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We present simulations and effective-medium theory calculations on conduction in a number of
percolation models with up to four types of sites or bonds. We introduce the idea of chemical constraint in
a multicomponent percolation system. The application of such models to the interpretation of recent
experimental work on Na„(NH, ), „mixtures and on charge-transfer salts is discussed.

I. INTRODUCTION

The idea of "polychromatic' percolation with
more than two kinds of sites was recently intro-
duced by Zallen. ' Zallen systematically discussed
the possible forms of site percolation but did not
discuss conduction problems in either the site or
the bond case. To characterize the models we let
n be the number of different kinds of entities (sites
or bonds) which can be placed on a lattice (n = 2

for ordinary site or bond percolation). We denote
by 5 the number of nearest-neighbor conductive
parameters which are to be specified in a conduc-
tion problem corresponding to n, where for bond
problems

and for site problems with isotropic sites

b = 2n(n + 1) .
For example, for n=2 there are only two conduc-
tive parameters (say g„and ge) for the bond prob-
lem, but b= 3 (g„„,g„e, and ge e) for the site
problem. In this paper we will discuss the bond
problem with n= 5=3 and several site problems
with n=2, 3, and 4.

The motives for these studies are, first, to begin
a systematic study of polychromatic conductive
percolation problems which can be expected ulti-
mately to find a wide range of application in real
multicomponent systems of scientific and technical
interest. Second, we wish to explore the idea of
chemical constraint in multicomponent percolatio~
and to present results on several models which in-
corporate such constraints. The relevance of
these models to recent experiments" on Na„
(NH, ), , and charge-transfer salts will be dis-

cussed.
Section II reviews the theoretical methods which

we use to compute the conduction in the various
models. Section III presents results on some
simple chemically unconstrained models. Section
IV introduces the idea of chemical constraint and

presents results on a number of models formu-
lated in attempts to explore the possible origins
of anomalies in the Na„(NH, ), , experiment. Fi-
nally, we present a concluding discussion in Sec.
V.

II. THEORETICAL METHODS

Here we describe the techniques used to calculate
the conductivity of the various models. We used
two main approaches. The first is a simple nu-
merical simulation in which we solve Kirchoff's
equations to an arbitrary accuracy on a finite lat-
tice. The second approach is to use an effective-
medium theory.

In the numerical simulations, we first choose a
lattice and numbers P, giving the probability that
any site is occupied by a species of type &; n runs
over the number of species in the particular model.
We always consider quenched samples so that the
probability for any site is independent of the oc-
cupancy of all other sites. We next choose a par-
ticular species for each lattice site using a pseudo-
random number generator and the probabilities
P . (The bond problem is set up in the same way,
except that we occupy bonds rather than sites. )
A unit potential difference is applied across the
sample in one direction and periodic boundary con-
ditions are applied in the other directions. Our
sample then is effectively an infinite slab. There
is a potential V, at each site i. V, is determined
by solving Kirchoff's equations
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g gq( ( V, —V) ) = 0 (2. 1) that is, for the two-bond problem,

for all i subject to the boundary condition V= 0 on
one side and V= 1.0 on the other. The sum on j
is over nearest-neighbor sites only and g&& is the
conductance between sites i and j. g,&

is deter-
mined by the species which occupy sites i and j.

We solve Eq. (2. 1) using a standard relaxation
technique. We go through the sample sequentially
replacing each V, by

~l gal I /+J gll

This is continued until the relative change in any
V, is smaller than a predetermined amount, typi-
cally 0.001. We also use overrelaxation and
underrelaxation in some samples in order to im-
prove convergence. The conductivity of the sample
is then given by the current flowing into or out of
the faces held at fixed potential (comparing these
two numbers gives an added check for conver-
gence).

The denominator P~g, ~ vanishes if all the g,~'s
are zero, that is, if the site i is isolated. We
avoid this problem by always keeping the g's fi-
nite, but small, instead of zero. Typically we
use values 10 '-10 ' times smaller than other
"nonzero" conductions. We expect the main effect
of this to be a slight rounding off of what would
otherwise be a sharp resistive transition. Other-
wise, we expect the effects to be very small.

Most calculations in this paper were done on
samples of 1000 sites on simple cubic lattices.
Some calculations were done on samples of 8000
sites in order to check the accuracy of using a
1000 site sample as an approximation to the ther-
modynamic limit. The calculations on 8000 site
samples indicated that, except near critical points,
the 1000 point simulations were excellent approxi-
mations to the thermodynamic limit.

The other approach that we have used is effec-
tive-medium theory. In this approach one re-
places the random lattice by a uniform one where
all the conductances have the same value g,
which is determined by requiring that, on the
average, the disturbance caused by replacing part
of the effective medium by the real system is zero.

If the potential difference across each conduc-
tance in the direction of the applied potential gra-
dient is V and one of the conductances is re-
placed by g0, then in bond problems there is an ad-
ditional potential difference across it given by

PA A PA p PB B PB y PA-B PAPB
2 (2.2)

for the bond probabilities in the bond effective-
medium theory. Of course, this neglects correla-
tions between bonds. Nonetheless, we show in
Sec. III that this simple theory works moderately
well for the site problem.

III. SIMPLE CHEMICALLY UNCONSTRAINED MODELS

Here we present results on the simplest possible
multicomponent systems whose behavior differs
from that observed in simple percolation. The
first model is the two-component site model (n=2)
in which more than one of the three conductive pa-
rameters gA» gA» and gB B are nonzero. The
case in which all three conductances are nonzero
appears to be relatively uninteresting. When g B B
=0, however, interesting behavior results as a
function of y =g»/g„z. The case y —~ corre-
sponds to the ordinary site conduction problem,
whereas the limit y —0 corresponds to a case in
which there is conduction between unlike "atoms"
but not between like 'atoms. ' This second case
may not be completely unphysical; there are com-
pounds which are conducting, such as SN„ though
the elemental constituents are insulators. Nu-

~&
Li

'0
C
0
CP

P„(g„-g )/[(z —1)g -g„]
+Pe(gz-g )/[(z —1)g -g, ]=O.

Solving this equation then determines g„as a func-
tion of PA. It is well known that this approxima-
tion for the bond problem works well except near
the critical point.

Treating the site problem is much more diffi-
cult. ' In the present work we will approximate
the binary site problem with probabilities PA and
PB=1 —PA and conductivities gA A, gA B, and gB B

by a three-bond problem with bond probabilities

V =(g -g )V /[(z —1)g„-g,], (2.2) 01 02 03 04 05 06 07 OB 09 10

where z is the number of nearest neighbors. The
condition for determining g is that

(Vo) =o

FIG. 1. Conductivity in the n =2, 5 = 3 site problem
with gA A=gB.B=O, gA B=1. Dots are simulation with
1000 sttes. Full line is crude effective-medium theory
(EMT) described in the text.
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FIG. 2. Conductivity in the n =2, b =3 site problem
with gg ~= l, gg g

——2, g~ p= 0. Symbols have same
significance as in Fig. l.
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merical calculations of the conductivity for the
values of y =0 and y = 0.5 are shown for a simple
cubic lattice in three dimensions in Figs. 1 and 2.
The case y=0 poses the following question: What
is the behavior of g near the onset points p', bound-

ing the region p, &p &p,' of finite conductivity'p
This question does not appear to have a trivial an-
swer because. this conductivity problem does not
scale simply to give the answer in terms of a
known problem. Suppose we approximate the con-
ductance of the y - 0 model with that of a bond
problem with bond concentration p' =2p' (1 —P').
Then the points p,' would be p', = —2+ ~ (1 —2p', )'~',
where p~ is the ordinary bond percolation concen-
tration. For the simple cubic lattice (P', =0.247),
this gives p', = 0.856(0.144}. By numerical simula-
tion, we find p+, =0.95 and P, =0.05. In view of the
qualitative similarity of these results, we have
worked out the effective-medium theory for the
bond problem with three kinds of bonds as an ap-
proximation to the n =2, b =3 site problem. As
discussed in Sec. II we must make some approxi-
mation in order to apply effective-medium theory
to this site problem. We choose to approximate
the site problem by a bond problem for the pur-
pose of doing effective-medium theory taking

02 0'3 0,4 O,5 0,6 O,T 0,8
xa pA+ p

0,9 'l, O

P„„=P„,P~, =2P~(1 -P„), P, ,=(1-p„}'.

Results are shown as dark lines on Figs. 1 and
2. Though the crude effective-medium theory is
similar to the numerical results, the question cited
earlier cannot be definitively answered by these
techniques.

We next turn to the bond problem with n = 3.
This problem can be simply approximated by use
of effective-medium theory. A straightforward
extension of the technique of Ref. 4 gives the con-
ductivity as the solution to the equation

(b)

FIG. 3. (a) n = 3, b = 3 bond problem with g&
——l.0, g&

= 0.5, g&
——0. Lines of constant conductivity in the EMT

are shown with solid lines in the composition plane.
Dashed lines show concentrations for which simulations
are compared with EMT in (b). (b) EMT compared with
simulations for the same model for concentrations along
the dashed line in (a).
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FIG. 5. Equation (4.4) for various values of K in the
composition plane.
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and numerical simulation (points). Figure 4 shows
results for the three-bond model when g„=1, g~
=0.1, and gc=0. One sees that in this case the
effective-medium theory gives reliable results ex-
cept near the percolation concentration. The ef.-
fective-medium theory works better for these mod-
els than it did for the n=2, 5=3 site model be-
cause the additional approximation (3. l) is not
necessary here. Critical properties of the uncon-
strained n = b = 3 model have been studied by
Straley and Kogut. '

IV. CHEMICALLY CONSTRAINED MULTICOMPONENT
PERCOLATION

FIG. 4. (a) Same model as Fig. 3 with go=1, g& -—0.1,
gc=O. (b) Same as Fig. 3(b) but with gz=l, g3=0.1,
gc= o.

We now turn to chemically constrained models.
The idea of chemical constraint' is that the sites
or bonds may be chemical entities and that some

2-2
P~(g -g~) g 3

'+gs
1.0

X g~ gc O,S

where the dots represent two cyclic permutations
of A, B,C. This is cubic in g . Solutions are
shown in Figs. 3 and 4 for z = 6, appropriate for
the simple cubic lattice. For comparison, we
show results of numerical simulation for the sim-
ple cubic lattice. Figure 3(a) shows effective-
medium lines of constant conductivity in a con-
centration diagram for g„=1.0, g~=0. 5, with
go= 0. Figure 3(b) shows the conductivity along
several lines in the concentration plane in Fig. 3(a),
using both effective-medium theory (straight line)

0,6

1.4

0,2

0.2 0.4 0,$ 0,8 1,0

FIG. 6. Graph of Eqs. (4.3) and (4.4) for K=O (solid
lines) and K=0.1 (dashed lines).
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FIG. 7. "Phase diagram" for then=3 b=6
call con

n =, = chemi-
ca y constrained site problem on a sim le cubisimp e cu ic lattice.

ere (or e ) is plotted as a function of X . Th l'
labeled X~B ' th

e lne
is the solution to the equations (4.3) and (4.4

garded as independent variables
XB=with the additional constraint that X = 0.307 ( he

i p e cu ic lattice . Thecolation concentration for the simpl b' l ' . The
lines marked X X ' '

wie z, & are similarly the solutions with
the constraints XB = 0.307 and X = 0 307 , respectively.

e rs in parentheses indicate the species for which
there is a finite probability of infinite clusters in the
various regions of the X&, K plane.

A+ B~AB (4. 1)

characterized by equilibrium constant K. If the
ixe y experimenttotal concentration xo of A is fixed b

then the following equations fix the concentrations
Of xgq xB~ and xgB'.

XAXB +XAB 3

(4. 2)Xg +XB +XgB—1

x„'= (x„+x„e)/{1+x„e).
These equations have solutions

«, = [2(1 -x'„)]-'(1-a '„-K
+ [(1 —2«~0 -K} +4K(1-x } ] ~ &

(4. 3}

(4. 4)x„=K(1-x,)/(K+ x, ) .
Equation {4.4} is graphed as the dashed lines in

ig. 5. Other representations of Eqs. (4. 3) and

of the n species may be chemical combinations of
some of the others. The law of mass action then
establishes relations between the concentrations
of these entities.

The simplest nontrivial model with chemical
constraint is a bond model with n = b = 3 S
th tC'

uppose
a xs a chemical combination of A and B. We

consider the reaction

O.l 0.2 0.3 0.4 o.5 0.6 0.7 O.B 0.9 lO
1-XA

FIG. 8. Conductivity for the chemically constrained
bond problem on a simple cubic lattice for gz —-1, gB
= 0.1. , g~=0 and K=O. Solid lines show EMT results and
points are results of simulations on 1000 bond models

(4. 4& a) ppear in Figs. 6 and V. Using the solutions
to the n = b = 3 problem from Sec. III we find the
conductivity for this model as a function of x„' as
shown in Fig. 8 for &=0 and for g„=1, gB=O 1

and g» —0. The conductivity is nonmonotonic as
a function of x&. In Fig. 8, the effective-medium
theory appears as a dark line while numerical
simulation gives the points.

We suggest that this model may contain many of
the qualitative features of the conductivity in
charge-transfer salts. In such salts, a reaction
ot the form (M, and M, are metallic species)

M, =M, =M;+M-,

takeakes place. One expects, however, that this re-
action will not take place unless the two ions M,
and M, are near to one another in the lattice (to
maintain local charge neutrality). Thus, we write
the reaction as

M~+ M, M~M2.

M, and M, atoms, being metallic, are regarded as
conducting bonds for electron transport while

M,M, complexes are nonconducting or weakly con-
ducting. We then have the n = b = 3 model just
discussed if we suppose that the M,M, complex
goes on a single site. In Fig. 9 we show resistivity
curves from this model which are qualitatively
similar to data taken by Avci and Flynn'

s, , e, , Cs, , Sb, , Cs, „ I, , Cs Xe
s, , n, , a, „Sn, and Cs, , Au„. In all of

the curves which show the effective-medium theory
for the constrained three-bond model we have
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FIG. 9. Comparison of experimental resistivity of alloys (solid lines) compared with fits to the chemically constrain-
ed n =5 =3 bond model as described in the text. In all cases, the dashed lines show the effective-medium theory with g
=10 and gAB-—0. (a) Cs& ~BB~Bwith B=Te, I, Sb, Xe. (b) Mf gBSn~B with M=Cs, Na. (c) Cs&»Au».

taken the values z = 10 and g» ——0. K was fixed by
requiring that the. observed critical points be as
close as possible to the predicted ones. The re-
sulting values of K and gB seem very reasonable:
gBB= 0 and K- for Cs, ,BXe, , and gBB

—0 and

with intermediate values of K and g» for the other
systems. The shapes of the resistivity curves
are, on the other hand, only qualitatively repro-
duced and the predicted symmetry of the critical
points is not observed in Na, , Sn„. The observed1-x B
critical points for Csg BSn,B cannot be obtained
with reasonable values of z in this model and the
asymmetry is very marked. Correlation effects
and the different Cs and Sn crystal structures
probably pl, ay a role in Cs, „Sn„.

We have also explored several chemically con-
strained site models. The simplest of these is a
three-component model for which the constraint
equations are again (4.2). (In the caseof 2 mole-
cule per site, XA +XB+X»——1 is changed to XA

+Xe+2X» —1.) If the molecule is taken to be
isotropic, then there are six conductivity parame-
ters in these models with one molecule per site:

gA-B gA AB

gB-A gB-B gB-A B

We have to the present only considered models for
which g is of the form

10y
g= 000

y0x
Figure 10 shows simulation results for a simple
cubic lattice with y=0, x=1, and K=O. This re-
sult, which was presented earlier, ' is intended as
a preliminary model for experiments on sodium
ammonia mixtures, ' which show a similar non-
monotonicity in the resistivity as a function of con-
centration (Fig. 11). This model has two major
deficiencies as a description of the experiments:
First, the dip in the resistivity as a function of
concentration is less than that observed in the ex-
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FIG. 10. Resistivity in the n =3, 5 =6 chemically con-
strained site model with g~ &=1, g&&»= 0.1, K=0.
The solid line is obtained by scaling numerical results
of Kirkpatrick.

0 1
I I I t I I I I I 1-XA

Ql Q2 03 04 05 Q6 Q7 Q8 Q9 1.0

FIG. 12. Resistivity in the n = 3, b = 6 chemically con-
strained site model with g„„=l,g&~„=0.001, g».»
=0.1, K=0.01 (squares) and withe &=1, g»„&=0.01,
g»»-0. 1, K=0.0 (dots).

2

&og~of-

0

I

0,2 0,4 0,8 0,8

FIG. 11. Experimental results on Nag pgi3) f ~ by
McNeal and Goldman. The solid line is a guide to the
eye.

periments. Second, the model of Fig. 10 takes
y =g~ ~~ ——0, which is unrealistic. If one takes
y &0, then the nonmonotonicity rapidly disappears
as y grows. This is indicated in Fig. 12 where
y=0. 01 and 0.001, and x=0.1. Further, it is

possible to show' that with the plausible inequality
1 & y & x (which we have violated in taking y = 0
and xx0) one has a monotonic resistivity as a func-
tion of concentration. (Figure 12 also shows a simi-
lar rounding effectwhen K40. ) Here we brieflydis-
cuss several possible solutions to these problems.
The sharpness of the secondary peak in the r esisti vity
seems to be strongly dependent on the effective
coordination number of the lattice. The peak be-
comes sharper as the effective coordination num-
ber decreases. This effect is illustrated in a mod-
el containing one cnisotropic molecule per site.
In such a model, there are in principle seventeen
possible conductive parameters as indicated in
Fig. 13. One decreases the effective coordination
number by choosing a limited number of the seven
possible AB-AB conductive parameters to be non-
zero. In Fig. 14 we show the resistivity found by
simulation when the three boxed parameters in
Fig. 13 are made nonzero. Here, as in Figs. 10
and 12, we have taken all conductivities AB-A
equal to zero and have chosen to keep only those
AB-AB conductivities nonzero in which the largest
number of atoms within the molecules are adjacent.
The calculation is intended only to illustrate the
qualitative effect of anisotropy. (g„„=1 and the
two nonzero g~ „are both equal to 0.1.) The peak
is seen to be sharpened. A somewhat similar ef-
fect is seen in Fig. 15, which shows the resistivity
for one isotropic molecule per site in a diamond
lattice. These results suggest that the sharp
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FIG. 13. Possible conductive parameters in the n
= 3 chemically constrained site model with one aniso-
tropic molecule per site. There are 5 =17 possible
conductive parameters. The boxes indicate the para-
meters which were taken to be finite in the simulation
of which the results are shown in Fig. 14.

01
01 Q2 03 OA 05 06 Q7 08 Q9 1.0 (1

—X)

FIG. 14. Resistivity for the n=3, 5 =17 site model
with one anisotropic molecule per site. The conductive
parameters shown in Fig. 13 were all zero except for
gA A & gAB AB

peak in resistivity may arise in part from an ef-
fectively low coordination number in the sodium
ammonia mixtures.

On the other hand, the effective coordination
number can be increased by suitable modeling.
For example, in the case of 2 molecule per site
(one "atom" of the A Bpair on-each site) one has,
in the simple cubic lattice, a total of 92 ways of
placing one A-B pair next to another so that at
least one member of each pair is in nearest-
neighbor coordination with one element of the other
pair (see Fig. 16). Fifteen of these possibilities
are distinguishable (not reducible to one another
by translations, rotations or reflections of the lat-
tice) so that the model has a total of 15 nearest-
neighbor conductive AB-AB parameters. In addi-
tion, there are 20 ways to place a single A or B
in nearest-neighbor coordination with AB and 8
conductive AB-A and AB-B parameters. Finally,
one has the three parameters for A-A, A-B, and
B-B so that b = 26 for this model. Such a model
is clearly not useful phenomenologically, but can
illustrate the effects of increasing coordination
number. In Fig. 1V we show a simulation result
in which we have taken gA „—1 and have set five
of the gA~» parameters equal to 0. 1 while the
other conductances are 0 as indicated in Fig. 16.

A+BC AB+ C,
with equilibrium constant K. We assume that
there is one molecule per site. This reaction has
the form of the reaction forming sodium amide
from sodium and ammonia with A =Na B=NH 2f
and C=-,'H, . If we suppose that, as in this real-
ization, the species C occupies & a site, then the
constraint equations include

xA +xAB+xac+ 2xc ——1,1

XA+XABXo=
XA+Xac+X„a+Xc

Xac+ XABXA-
XA +Xa c + XAa +Xc

XA +XAB

1 -2Xc
Xac+ XAB

1 -2Xc

With this constraint, there are still 24 ways for a
given AB molecule to be connected by a conductance
to another AB and the peak in the resultant resis-
tivity is very broad. (Note that this effective co-
ordination number of 24 for the AB molecules is
not directly related to the number b =26 of inde-
pendent conductive parameters. )

A physically more rea1istic model. which reduces
the effective coordination number is a four-com-
ponent model in which the species A, B, and C
react as follows:
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FIG. 15. Comparison of the n=3, b =6 chemically
constrained models' resistivity for simulations on the
diamond (triangles) and simple cubic (dots) lattices.
g~.~-—1, g&B ~B=0.1, K=O

The law of mass action would have the form

FIG. 16. Conductive parameters in a site model with
g =3, b =26. Here each "molecule" fills 2 sites. In the
simulation for which results are shown in Fig. 17, we
have taken only the boxed parameters to be finite.

XgX BC ~ABXC

but here, for simplicity, we used the relation

X~XBC
—

EX~ BXC .
We have performed simulations for this model.
The results show a resistivity peak at x„'=0.5

which is sharper than that of the three-component
models but which again disappears before the con-
dition gag +gg-gB ggB-gB ls satisfied.

Finally, we note that a correlated model in
which some segregation of the species AB and A
takes place during sample formation is expected to
reduce the appearance of AB-A bonds and thus
make a sharper peak possible in the presence of
more realistic values of g~B g. We have not yet
explored such a model in any detail.

V. CONCLUSIONS AND DISCUSSION

In this work we have begun to explore the conduc-
tive properties of multicomponent percolation mod-

10. —

P

0.1
0.1 Q2 03 Q4 Q5 Q6 QTQ8 09 1.0 (1-X)

FIG. 17. Simulation result for the n = 3, b =26 model
with one molecule filling two sites g& & ——1. The five
conductive AB-AB parameters which are boxed in Fig.
16 are set equal to g~B ~=0.$ in this simulation. All
other conductive parameters are set equal to 0.001.
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els both with and without chemical constraint,
using the most direct technique of simulation and
the theoretically simple approximation scheme of
effective-medium theory. We have found that even
the simplest unconstrained models have intriguing
properties. For example, the site problem with
n=2, 5 =3 has interesting structure of possible
physical relevance with g„~& 0, g„„=g~~ = 0.
In chemically constrained systems we found that a
nonmonotonic resistivity versus concentration
curve is generated by the n=b=3 bond problem in
the case that the reaction A+B=AB is considered
when g» ——0. This model appears capable of mod-
eling charge-transfer systems in a plausible quali-
tative way with just three parameters (g„, ge, and
K). In multicomponent site percolation we have
discussed a number of models which give a secon-
dary resistivity peak such as that seen in
Na, (NH, ), , in the n = 3, b = 6 model and in related

models with anisotropic molecules and two-site
molecules. None of the models considered
quantitatively describes the conductivity of the
Na, (NH, ), , system. The most promising avenue
for further narrowing the gap between theory and
experiment in the sodium ammonia system appears
to us to be the introduction of clustering correla-
tions in a chemically constrained three-component
model.
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