it is seen to be
equal to a 4 x 4 determinant whose elements are
given below:

11= + 1(g'5+g'8 gl + 2( gs g'15 g'18 ge)»

A 12 (Jsf»f2 }(gi g'5 ge gs+gls+gle)»
Ais Js(g3 g4 g5 ge gl)»
A,4

= -2J'~g, m,

Asl =+»fmJl(g»5+gle —gs)

~2(ge g24 gao g2 gis)»
Asa = 1 Js(g2 —gs gs+gls+gle gso g24)»

As=sJ~sgl+agls+gel- ge+gB gs»}.-
A~ = 2~2(g-s+ g..),
A„=Jl(g3 —g4) —Js(gs+g, s 2gs)»

A„= (J,/»f2 )(g +g„g,+g, g,),
Ass = 1 —Js(gs gs —g'8 gs+ ge)»-
A~ =-2J~g,
A4, = -&igiq+ W~gm

J 2(gls —g'22 —g'9),

A43 =-2W(gls+g, ),
A« =1 Js(gs gl-s g., +-g„) .-
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B, mode (transverse Raman ac-tive mode) d—e
feet tons vibrating out of phase in the [110]di
rection. The mode frequencies are given by the
determinantal equation

(B„(=0.
Here ~B„~ is a 5 x 5 determinant, but in view of
several of its elements being zero, it is seen to
be equal to a 3 x 3 determinant whose elements are
given below:

B„=l—J,(g, —g5+g6) -J2(2g3+g, +g„—g„),
B13= (Z2/M)(g, 5

—g18 —g5+g6 —gl —g 3) &

B13=~2(g3 —g4+g5 'g6

&t2~(g2 gl3 g8 g20 g24)

~l(g3 g15 g16) &

22 2(g2 g3 g9 g15 g16 g20 g24) &

W&J2(g13 g3 g3 g9 g15 gl6) &

B31 = ~1(g3 g4)+~2(2g8 g2 g&3) &

32 ( 2f~)(g4 g3 g8 g9 g13) &

B33= 1 —~2(g4+g2 -g3 —g6+g9) ~

B, mode (transverse Raman ac-tive mode) d—e
feet ions moving out of phase in [001]direction.
The mode frequencies are given by the determin-
antal equation

„f=o.
Here ~Bz ~

is a 4 x 4 determinant but in view of
several of its elements being zero, it is seen to
be equal to a 2 x2 determinant whose elements are
given below:

T„=l-d, (g, -g, )+K 2(g3 —g„),
T&2 -J2 g, +g„—g, -g, ),
T21 =1 ~ (gll g3) +~2 v (g2+g&3 glo g21) &

T22 —1 —J2 (g2 +g13 g„-2g3 g10 g21) .

RESULTS AND DISCUSSION

Inspection of the normal coordinates reveals
that the three modes B,U, B,U, and B,U are ir-ac-
tive while the remaining three B, , B, , and B3g
are Raman active. Further, B» and A, are seen

TABLE I. Local-mode frequencies {in cm ) of H -H pair impurities in the [110]direction in KCI, KBr, KI, NaC1,
RbC1, .and of D -D pair impurities in the f110) direction in KCl and KBr.

System

&A (in
units

of
e /2 V)

Infrared-active modes
&2v {L mode) B3U (T& mode) B~v (T2 mode)
Calc. Expt. Calc. Expt. Calc. Expt.

Raman-active modes
A~ (L mode) B«(T& mode) B3~ {T2 mode)
Calo. Expt. Calc. Expt. Calc.

Kcl:H -H
-4.88 464.53 538.14
-4.92 462 ~ 08 463.5 535.87 535
-4.96 459.25 533.57

521.17 543.8
518.79 512.5 541.46
516.39 538.14

484.7
482.46
479.96

490.76
488.26
484.44

KBr H -H
-5.3

5 4

-5.5 396.0

409.66 481.05 472.89 491.55

402.78 402.4 475.39 488.4 466.06 457.2 485.52
482.0

471.38 462.07 481.08

440.04

434.61

429.06

432.94

426.77

418.52

KI:H -H
-6.87 328.93 392.1
-6.89 327.69 324.0 391.07 424.8
-6.91 326.39 390.0

388.15 405.33
387.05 390.3 404.31
385.87 403.28

371.76
370.55
369.67

351.63
350.50
349.3

-4.59 492.48 603.03 604.5 651.94
NaC1:H -H -4.63 488.97 497.4 600.22 600.0 601.62 583.2 649.35-4.67 485.32 597.14 598.8 646.8

-5,66 446.71 515.06 505.38 524.67
RbC1:H -H -5.68 445.44 445.5 514.00 515.6 504.27 482.9 523.63

-5.70 444.19 512.92 502.16 522.61

571.27
568.64
565.95

465.36
464.22
463.1

552.2
549.14
546.06

470.48
469.32
468.17

KC1:D -D
-4.93
-4.97
-5.01

328.76
326.65
324.47

382.0 369.86
331.5 380.21 375.5 368.25 368.0

378.6 366.64

386.0
384.6
383.0

352.16
350.8
349.3

347.72
345.92
343.96

KBr:D -D
-5.3
-5.4
-5.5

291.07 341.96
286.19 287.1 338.05
281.33 333.94

336.29
342.9 332.24 328.4

328.32

351.31
347.49
343.62

324.45
321.16
317.88

309.09
304.65
300.18



21 DEFECT MODES DUE TO SUBSTITUTIONAL ANION-PAIR AND. . . 4855

to be longitudinal modes, whereas the remaining
four are transverse modes. Using the analytical
expressions of the preceding section, the com-
putation was carried out on the TDC-12 computer
at the Faculty of Engineering, University of Jodh-
pur, Jodhpur. Required Green's functions com-
puted on the bases of neutron-fitted shell-model
parameters" '0 were used. A variable force con-
stant approach has been followed. Table I shows
the computed ir-active as well as the Raman-ac-
tive modes for the systems KCl: H -H,
KBr:H -H, KI:H -H, NaCl:H -H,
RbCl:H -H, KCl:D -D, and KBr:D -D . The
experimental values of the ir-active local-mode
frequencies reported by de Souza et al.' ' are also
displayed in the same table. Raman-active modes
in these systems have not been reported so far,
but our theoretical prediction will be useful for
future experiments, whenever carried out in these
systems. One can notice a very good agreement
between the observed and the calculated ir-active
local modes for the system KCl:H -H at 4A

=-4.92 (in units of e'/2V of KCl). Likewise for
the systems KBr:H -H, IQ:H -H, NaC1:H -H,
RbC1: H -H, KCl: D -D, and KBr:D -D, good
agreement between the observed and calculated
ir-active local mode at nA (in units of e'/2V of
respective host crystals) =-5.4, -6.89, -4.63,
-5.68, -4.9V, and -5.4, respectively. At these
values of ~, the computed resonant modes are
displayed in Table II. It may be recalled that for
localized modes the mode frequencies are greater
than (di, while for resonant modes, the mode fre-
quencies are less than ~~. Here (di denotes the
maximum frequency for the phonon propagation in
the perfect crystal. For example, in the case of
KC1, vi is 216 cm '. The roots of the determin-
antal equation Lf GJ

i
=-0 which are greater than

~~ are the local-mode frequencies, while the re-
maining are the resonant-mode frequencies.

Table III shows the computed gap modes together
with the experimentally observed" ir-active modes
due to Cl, Br, and Na' ion pairs in IQ. In the
case of IQ, the frequency band from V1 to 94 cm '

TABLE II. Calculated resonant-mode frequencies (in cm ) for the systems KC1:H -H,
KC1:D -D, KBr:H -H, KBr:D -D, NaC1:H -H, KI:H -H, and RbC1:H -H .

Infrared-active modes Raman-active modes
B2v B3v Biv Ag Big B3g

(L mode) (Tz mode) (T2 mode) (L mode) (Tz mode) (T2 mode)

KC1:H -H

KC1:D -D

Rbc1:H -H

NaCl:H -H

KBr:H -H

KBr:D -D

KI:H -H

145.12

145.11

125:12

127.74
139.34
170.83

69.81
106.6
119.56
126 ~ 63
135.0
69.94

106.61
119~ 56
126.6
134.64

8.33
51.9
61.4
92.83

146.78

148.01

146.82

139.52
177.67

84.21
98.0

106.22
119.19

98.00
106.22
119.19
135.14

61.78
83.7
96.05

145.89

145.97

142.83

171.4

82.93
99.89

119.3

82.96
99.91

119.28

55.4
61.35
84.3
94.0

149.42

149.61

143.7

99.68
105.00
131.19
139.34
177.27
83.08
98.5

106.21
123.3
135.81
83.08
98.5

106.2
123.31
135.55
55.92
83.75
84.17
90.36
96.0

63.6
143.96
144.96
148.62
64.14

141.86
146.06
152.87
50.04

127.42
92.87

132.49
139.34
159~ 83

44.41
84.48
95.00

103.0

44.54
84.68
95.1

103.0
37.78
62.7
69.75
83.7

I48.29

148.30

128.12

175.79

72.8
82.0
98.84

72.8
82.08
98.84

52 ~ 5
84.27

102.0
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TABLE III. Gap modes (in cm ) due to Cl, Br, and Na ion pairs in the [110]direction in KI.

&A (in Infrared-active modes Raman-active modes
units of B&u (L mode) B3u (T& mode) B&u (T& mode) A~ (L mode) B«(T& mode) B3~ (Tz mode)
e~/2 V) Calc. Expt. Gale. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc.

KI:Cl -Cl
1.5
0.5

-0.5

76.0 79.81 80.99 83.27 86.96
75.81 72.02 79.73 80.26 80.96 82.84 83.16 ' ' ' 82.25
75.6 79.61 80.65 83.04 78.15

79.03
78.98
78.75

-12.0

KI:Br -Br -13.0

-14.0

72.47
75.48
89.57
71.5
75.4
86.84
73.94
84.47

73.65
86.97

72.46
77.44

71.44
76.79

76.47

78.88

77.79

73.0
79.41
89.58

78.29 ' ' 71.7
79.0
87.44
70.26
78.55
85.32

72.4

70 26

77.28

76.74

76.19

-5.55 79.26 84.84 84.49 87.21
KI:Na+-Na+ -5.65 78.09 76.02 83.92 84.1 83.65 ' 86.46

-5.75 76.76 82.81 82.64 85.59

92.62
92.39
91.7

82.42
81.33
80.23

is a forbidden band for phonon propagation, al-
though the maximum frequency of phonon propa-
gation is 142 cm '. This gap between the acous-
tical and optical band is ascertained from the
fact that throughout this frequency band the imag-
inary part of the Green's function is zero. It is
seen from Table III that the computed ir-active
modes are in good agreement with the observed
ir-active modes, when A=0.5, -13.0, -5.65, re-
spectively, for the systems KI:Cl -Cl,
KI:Br -Br, and KI:Na'-Na'. At these values of
AA parameters, the computed resonant modes are
displayed in Table IV.

Table V shows the computed and experimentally

observed resonant modes for the system
KCl: Na'-Na, NaCl: F —F, and NaCl:Ag -Ag'.
For the system KCl: Na'-Na only one ir-active
resonant mode frequency 44 cm ' has been re-
ported' so far, which is in excellent agreement
with one of the computed B,~ modes (43.95 cm ')
at ~=-6.0. Inthecaseof NaCl: F -F Becker
and Martin' observed six ir-active local modes,
namely, 32.7, 38.0, 40.2, 44.7, 48.4, and 72.0
cm '. They suggested the existence of these modes
was due to the presence of F -F ion pairs in two
configurations, namely [110]and [200]. Our cal-
culation of the B,u mode at AA =-5.94 agrees very
well with four out of these six modes; the remain-

TABLE IV. Calculated resonant-mode frequencies (in cm ~) for the systems KI:Cl -Cl,
KI:Br -Br, and KI:Na+-Na+.

System

Infrared-active modes
Bgu B3u Bgu

(L mode) (T& mode) (T& mode)

Raman-active modes
A~ B(g B3g

(L mode) (T, mode) (T& mode)

KI:Cl -Cl

KI:Br -Br

KI:Na+-Na+

52.7

13.65
41.87
51.76

48.55

62.53

18.18
43.27
62.26

55.79
62.03

110.36
117.54
55.4
61.73
98.41

49.95

62.2

44.51
55.5
61.33

35.34
50.92
97.74
98.24

52.5

38.66
54.0
62.71
69.42
40.23

57.28
98.89

108.02

54.44
95.24

117.63

39.77
50.5
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TABLE V. Resonant-mode frequencies (in cm ~) for the systems NaCI:F -F, NaCI:Ag+-Ag+, and KCI:Na+-Na+.

System

4A (in
units

of B2~ (z,

e /2 V) Calc.

Infrared-active modes Raman-active modes
mode) BSU (T& mode) B&z (T2 mode) A~ (L mode) B«(T& mode) B3~ (T2 mode)

Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt. Calc. Expt.

KCI:Na+-Na+

-5.96

-6.0

-6.04

23.75
30.5
85.07

103.09
112.9
145.44
58.08
93.59

113.94
146.18

31.62
83.96

103.93
113.3
145.46

91.34
146.14

52.4
60.37
80.4

104.33
145.55

90.5
146.12

61.28
80.5
86.15

105.78
145.56

37.39 44.0 84.08
43.95 102.95
95.91 111.06

146.77 146.16

58.47
147.76

45 7 r ~ ~

105.55
148.7

57.35
147.37

79.07
124.74
147.48
153.52
164.78

81 ~ 81
88.00

114.5
119.31
149.5
167.74
78.53

147.57
153.51
165.1

67.74
105.12
147.7

102.98
110.12
148.12
157.4

51.94
66.84

106.0
147.77

NaCI:F -F -5.0

-5.06

23.7
49.0
83.25
89.02
94.15

120.45
24.4
33.1
38.6
47.67
50.92
80.87
14.34
20.S8
41.21
51.34
79.54

121.12

32.7
38.0
44.7
48.4

106.0
130.05
140.14
171.29

105.0
130.05
140.19
171.3

104.21
129.94
140.24
171.4

65.12
122.54
129.95
170.67

73.75
130.25
140.94
176.27

62.22
123.98
129.6
170.74

71.49
130.0S
141.0
176.45

63.69 ' ' ' 72.58
123.16 130.19
129.77 140.97
170.71 176.36

115.3
141.04
175.28
182.72
199.5

116.74
141.0
175.36
182.64
199.0

117.55
140.88
175.46
182.6
199.5

87.62
174.21

87 07
174.32

88.53
174.5

-2.9

NaCI:Ag+-Ag+ -3.1

3

42.74
167.38

39.95
167.59

37.49
167.77

49.09
50.96
56.79

172.17
48.27
52.1
56.4

172.27
47.44
53.0
56.0

172.27

48.34
169.16

47.29
169.31

46,21
169.45

52.04
179.79

167.7 48.34
174.5

51.08
179.81

168.95 46.0
174.77

51.59 ' ' 168.27 ' 47.22 47 ~ 0
179.81 174.56

ing two should be explained by another theoret-
ical calculation taking F -F pairs in the [200]
configuration. In the case of the system NaCI: Ag'
-Ag', our calculated Raman-active B, mode
(4V.22) at nA =-3.1 is in excellent agreement with
the observed mode" (4 I.O).

Table VI shows the ir-active as well as the
Raman-active gap modes for the system
KI:Rb -Rb' calculated by using a Green's-func-
tion technique together with the values calculated
by %Yard and Clayman" using the molecular-model
method. A general agreement between the results
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TABLE VI. Calculated gap modes (in cm ~) due to Rb'
ion pairs in the h10j direction in KI. The values of the
hA parameters indicated are in units of e2/2 V of KI.

Calculation Calculation of
Mode &A =0 &A =2.0 &A =4.0 Ward and Clayman'

Ag 70.94 87.42 92.33
Bgg 76.69 81.73 86.95
B3 78.0 85.4 91.35
B,v 78.67 86.0 91.95
B2v 77.06 84.43 90.98
B3v 80.16 87.62 92.46

85.99
84.64
90.7
88.19
83.05
89.0

Reference 12.

of two calculations can be noticed. No experi-
mental results are, however, available in this
system.

CONCLUSION

We conclude that the Green's-function technique
is most suitable for the theoretical calculations,
due to a point defect in an otherwise perfect crys-
tal. The molecular-model method, treating the
impurity and its nearest neighbor as a vibrating

molecule, gives only the local-mode frequencies,
whereas the Green's-function technique provides
both. localized and resonant modes. We note from
the present calculation that the effect of introduc-
ing defect ion pairs is mostly to reduce the coup-
ling constant considerably, although in some
cases no change in coupling constant or little en-
hancement is noticed. The change in the force
constant due to the H -H ion pairs and D -D ion
pair is the same in case of KBr (n, A =-5.4 in both
cases). In case of KC1 also, the H -H ion pair
and D -D ion pair produce nearly the same re-
duction of the force constant (aA =-4.92 for
H -H ion pair and aA =-4.97 for D -D ion pair).
This is to be expected because D ion is roughly
two times heavier than the H ions and the ob-
served frequency due to single H ion in KCl and
KBr (502 and 446 cm ', respectively) are roughly
betimes the observed frequencies due to a single
D ion in KC1 and KBr (360 and 316 cm ', respec-
tively). The importance of these calculations thus
lies in formulating a consistent theory for the in-
teratomic force constants in ionic crystals. It is
hoped these Raman-active modes and the resonant
modes predicted in this paper will be useful for
future experiments on these systems.
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