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Photoemission from alkali halides: Energies and line shapes
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Energies and line shapes are calculated for photoemitted electrons from core and valence states in alkali
halides. Energies are obtained by assuming that the holes are localized at lattice points and by using the
point-ion model. The usual energy terms are obtained, including the ionization potential of the free ion, the
Madelung energy, and the Mott-Littleton relaxation energy. An exact solution of the point-ion model is
presented, which derives a new energy term from relaxation. The inclusion of this term considerably
improves the agreement between theory and experiment for threshold energies. In addition, the phonon
relaxation energy and line shapes are calculated for ten salts,

I. INTRODUCTION

The alkali halides form a class of 20 solids
which have been often studied in photoemission. ' '
There have been many measurements of valence
band energies, line shapes, and conduction-band
structure. The object of the present calculation
is to determine the absolute value, relative to
the vacuum energy, of the energies of hole states
in the valence and core states. We report a new
contribution to the relaxation energy, heretofore
overlooked, in addition to the traditional terms of
Madelung and Mott-Littleton. ' We also wrote a
computer code to describe phonon states in ten of
these salts, and used it to obtain the phonon re-
laxation energy and phonon contribution to the
photoemission linewidth. Citrin et al, .' showed
that this was the dominant linewidth contribution,
and we agree well with their experimental results.

We adopt the traditional model that the holes in
the valence and core states are localized. ""
Then the energy to create the hole can be cal-
culated by taking the ionization potential of the free
ion, and adding it to the additional potential energy
terms that the hole has in the crystal. The point-
ion model is adopted for the crystal, so that all
potential energy terms, such as Madelung ener-
gies, can be calculated by Ewald summations. In
Sec. II we start from the exact equation for the
potential energy in the point-ion model, and de-
rive the exact expression for the energy shift be-
tween the free ion and crystal. We find the tra-
ditional terms of Madelung and the relaxation
energy of Mott-Littleton. ' In addition, a new term
is found which derives from the relaxation energy.
It is actually the difference of two terms, of which
one is the screening of the Madelung energy, while
the second is another self-interaction term twice
that of Mott-Littleton. They largely cancel, and
the resulting term can have either sign, and has a
typical magnitude of 1 eV. When it is included
in the calculation of threshold energies, there is

considerable improvement when comparing to ex-
periment. Our calculation of the Mott-Littleton
energy is more accurate than recent workers. "
We express it exactly as an integral over the
Brillouin zone in wave-vector space, and evaluate
this integral accurately by the method of special-
points integration.

The localized-hole, point-ion model has pre-
viously been used with great success to describe
the photoemission in the alkali halides. Citrin and
Thomas' measured 14 different solids and com-
pared results with the point-ion model. They in-
clude a repulsive term which we find unconvincing
and choose to omit. They made the important ex-
perimental observation that different holes on the
same ion have the same energy shifts in the crys-
tal. For example, a hole on the Cl ion has the
same change of threshold energy, relative to the
free ion, regardless as to whether the hole is in
the 1s or Sp state. They interpret this as positive
evidence that the holes are all localized, even in
the upper valence band. Surely the holes are
localized for core states, so they argue convinc-
ingly that the valence band hole is also localized
if it has the same self-energy.

One would also expect the valence holes would be
localized on theoretical grounds. Polaron theory
shows that the hole will become localized whenever
the polaron constant exceeds about 6. 'The narrow
valence bandwidths" found for occupied valence
states predicts a hole band mass which is quite
large. This large mass, and the polar nature of
these salts, results in large values of the polaron
coupling constant, which would imply a trapped
or localized hole state. Thus theory and experi-
ment seem to agree that valence holes are local-
ized in most alkali halides. There is experimental
evidence to the contrary in several cases, such
as the valence band structure in NaC1 and LiC1
found by Pong and Smith, ' but these seem to be
exceptions to the general behavior.

Further evidence for the localized-hole, point-
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ion model was found by Poole et al,.' They mea-
sured hole energies in 18 alkali halides, and com-
pared results with the model. They investigated
the quantity E;*"=E;*"(A'}—E;*"(H } which is
the difference between the experimental binding
energies for the hole on the alkali and halide
ions. The virtue of studying this quantity is that
it is free of the influence of surface effects such
as a dipole layer. " They found that the experi-
mental values of E;""are well described by the
localized-hole, point-ion (LHPI) model. The pre-
dictions of this model are

E", = E", (A'} -E", (H-) —2E„-Z„,(A')+ Z„„(H-)

which is the difference of the free-ion binding
energies, minus twice the Madelung energy E„,
and minus the difference in the Mott-Littleton re-
laxation energies for the hole in the alkali and
halide ions. They found excellent agreement be-
tween theory and experiment for E, among the 12
crystals they could measure.

The additional relaxation energy term we find in

Sec. II has the same value for the hole in the al-
kali or halide ion. Thus it cancels out in the quan-
tity E„and does not disturb this agreement be-
tween theory and experiment.

All of the above terms are associated with re-
laxation energies from electronic polarization and
dielectric screening. The ions can also move,
and readjust their position in response to the core-
hole potential. This can be determined by solving
for the hole-phonon interaction M„(q), and using
it to find the hole self-energy from phonons, and
the contribution to the observed linewidths in
photoemission. The theory for this is identical to
the Huang-Rhys model for the I" center, "and was
applied to the core-level spectroscopy by Parratt
and Overhauser. " Citrin, Eisenberger, and
Hamann (CEH) (Ref. 7) provided detailed measure-
ments of the phonon contribution to the linewidth
as a function of temperature, and showed that a
simple model gave qualitative agreement with ex-
periment. We have tested the model further by
doing a complete phonon calculation which sums
over all six modes X (TA, LA, TO, LO} and over
the Brillouin zone in wave-vector space. The
coupling is quite strong, in which case the phonon
self-energy and linewidth [full width at half maxi-
mum (FWHM)j are given by p= 1/ksT (Refs.
12-15)

d q IM~(q) I

(1)(2v)' K(o, (q) '

d'q 1/2
h(T) =2.25 q, ~M~(q) ~' coth[PS&o„(q)/2]

(2)
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FIG. 1. On the left is illustrated an electronic energy
level at E&. When it absorbs a photon with energy &(d,
the external electron has kinetic energy EKE. The inclu-
sion of phonons lowers the binding energy by the hole
self-energy &~. Phonons also impart a Gaussian line
shape to the distribution of emitted electrons. The peak
of this Gaussian has the same external kinetic energy
EKE as expected in the absence of phonon processes.

The details of this calculation are given in Sec. III.
The only experimental test which can be made so
far is with the linewidth, and our results agree
favorably with the two cases reported by CEH for
which we were able to do calculations.

The self-energy Z,„from phonons is calculated
for 10 alkali halides, and the numbers are typically
between 1 and 2 eV. This represents a large con-
tribution to the hole energy —of the same order as
the Mott-Littleton energy —but this large value
does not affect the core binding energy as observed
in photoemission. This statement may appear sur-
prising, but is a natural consequence of strong
coupling theory. This is illustrated in Fig. 1.
The energy level E& is calculated using all of the
electronic contributions to relaxation such as
Mott-Littleton and the one we report in Sec. II,
but not phonons. The absorption of a photon of
energy hen may cause an electron to leave the sol-
id, where it has an external kinetic energy of
EKE. A measurement of this kinetic energy per-
mits the deduction of E~=Sco -E~.

The inclusion of phonons results in a different
picture of the photoemission, as shown in the
right in Fig. 1."" First, the hole self-energy
-Z, ~ from (1) lowers the hole energy, which moves
it closer to the vacuum. This lowers the thresh-
old for photoemission. Now the absorption of a
photon of energy S(d could take an electron to the
dashed line, which h3s a higher external kinetic
energy. However, the probability of this no-phon-
on transition is negligible in strong coupling.
Instead, many phonons are produced when making
the hole. The energy to do this is subtracted from
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that imparted to the electron, so that it has on the
average much less external kinetic energy. The
theory shows that the resulting line shape is
Gaussian, and the peak of the Gaussian is shifted
to lower kinetic energy by the same self-energy
Z,„. Thus, the peak in the photoemission occurs
at an external kinetic energy which is identical to that
without the phonon self-energy. Thus the quantity

Z, „can not be directly deduced from these experi-
ments unless one can observe the no-phonon line,
which is unlikely in alkali halides. The important
experimental number for comparison is the peak
position, which can be compared directly to the
binding energy predicted from just the electronic
component of the hole energy. This is what we
shall do when comparing with experiments. Both
Poole et aI,.' and Pong et al. ' ' report peak ener-
gies of p, ~, holes and we deduced them from Citrin
and Thomas' by taking their values for the mid-
point of the p band and subtracting one-half of the
spin-orbit splitting of the band. The final core-
hole energy is deduced by subtracting Z, „from the

electronic contributions. These lines are usually
found to be Gaussian, which is a further confirma, —

tion of the model. Many experimentalists report
the threshold energy. This is now regarded as a
useless quantity, since it is a description of
where the tail begins in the Gaussian, which is
ill defined. The procedure we advocate seems
much simpler: to use the peak in the emission as
a measurement of the electronic contributions to
the hole energy, and then to calculate the phonon

pa, rt theoretically. The simultaneous calculation
of the linewidth, as a function of temperature,
provides a test of the phonon calculation.

We adopt the convention that energy symbols
such as E„, Z«, Z, „refer to positive quantities,
so a negative relaxation energy becomes -'Z, „.
The exception to this is the new term we derive
in Sec. II which is called Z, because its sign varies
from solid to solid. Since we are talking about
hole states, lowering its energy moves the core
level closer to the vacuum and lowers the threshold
for photoemission.

II. ELECTRONIC RELAXATION

This section derives the electronic contribution to the hole energies, while the phonon energies are dis-
cussed in the following section. Here we treat the ions as fixed on their lattice sites. In the I HPI model
we assign each ion a charge qj and polarizability aj at site Rj. The hole has a classical potential energy
from interacting with these polarizable point charges, which also interact among themselves. The thresh-
old energy in photoemission is given in this model as

+E

where E„„is a positive quantity for halide holes and a, negative quantity for alkali holes. The first term
Egp is the ionization potential of the free ion. For cation holes we use values from Moore, "while for the
electron affinity of halide ions we use Berry and Reimann. " Our immediate goal is to calculate E„„.

An expression was given previously for the ground-state energy of an interacting system of polarizable
point charges"

E = Q — p qq&( (R,. )' o! ' (R&J —Z (R; ) ' ((R )' ' (R,.&)+'''),
ij if if m~

motif

w„(R) =R„/R', (3)

((t)„„(R)= t) „JR' —3R„R„/R' .

The summation over ij includes each pair twice. This is a general result which is valid for any arrange-
ment of ions. We shall specialize to the case that the ions are either of type A or B on a cubic binary lattice.
First take the situation where the lattice is ideal and has no holes. Then the polarization terms average
to zero, and the ground-state energy is just the Madelung term

E = Ne'a/2a, -
where & is the Madelung constant and a is the lattice constant. Next we consider the addition of a hole to
any site, which we take to be the origin. The hole results in a change in charge qo Qp+ ~g polarizability
&,- n, + 6a and ground-state energy E~-E, + 6E . We ignore the effect of this change in polarizability
since our estimates show this to be a small contribution to the energy change 5E =—E„. Thus we want
the change in ground-state energy from the change in charge 6q, which is positive for a hole
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E —= 5E =qqg — (5q) P (R }' u ' (R ) —gw(R )'u '5(R „)' 'w(R„)+''')
Of m n

—qq g qq w(R, ) u . (R )-gw(R, ) u 5(R ) u„. w(R„)q ).
gfft5 fftgg n

(4)

These energy terms will be evaluated one by one,
according to their traditional definitions.

The Madelung energy term is the largest. It is
given by

The first step in the evaluation of Z« is to de-
fine some lattice transforms of various Coulomb
interactions. For a binary lattice, we need to
define one quantity with an "e" superscript for
the summation over equivalent lattice sites such
as AA and BB. Another quantity with an "i"
superscript is for summations over interactions
between the A and B sublattices. '

We adopt the convention that the hole is on the A
sublattice, and A. or B subscripts refer to quan-
tities on the two sublattices q„= -q~. For halide
holes q~ and the Madelung energy are both posi-
tive, while both are negative for cation holes.

The next set of terms we consider are

&«='(6&)

gnaw(R()

)' a w(RRJ

-Qw(RR ) c( ~ y(R „) ~ a ~ w(R, „)

+ ~ ~ ~ (6)

Here the physics is quite simple: the hole polar-
izes the medium, and this polarization acts back
upon the hole. Of course, this is the famous ener-
gy term first considered by Mott and Littleton, '
and has been evaluated by a number of workers.
We have developed a rather accurate method of
evaluating this contribution, which we shall now

describe. It consists of changing the summations
in real space into summations in wave vector
space. This permits a simple summation of the
series of many interaction terms. There remains
only an integration over the Brillouin zone, which
is easily done using the method of special points. '

WE(k)=~ g e'"'ice„(l

gT& (k)=a ge'55 (i 'o)~ (1 l ),

TE =~+ e'"'i4) (1)
l

T(, ~ ~e(jq (1 Ip)4) (1 1 )Pv 4 ~ pv
7T J

where Vo is the volume per unit cell, 1 are lattice
vectors, and 1, is between the A and B sublattice.
The atomic polarizabilities &„and &~ are assumed
to be isotropic, and multiples of the unit vector.
We also introduce the symbols for the dimension-
less polarizability:

o(„=4w c(„/VR,

c(s = 4w os/ V, ,

R„=1+(o(„+g)/[1--,' (o„+os)].

In terms of these quantities, the summations over
real space in (6) can be replaced by summations
over reciprocal space. Since the real-space
summations go over both A and B sublattices,
there are many combinations of terms

Z = (6 ) Q [&qW'(k) ' W'(k)*+ o(sW~(k) W~(k) —o'„W'(k) T' W (k)*

—osW5(k) . T'(k) ' W'(k) —o(„c(s[W'(k) T' W'*+ W' ~ T' ~ W'R]+ ~ .] . (8)

These many terms express the physics that the hole charge is polarizing the various ions, which in turn
polarize other ions. The summation of all possibilities is given by the above series. It is really just
the inclusion of dielectric screening. The terms in this series may be summed by defining J»(k) as the
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potential acting upon site M due to an initial polarization on site N. There are four possible terms
J», J, J„~, J~~, and two of them obey the coupled equations

J„„(k)=W~(k) —a„T'(k) ' J„„(k)—asT'(k) ' Je„(k),

Je(k) =W'(k) —ne T'(k) ~ Je„(k) —o „T'(k) ~ J„~(k),

When these equations are iterated, they produce a series of terms which are recognized as the same ones
in Eq. (8). So the Mott-I ittleton relaxation energy can be expressed as

ZML = 2(5q)' Q[&„W'(k) .J„„(k)*+n We'(k) Je„(k)*].
0

(10)

This is an exact expression for this energy in the
LHPI model.

This was evaluated numerically at a set of k

points by first solving for the vector functions
W'(k} and W'(k) and matrix functions T'(k) and
T (k) using Ewald techniques. The six-dimension-
al equations in (9) were solved for the vector func-
tions J„„and J~„, which were used to find the
quantity in brackets in Eq. (10). The set of k
points were selected by the method of special-
points integration. ' Here the summation over all
of the N points in the Brillouin zone is approxi-
mated by a summation over a small set of selected
points k, with a weight factor a,

—g f(k) =g a,.f(k,. ) .
k k~

It is required that f(k) be periodic in k, which is
satisfied in our case. As described in Ref. 9,
these k points and weights are selected on the
premise that the lattice transform of f(k)

F(R) =—Q e""f(k)
N

converges rapidly in R space. The integral in

(10}which we are evaluating is a Coulomb poten-
tial F(R}-R ' at large distance, which is one of
the least rapidly converging functions one could
contemplate. In order to speed up convergence,
we instead evaluated

Pay[ f(k, ) —V(k,.)(1-1/e„)],

4m~ .--1
V(k)=—Z e'&' —.

~o ywo

The function V(k) is selected to cancel the k ' term
in f(k) in the limit of k-0, so the net F(R) is now

a rapidly converging function, but the Brillouin
zone integral of V(fc) is zero. So we are adding a
zero to the result, but one which makes the spe-
cial-points method converge rapidly. For the fcc
Brillouin zone of the rocksalt lattice, increasing
accuracy is obtained by using sets with the in-
creasing number of points 2, 10, 60, ete. Our

I

calculations showed that going from 2 to 10 points
changed the k summations by 1.5%, while the
change from 10 to 60 changed the result by only
0.15%. We assume this convergence indicates the
degree of accuracy, so a 10-point set gives 0.2%
accuracy while the 60-point set does much better.
All of the Mott-Littleton and phonon energies we
report were done with the 60-point set. We find
it truly amazing that the 2-point set has an ac-
curacy of 2%.

In order to compare with other recent evaluations
of the Mott-Littleton relaxation energy, it is fair
to use the same data set. Citrin and Thomas' used
the polarizabilities of Tessman, Kahn, and Shoek-
ley (TKS),2' while Poole et al. ' used those of Jaswal
and Sharma (JS}." These results and comparisons
are shown in Table I for both halide and cation
holes. The present results differ from the pre-
vious results by 1-20%0, and we expect our num-

bers are accurate to better than 0.1%O. Probably
the most accurate previous evaluation of the Mott-
Littleton energy was by DuPre et al."whose re-
sults are not used because of their old-fashioned
choice of atomic polarizabilities. We check our
method by doing the calculation with their data
set, and found we agreed with them with an error
of 0.5 to 1%. A quite different method of calculat-
ing this relaxation energy was done by Kunz, "
who sums over the real band structure of the
solid, but includes the dielectric screening in an

approximate way. His approach is necessary in
those cases where the hole is not localized.

So far two of the energy terms in (4) have been
evaluated. The remaining term is called Z„and
has the same value for halide or cation holes.

E~(H ) =E~p+Ee —ZM„(H ) —Z, ,

E~(A') = E,p
—Ee —ZML(A') —Z

E„„(H)=E —Z (H ) —Z, ,

E„„(A ) = -E„-Z „„(A'}-Z, .

The necessity for additional terms like Z, in the
LHPI model can be understood by an intuitive
argument which provided the motivation for the
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TABLE I. Mott-Littleton energies (eV).

Halide hole Alkali hole
TKS Js TKS Jsb

Salt P resent Citrin P resent Poole Present Citrin Present Poole

LiF
LiCl
LiBr
LiI

NaF
NaCl
NaBr
NaI

KF
KC1
KBr
KI

RbF
Rbcl
RbBr
RbI
AgF
AgCl
AgBr
CsF
CsC1
CsBr
CsI

1.656
1.916
1.911
1.897

1.441
1.593
1.618
1.612

1.776
1.543
1.518
1.478

1.899
1.550
1.523
1.443
3.214
2.748
2.641
2.201
1.871
1.807
1.698

1.82

1.58
1.45
1.47
1.47

1.58

1.61

2.24
2.20
1.99
1.90

1.800
1.906
1.900
1.883

1.585
1.606
1.625
1.611

1.759
1.510
1.491
1.454

1.853
1.506
1.486
1.412
3.272
2.758
2.648
2.044
1.788
1.740
1.654

1.78
1.82
1.82

1.58
1.59
1.59

1.79
1.53
1.51
1.46

1.89
1.55
1.50
1.44

2.08
2.24
2.16
2.04

2.644
3.202
3.216
3.219

1.846
2.462
2.566
2.621

1.585
1.920
2.021
2.108

1.544
1.760
1.869
1.926
2.483
3.003
3.155
1.604
1.852
1.902
1.919

3.19

1.86
2.54
2.60
2.69

1.94

1.76

1.45
2.13
2.05
2.11

2.894
3.184
3.197
3.194

2.032
2.456
2.556
2.603

1.641
1.898
2.000
2.085

1.572
1.734
1.845
1.901
2.583
2.996
3.144
1.561
1.813
1.874
1.908

2.94
3.21
3.24

2.06
2.50
2.59

1.67
1.94
2.05
2.14

1.59
1.78
1.87
1.96

1.57
2.27
2.31
2.35

Polarizabilities from Tessman, Kahn, and Shockley, Ref. 20.
~Polarizabilities from Jaswal and Sharma, Ref. 21.

Citrin and Thomas, Ref. 1.
Poole et al. , Ref. 2.

present research. This is the observation that
the Madelung energy term in(5) shouldbe screened.
Since we are considering the electronic contribu-
tions to the hole energy, it should be screened by
the electronic contribution to the dielectric con-
stant which is E„. A static charge in the dielectric
produces a potential field which is screened, so
that one should have somewhere in the theory
another term which is E„(1—1/e„)-which when
added to (5) gives E„/e.„. Since E„ is typically
8-10 eV and e„-2-3, this produces a large
contribution to the hole energy which has been pre-
viously overlooked. In fact, this term is con-
tained in Z, . However, there is a second contribu-
tion in Z, which is also large and has the opposite
sign, so that the two largely cancel and the resi-
due is much smaller and of variable sign.

From Eq. (4) the expression for Z, is

-Qw(R, ) ~ n ~ y(R „)~
~a

~ w(R,„)

+ ~ ~ ~

]

The summation over j includes all ion sites, even
the one at Ro where the hole is located. For those
sites with Re R„ the terms do describe the screen-
ing of the Madelung energy, since they originate
from the hole polarizing the medium. This polar-
ization causes a potential which interacts with the
charges on the other ions. This term can also be
evaluated using wave-vector transforms,

&.=-q, &q pe'"'(o.,W'(k) J»(k)*+o,W'(k) J»(k)*
NVO gg

—e'" fo[o.'„W'(k) .J»(k)*+ o.eW'(k) J»(k)*]}.
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Some terms in this series for R~ w R, were eval-
uated by special-point integration. They were
found to equal the classical quantity e'(I —I/c„)/Rz
within 10% for neighboring lattice points and with
less error for further points. The classical quan-
tity is not rigorous because of the atomicity of the
dielectric. " Nonetheless, the physics of these
terms is clearly that of dielectric screening.
There is also the term with R~ = R, which repre-
sents the hole polarizing the medium, and this
polarization acting back upon the charge of the
host ion. This is exactly twice the Mott-Littleton
energy, and with a sign which causes it to largely
cancel the screening of the Madelung energy. The
resultant term Z, is smaller than either of its two

contributions.
Now that we have explained the physics of this

self-energy term, we shall show it may be eval-
uated in a simple way. The summations over 1 and

k are interchanged in (12}, and we use the result

I

The summation over k in (12) is now taken at the
single point of k =0. In order to examine the limit
of k-0, we need to recall the small-k properties
of these various vector transforms"

~R'(k) =ik, /k +ik C, , +O(k'),
lim

T'„'„'(k) =k„k„/k ——', 5 „+O(kR) .

The quantities C, and C; can be found from Ewald
summations, and values for several lattice types
are shown in Table IL There we give the dimen-
sionless quantities 4waC, ,/VQ which depends only
upon crystal structure. From the small-k limit
(13}one can deduce the limiting behavior of the
four J»(k), and finally obtain the exact expression

TABLE II. C~ and C;.

Crystal structure 4' Qe

vo

4' Cg

vo

NaC1
Z inc blende

CsCl

—1.5283
-1.5283
-0.9458

-0.3632
-0.2673
-0.2673

This is obviously simple to evaluate since one only
needs to have the quantities C, , in addition to the
atomic polarizabilities. The same result, in both
magnitude and sign, is obtained for the hole on
either sublattiee: in changing from halide to ca-
tion, the factor q~ changes sign, as does
(~~ —~a}.

Numerical results for both halide and cation
holes are shown in Table III. The last three cesi-
um compounds were calculated for the CsC1 struc-
ture, while the others were calculated for the
rocksalt structure. The sign of Z, is usually posi-
tive, since it goes as (n„—nR) and anion polar-
izabilities are mostly larger than those of cations.
As discussed in Sec. I, the values of E,(H } and
ER(((t') are to be compared directly with the peak
position of the hole band. A comparison with ex-
perimental values is deferred until Sec. IV. All
hole bands in Table III are p, &, bands except for the
1s of lithium and the d, &, bands of silver. TKS
polarizabilities~ are used in constructing Table
III. A similar table using JS polarizabilities"
can be constructed using the values of Z» in
Table II and the equations for the other quantities.
The actual hole energy E„=EQ +phd beneath the
vacuum level, can only be found after computing
the phonon self-energy Z,„and subtracting it from
E~. This is done in some cases, as described in
the following section.

III. HOLE-PHONON INTERACTION

The role that phonons play in the optical properties of localized levels has been understood for nearly
thirty years. '"" Here we adopt this standard model, and merely try to calculate the matrix elements for
the hole-phonon interaction. These are used in Eqs. (1) and (2) for the hole self-energy and linewidth due

to this interaction. The q integrals extend over the Brillouin zone, and are evaluated by the method of
special points.

In the LHPI model, the matrix element for the hole-phonon interaction is derived from Eq. (4) for the
ground-state energy. The change in energy is found as each ion is displaced from equilibrium R~- Rz+Qz.
The displacements Qz are assumed to be small, and the change in energy is only retained to linear terms
in an expansion in Qz. There are thres types of terms which are produced by this procedure. First, there
are the terms where the ion containing the hole is displaced. This has no linear interaction, because of the

symmetric arrangement of the surrounding ions. Second, there is the displacement of the ions at R~ which

has the point charge q&. This is an important contribution which is

IIE (Q )=II lqq&. wq(R&) —I w(R ) Q(R& )+I w(R ) Q(R „) Q(Rq) —~ ~ .)Q (lq)
m tlm
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Salt EMAD

TABLE III. Core-hole energies (eV).

Halide hole Cation hole
(& ) Eg Ey(& ~ ~ph Il~ ~ ML e&~~ ~ & &~ ~ Ph

LiF
LiCl
LiBr
LiI

12.529
9.812
9.149
8.389

+1.680
+2.055
+2.055
+2.042

1.656
1.916
1.911
1.897

9.193
5.841
5.183
4.450

12.64
3.61 9.45
3.36 8.54
3.06 7.51

5.70 6.94 2.644
3.202
3.216
3.219

-16.852
-15.069
-14.420
-13.650

75.62
75.62
75.62
75.62

58.77
60.55
61.20
61.97

4.99 53.78

NaF 10.894
NaC1 8.924
NaBr 8.426
NaI 7.776

+0.694
+1.414
+1.519
+1.589

1.441
1.593
1.618
1.612

8.759
5.918
5.298
4.575

3.45 12.21
3.61 9.53
3.36 8.65
3.06 7.64

3.92 8.29
2.90 6.63

1.846
2.462
2.566
2.621

-13.434
-12.800
-12.511
-11.985

47.29
47.29
47.29
47.29

33.86
34.49
34.78
35.30

3.44 30.42
2.33 32.16

KF
KCl
KBr
KI

9.413 M.319
7.998 +0.611
7.629 +0.803
7.123 +0.993

1.776
1.543
1.518
1.478

7.956
5.845
5.305
4.652

3.45 11.41
3.61 9.46
3.36 8.67
3.06 7.71

2.09 7.37
1.96 6.71
1.75 5.96

1.585
1.920
2.021
2.108

-10.679
-10.529
-10.450
-10.225

31.81
31.81
31.81
31.81

21.13
21.28
21.36
21.58

1.96 19.32
1.71 19.65
2.02 19.56

RbF
Rbcl
RbBr
RbI

8.924
7.648
7.343
6.855

-0.586
+0.339
+0.551
+0.762

1.899
1.550
1.523
1.443

7.611
5.759
5.269
4.650

3.45 11.06
3.61 9.37
3.36 8.63
3.06 7.71

2.15 8.91
1.92 7.45
1.74 6.89
1.61 6.10

1.544
1.760
1.869
1.926

—9.883
—9.747
—9.764
—9.543

27.50
27.50
27.50
27.50

17.62
17.75
17.74
17.96

2.95 14.67
1.88 15.87
1.66 16.08
1.44 16.52

AgF 10.230
AgC1 9.074
AgBr 8.715

-1.107
+0.361
+0.713

3.214
2.748
2. 641

8.123
5.964
5.361

3.45 11.57
3.61 9.57
3.36 8.72

2.483
3.003
3.155

-11.606
-12.438
-12.583

21.48
21.48
21.48

9.87
9.04
8.90

CsF
CsC1
CsBr
CsI

8.377
7.109
6.839
6.418

-0.961
-0.040
+0.204
+0.475

2.201
1.871
1.807
1.698

7.137
5.278
4.828
4.245

3.45 10.59
3.61 8.89
3.36 8.19
3.06 7.31

1.604
1.852
1.902
1.919

—9.020
—8.921
—8.944
—8.812

25.10 16.08
25.10 16.18
25.10 16.16
25.10 16.29

The third type of term is where the ion displacement occurs at the point R which is participating in the
dielectric screening. This term is really just a phonon modulation of the dielectric function. We examined
this term, but did not evaluate it because it appeared complicated and small. The hole-phonon interaction
we evaluated is the series of terms in Eg. (14). It can be summed after we convert to reciprocal space us-
ing the lattice transforms in (7) and (9):

The standard definition" of Q, then yields the final expression for the hole-phonon matrix element.
1/2 eA, B

~A, B ( +

2Nm" ~[(u (k)]' ' ' '"

(-) 4v 5qqs, ( h ' e"„J„„(k) e„Js„(k)
V i2X~ $) (m")"' (m')"'

The vectors J»(k) and J»(k) were evaluated by
the procedure described in Sec. II.

A computer code was written to generate the
phonon frequencies and polarization vectors e"' .
This is the type described in Ref. 24 where short-
range interactions between first and second neigh-
bors are described by adjustable force constants,
and while long-range dipole forces were included
by the quantities T' and T'. The polarizable ion
was simulated by an effective charge. This pa-
rameter, as well as the short-range force con-
stants, was fitted to the measured phonon frequen-

cies at the zone center and at the X point. This
method seems to be a simple and accurate inter-
polation scheme for phonon states, but requires
a previous measurement of phonon frequencies by
neutron or x-ray scattering. Calculations were
done for ten cases where we found such data:
LiF ' NaF" Nacl ' Kcl ' ' KBr, KI" RbF,"
RbCI, ' RbBr, ' and RbI."

The hole self-energies Z „ from this interaction
are temperature independent, and are shown in
Table III for halide and cation holes. The numeric-
al values are larger than expected, and are larger
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FIG. 2. The phonon contribution to the x-ray photo-
emission spectroscopy linewidth (FWHM) from potassium
core states. The raw and corrected data are from Cit-
rin, Eisenberger, and Hamann in Ref. 7. Their theory
curve is also shown. The present theory is the dot-dash
line which extends zero temperature. It agrees well
with the experimental phonon contribution to the line-
width, which is the corrected datum.

than the Mott-Littleton energy. This shows the
Mott-Littleton argument that the phonon self-ener-
gy is small and can be neglected is incorrect. A
previous estimate of this self-energy was given by
Citrin, Eisenberger, and Hamann (CEH), ' whose
formulas for the self-energy and linewidth are

Z,„=e'(5/w V,)'~'(1/~„-1/e„),
n(T ) =2.25(a~„,Z„}"'[coth(Pa~„,/2)]'".

This is based upon a simple model whereby the
polar interaction to LO phonons provides the only
interaction. Their formula for Z „predicts values
systematically lower than ours. In fact, we agree
much better if their numbers are multiplied by a
factor of 2. Our calculation also predicts differ-
ent self-energies for halide and cation holes,
whereas they would predict the same.

CEH presented linewidth data as a function of
temperature for three potassium halides, and we
were able to calculate for two of these, KC1 and
KI. The comparison of theory and experiment for
cation holes is shown in Fig. 2. The lines marked
"theory" are our results, and the CEH theory of

Eq. (15) is also shown. The solid points are the
raw data of CEH, and the open points are their
corrected data. These corrections include instru-
mental resolution, and other contributions to the
linewidth, so that the corrected data represented
just the phonon contribution to the linewidth. The
upturn in the raw data at low T is an effect of
sample charging, which they also try to correct.

The agreement between our theory and their
experiment is obviously excellent for KC1. The
agreement for KI is not as spectacular, but still
satisfactory. We conclude that the agreement be-
tween theory and experiment is satisfactory, and
shows that the standard model of Huang and Rhys
does explain the phonon part of the linewidth in
photoemission, in agreement with the conclusion
of CEH.

For each of the ten solids, the linewidth Eq. (2)
was evaluated at five different temperatures for
both halide and alkali holes. Rather than present
all of this output, we sought a simple interpolation
scheme for presenting the temperature dependence.
Guided by the CEH formula (15) for &(T), we tried

n(T) = hotcoth(P@u, /2)]' 2.

This worked amazingly well in describing the
temperature dependence, when Sco, is treated as
an adjustable parameter. One can accurately fit
all five temperature points, equally spaced be-
tween 1 and 500 K, by just two constants, where
&o is the zero-temperature limit of &(T). The
values of ~o and Sco, are shown in Table IV for the
ten solids. The dot-dashed curve in Fig. 3 was
actually calculated with the interpolation formula
(16), while the x points were the full computer
calculation with the integral over the Brillouin
zone. We have checked that the interpolation pro-
cedure works equally well for aQ 20 cases, i.e.,
halide and cation hole in the ten solids.

The unexpected feature of the calculations is that
the linewidth has a different temperature depen-
dence for the halide and alkali holes in the same
solid. This is shown by the different values of I(dy

found in the two cases. Obviously different phonons
affect each hole. This difference is most pro-
nounced in KI, while in KC1 the difference is neg-
ligible. This raises the question as to whether the
energy @co, can be associated with any particular
phonon. In Table IV we have also listed the LO-
phonon energies at the I' point and also at the X
point. The I'-point values are obviously much
higher than 8&, so that they do not correspond to
the observed temperature dependence. Better
agreement is found with the values of h&«at the
X point. In all of the alkali halides, the LO-phonon
energy has its highest value at the I' point, and
falls rapidly in value as k is increased in any di.-
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TABLE IV. Phonon linewidths FWKN in eV.

Salt
Halide hole

4o SMg

A(T) = Ao [coth(-Pa)() P
A li hole

Aa

LiF

NaF
NaC1

KC1
KBr
KI

RbF
Rbc1
RbBr
RbI

1.426 eV

0.900
0.624

0.465
0.414
0.364

0.492
0.380
0.331
0.292

0.0690 eV

0.0404
0.0259

0.0201
0.0169
0.0146

0.0221
0.0146
0.0122
0.0102

1.180 eV

0.881
0.538

0.455
0.355
0.305

0.644
0.419
0.324
0.262

0.0538 eV

0.0446
0.0245

0.0207
0.0145
0.0088

0.0270
0.0183
0.0123
0.0093

0.0816

0.0524
0.0324

0.0265
0.0207
0.0176

0.0356
0.0214
0.0161
0.0130

0.0568

0.0353
0.0240

0.0195
0.0167
0.0140

0.0226
0.0166
0.0123
0.0105

rection away from 0 =O. Since there is more phase
space at large k, then zone-edge values of a~~o
are more important than the value at the zone cent-
er. Similar values for S~~o are found for all of the
zone-edge points, and are similar to the nearly
constant values of A~To throughout the zone. By
studying the polarization vectors it appears that
LA and Lo phonons near the zone edge provide the
important temperature dependence to the linewidth.
The Fr5hlich polaron model which is the basis for
the CEH formula (l5) is not accurate in this region.

IV. RESULTS AND DISCUSSION

The phonon results were discussed in the pre-
ceding section. Now the theory for the core bind-
ing energies will be compared with experiment.
It was discussed in Sec. I and illustrated in Fig. 1
that the phonon self-energy does not affect the ob-
served binding energy of the photoemitted elec-

SC
O

uf 9

7
7 8 9 IO I I l2 l3 l4

Eh(theOry) (eV)

FIG. 3. A graphical comparison between theory and ex-
periment for photoemission binding energies for halide
holes.

trons. Instead, the phonon processes impart a
Gaussian line shape to the spectra, whose peak is
at the value E, calculated in the absence of phonon
processes. Thus we shall compare the values of
E~(H ) and E~(A') derived in Table III with the
available experimental data. This comparison is
shown in Table V.

We have chosen three sets of data for compari-
son: Citrin and Thomas, ' Poole et al. ,' and Pong
et al. ' ' Both Poole et al. and Pong et al. report
the binding energies of valence-band peaks, and
they can be approximately deduced from Citrin
and Thomas. A comparison of the several sets of
experimental results on the same hole rarely show
agreement within 1 eV. This is undoubtedly due to
the presence of sample charging during the experi-
ment, which all experimentalists complain about.
The agreement between theory and experiment is
quite good: usually within I eV, which is the var-
iation among the different sets of data. The com-
parison is given visually in Fig. 3, which plots
points for halide holes according to the theoretical
and experimental values: the experimental point is
the average of the data set. Perfect agreement
would have all points on the solid line. In fact,
rather good agreement is obtained since most
points are within a few tenths of an electron volt,
which is about the experimental uncertainty. Our
conclusion is that the localized-hole point-ion
(LHPI) model describes rather accurately the
photoemission peaks for holes in alkali halides.

The tables also present the same calculations
for the three silver halides with the rocksalt struc-
ture. In Table IG it is shown that the halide P hole
and the silver d hole have nearly the same energy.
This is in accord with numerous photoemission
measurements"" which show these holes at the
same energy, and strongly hybridized. The ob-
served valence bands are 6-eV wide, which is
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TABLE V. &, (H ) and & g') in eV.

Salt Poole'
Halide hole

Pong Citrin Theory Poole
Alkali hole

Pong Citrin' Theory

LiF
LiCl
LiBr
LiI
NaF
Nacl
NaBr
NaI

KF
KC1
KBr
KI

RbF
Rbcl
RbBr
RbI

CsF
CsCl
CsBr
CsI

12.85
10.80
9.80

11.88
10.45
9.22

10.63
9.60
8.83
8.18

9.98
9.35
7.94
7.33

10.03
9.15
8.41
7.60

10.6

13.0
10.0

11.2
9.6

8.5

10.8
9.5
8.9
8.2

10.0
9.0
8.2
7.0

10.3

15.4
10.9
9.2
7.5

9.9

9.8

12.6
10.1
10.5

7.7

12.64
9.45
8.54
7.51

12.21
9.53
8.65
7.64

11.41
9.46
8.67
7.71

11.06
9.37
8.63
7.71

10 ~ 59
8.89
8.19
7.31

21.23
22.10
21.97
22.08

17.72
18.65
17.79
18.11

15.30
15.85
15.75
15.70

17.5
18.0
18.2
18.4

14.5
14.5
14.6
14.5

60.7

36.9
36.3
35.7
35.5

21.8
20.5
20.0

18.6

15.3
15.2
15.1
14.1

58.77
60.55
61.20
61.97
33.86
34.49
34.78
35.30

21.13
21.28
21.36
21.58

17.62
17.75
17.74
17.96

16.08
16.18
16.16
16.29

~poole et al. , Ref. 2.
Pong et al. , Refs. 3-6.
Citrin and Thomas, Ref. 1.

proof that band structure is important for these
solids. The LHPI model should certainly not be
applied to describing the photoemission from these
hybridized bands. However, as noted by Tejeda
et al. ,

"this hybridization leaves some d orbitals
unaffected, and holes in them are localized. The
LHPI model should apply to these holes, which
appear as sharp peaks in the photoemission with a
binding energy of 9.0-9.5 eV in AgC1 and AgBr.
This is exactly where we predict the d holes to be
in our model, as shown in Table III. It appears
that the LHPI model can be successfully applied
to the d-band holes which do not participate in the
hybridization.

An accurate calculation of photoemission thresh-
olds for metals requires the inclusion of the sur-
face dipole layer. Euwema and Surratt" have
shown how to include such effects in ionic solids.
For rocksalt lattices, one would expect a surface
dipole for the (111)face, but would not for the
(100) or (110) faces.

Another approximation of the LHPI model is
the neglect of short-range repulsive forces be-
tween the ions. Repulsive forces enter the pre-
sent model in two ways. The first is the change
in the ionization potential of the free ion due to the
compression upon the ion by its immediate neigh-
bors. Jennison and Kunz" have shown that the
ions are spherical except at the compression re-
gions. The second way repulsive forces enter
into the model is through the hole-phonon interac-
tion. Again we on1y need to know how the hole
changes the repulsive force constants. This will
affect the phonon-induced linewidth, and self-ener-
gy. These factors are difficult to estimate.

Citrin and Thomas' gave an estimate of the Born-
Mayer repulsive energy, and its contribution to
threshold energies in photoemission. %e believe
their estimates are too large for the following
reason. They used the standard form of the repul-
sive energy

Ea =6B(P„c+P«exp[2rc —M2(rc+r„))/p+P»exp[2r„— W2(rc+r„)]/p'I,

P,~ =1+Z,/n, +Z~/nq.

Here rc and r„are the cation and anion radii, B
and p are hardness and strength parameters, and

Z and n are the valence (=+1) and number of outer
electrons (=8). This repulsive-energy contribution
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to the ground-state energy of an alkali halide has a
typical value of 1 eV. They assumed that during a
photoemission event all of the repulsive energy of
an ion vanishes, and the repulsive energy is im-
parted to the photoemitted electron. They obtain
an estimated 1-eV contribution to the repulsive
energy of the electron. We think that the ion which
remains behind to host the hole still has repulsive
energy. Rather than assign all of the repulsive
energy of the ion to the photoemitted electron, it
seems reasonable to estimate the change in re-
pulsive energy due to the loss of a single elec-
tron. The Born-Mayer theory provides a conven-
ient way of doing this, since one can estimate the
change in repulsive energy due to Z changing by
plus one and n changing by minus one. The result
for cations and anions is

6Eac = 6B6(Z/n)

x (1+2exp[2rc —M2(rc+r„)]/p),
6E„"=6B6 (Z/n )

x {1+2 exp [2r„M2(rc+—r&)]lp)

The factor 6(Z/n) equals -~ for catious and ——,
'

for anions. Using the parameters of Citrin and

Thomas for NaCl, one finds that the change in
repulsive energy is -0.11 eV for anions, and
-0.12 eV for cations. Both values are smaller
than the other energy terms we have calculated,
and small enough to be neglected. Thus we find

that the repulsive-energy contribution to the pho-
toemission energy is small, contrary to the con-
clusion in Ref. 1.

The above discussion of repulsive contributions
assumed that the ions were frozen at their lattice
sites. The change in repulsive energy will cause
a change in the local configuration of neighboring
ions around the hole. This rearrangement will
not alter the energy of the photoemitted electron,
which should be calculated using the frozen lattice
approximation. The argument for this approxima-
tion is that the electron leaves the site far too rap-
idly for the slow response of the ions. We dis-
cussed in Sec. III that the phonon self-energies
do not affect the peak energies in photoemission,
which also happens because the ions do not respond
sufficiently rapidly. The same argument shows
that the ion response to the change in local re-
pulsion also occurs on the same slow time scale,
and does not influence electron threshold energies.
Thus we conclude that the local ion repulsion makes
a negligible contribution to the energies of the
photoelectrons.
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