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Explicit expressions for the photoelastic constants in zinc-blende semiconductors are given

based on the general expressions obtained in a previous paper. Numerical examples for unexcit-

ed and population-inverted GaAs are given by taking account of (i) the existence of the ima-

ginary part overlooked so far, (ii) the enhancement of the hydrostatic deformation potential due

to the carrier-carrier interaction, (iii) the contribution from the free-carrier plasma screening

and absorption due to intraband transitions, and (iv) the nondispersive contribution from the

higher bands. In relation to the existence of the imaginary part, we propose a possible explana-

tion of the dispersion of the photoelastic constant observed by Garrod and Bray, which has not

been clearly explained. We predict a new effect that the scattered photon intensity can be larger

than the incident photon intensity even if the photons are absorbed, when the intensity of
acoustical phonons is sufficiently large.

I. INTRODUCTION

%'e have developed a general theory of photoelastic
constants in population-inverted semiconductors by

solving the equation of motion for one-particle densi-

ty matrix in the preceding paper. ' In this paper, we

derive the explicit expressions of photoelastic con-
stants in zinc-blende crystals based on the general ex-
pressions and present numerical examples for GaAs.

In Sec. II, we derive the explicit expressions of
photoelastic constants in zinc-blende crystals, taking
account of the effects of interband and intraband
transitions. In Sec. III, we present the numerical ex-
amples of the dispersion curves of the photoelastic
constants for unexcited and population-inverted
GaAs. The importance of the imaginary part of the
photoelastic constant and a new effect caused by the
existence of such an imaginary part are discussed in

some detail. Moreover, we propose a possible expla-
nation of the experimental results on the dispersion
of the photoelastic constants p44 of GaAs by Garrod
and Bray, which could not have been clearly ex-
plained so far, by taking account of the effect of the
imaginary part. In Appendix A, the expressions of
deformation potentials and momentum matrix ele-

ments in zinc-blende crystals are derived. In Appen-
dix B, we discuss a possibility of enhancement of the
hydrostatic deformation potential in population-
inverted semiconductors and give an estimate of the
magnitude of the enhanced deformation potential.

II. PHOTOELASTIC CONSTANTS IN ZINC-
BLENDE SEMICONDUCTORS

%e must designate a specific crystal structure in or-
der to calculate explicitly photoelastic constants by
making use of Eq. (21) in the previous paper. ' Let
us consider a zinc-blende crystal with direct gap, such
as GaAs, InP, and their mixed compounds, etc. As
shown in Fig. 1, the band structure consists of one
s-like conduction band and three p-like valence
bands. The three valence bands are named heavy
hole band, light hole band, and spin-orbit split-off
band, respectively. In what follows, we use the sub-
scripts Vt„Vt, and t, for the quantities related to the
heavy hole band, the light hole band, and the spin-
orbit split-off band, respectively. The energy in the
conduction band is given by

eq(k) =f k /2mc+&c

21 4774 O1980 The American Physical Society



21 THEORY OF RESONANT BRILLOUIN SCATTERING. . . II. 4775

CONDUCTION

BAND

HEAVY HOLE

BAND

VQ
0-

HAJJI

iK
D
fYI-

tP O
LIJ LLl

ELECTRON WAVE

NUNBER k

where luc), luy„), luv, ), and luv ) are the periodic

functions. Iuc) is an s-like isotropic function, while

luv, ) (I =h, I, s) is a p-like function. So, we must

take care of the relation between the direction of ap-
plied stress due to phonons and the quantization axis
of the p-like functions, since zinc-blende crystals are
isotropic under unstressed conditions and an aniso-
tropy is induced by applying the stress to the crystal.
On the calculations of piezobirefringence and stress-
induced electroreflectance coefficients, Pollak, Cardo-
na, and Higginbotham3 chose the quantization axis
parallel to the applied static stress. Following their
idea on the selection of the quantization axis, we cal-
culate the photoelastic constants p~~, p~2, and p44 in
zinc-blende crystals.

A. Photoelastic constants p~~ and p~2

Let us consider a longitudinal sound wave, pro-
pagating along the [001] axis of a zinc-blende crystal.
Nonzero components of stress and strain tensors as-
sociated with the wave are T33 and S33, respectively.
Therefore, the quantization axis should be parallel to
the [001] axis. Then, the wave functions of the con-
duction and valence bands in the (J,mj) representa-
tion are given by"

lu, ) =Is[& or ls[&,

I
u v &

=
I

—', .—,
'

& oot = (-, &'"
I 2z1 —(x + ~ Y) l &

or
FIG. 1. Illustration of energy-band diagram of a zinc-

blende semiconductor considered in this paper.
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The energies in the valence bands are given by

ey (k) =ey g'k'/2my-
h k

ey (k) ey —g k /2my
I I I

y( ek ) = e y —g k /2 m y
g S $

(2)

or

or

=(—,')'"l(x+ Y)1&

=I-', , —', &, =(—,')'"l(x- Y)]&,

luy ) = I-,', —,
'

&~, =(—,')'"Iz]+(x+ Y)]I)

The following relations between the band-edge ener-
gies exist:

6y =F

y~ 6 yl

Ny —6y =lL
A g

where 1 and [ indicate spin up and spin down refer-
ring to the [001] axis. IS) is the s-like wave function
and IX), I Y), and Iz) are the p-like wave functions
whose forms are given in Appendix A.

The orbital-strain Harniltonian H is written

IC, k&=le'" u, ), I Vo k) le uv„)

I V, , k& = le'"'~uy, &, I V„k& - le'" ~uv
& .

where E~ and b are the energy gap and the spin-orbit
splitting energy, respectively.

The eigenfunctions of the conduction and valence
bands are given by

H = —a (S~ ~ + S22 + S33)

—3b[(Lt' —,
' L')St, +c.p.]-

—(6d/v3)([LtL2}S~2+c. p. )

where L is the angular momentum operator, c.p.
denotes cyclic permutations with respect to the in-

(5)
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Therefore, nonzero components of the deformation
potentials are given by

e(C3'3 ' —C33" " ) =lel(a b)—

dices i, 2, and 3, and the quantities in the curly
brackets indicate the symmetrical product, (LIL3]
= —,(LIL3+L3LI). Parameter a is the hydrostatic-

pressure deformation potential for a given band
which is defined as the difference between the
hydrostatic-pressure deformation potentials for the
conduction and valence bands. The parameters b and
d are uniaxial deformation potentials of the valence
bands. For the longitudinal wave propagating along
the [001] axis, the orbital-strain Hamiltonian H be-
comes

H = —aS33 —3b[(L3' ——,L')S33] (6)

From Eqs. (4) and (6), the Hamiltonian matrix for
the valence bands can be written (see Appendix A)

I-', +-'&~I I-', +-'&II I-', +-')ooI

where a and b are given in eV.
The momentum matrix elements are written (see

Appendix A)

and

I Mcv„ I p
= 2

I
M

I

IMcv, II'I =o,
IMcv, lll

= IMI

(Mcvg MV C ) II

IMCV„I3=
'

IMI

IMCV, I3'- —', IM I',
IMCV, I3 = IM I',
(MCV„MV, C)3= —(I/J2) IM13

(9)

(io)

where subscripts II and s denote the components of
the momentum matrix elements parallel and perpen-
dicular to the [001] axis, respectively. IMI' is the
square of the absolute value of the matrix elements
averaged with respect to directions and is given by'

e(c33 c33 ) le l(a + b)

e(C33 —
C33

' ' ) = le la
(v v)

eC33"' = lel~»

(8)
IMI =

o moEg(mo/mc l)(Eg+6)/(Eg+ —5) (ll)

Inserting Eqs. (8) and (9) into Eq. (21) of the pre-
vious paper, ' we obtain the explicit expression of the
photoelastic constant b p~ ~

= Ap22 = Ap33 = b p33 33.

i

Ie IIMI' Bfc(k)/'dpc + 8fv„(k)/d& v„
I

[fc(k) fv„(k) ]k'dk-,
k2dk —2

2 mp 1T QJ Kpf7 Pc(k) —P y (k) —h cd —i h/Tcy [gc(k) —ay (k) —fed —i t/Tcy ]'

(Qf (k)/Qg )ktdk+— —2
2 P pc(k) —ev (k) tol —it—/Tcy P [ec(k) —pv (k) —tcd —it/Tcv ]'

S S
I

[ fc(k) fv„(k)]k dk. .
+4b

[&c(k) pv (k) tcd I t/Tcv ][pc(k) —'gv (k) tcd «/Tcv ]
h h S S

(i2)

f [ fc(k) fv„(k) ]k dk. .—2
[pc(k) —p y (k) —h'cd —it/Tcy ]

l

[ fc(k) fv, (k) ] k'dk. —
.—2

[ec(k) —ey (k) fpl —it/T—cy ]
I I

f [fc(k),fy (k) ] k dk
—2

[ ec( k) —e y (k) —tol —Ih/Tcy ]
S S

[dfc(k)/8pc]k dk+ —(a +b)4 o «(k) —e, (k) t~ It/T„-—
I I

[af,( k)/0. ,]k'dk+—
2 o pc(k) py (k) tcd lt/Tcy

S S

f f fg(k) —fy„(k)]k dk
—2b

[&c(k) P v„(k) tol —ih/Tcv„] [Pc(k) P v, (k) hcd —it/Tcv, ]

From Eq. (21) of the previous paper, ' with Eqs. (8) and (10), the photoelastic constant hpl3 = hpI3 ——hp33 hp33 33

can be written

[Bf (k)/0 +'df „(k)/Il „„]kdk

, —,( —b)
2 mp gr cd epn &c(k) &v (k) tcd —it/Tcv

h h
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where n is the isotropic refractive index of the zinc-
blende crystal. In the derivation, we used the follow-
ing approximations. '

ay (k) —ay (k) —t0 —lt/rv y —Kv (k) —ay (k)
g S h s

av (k) —av (k) +it/rcv& it/rcv = av (k) —av (k)

(14)

which are valid for III-V compounds. Although the
valence band V] degenerates to the valence band Vq

at k -0, almost all the holes occupy the band V~ be-
cause of mv &) mv. Therefore, we can take the

I

band V& as the highest valence band Vt in Eq. (21) of
the previous paper. '

B. Photoelastic constants p44

the Hamiltonian matrix

- &-, , +-, IH I-, , +--,
&
=+ d .

C„' " =(-, , +—,IH„I-, , ;—,&=+;d,(vv)

Ct2' =(2, +z IH~I 2, +2) =+J2id(V VI) 1 1 3 3

(VIV ) 3Ct~' ' = &-', . +-', IH-I-,
'

+-,
'

& =+&~id

The matrix elements related to the intraband transi-
tions with spin reversals have finite value, but the
momentum matrix elements related to the transitions
becomes zero. Therefore, no intraband transition
contributes to the photoelastic constant p44.

Nonzero components of momentum matrix ele-
ments can be written (see Appendix A)

(Mcv„)i(Mv, c)2= (ST or llP. I —, +—,)

x (—,', + ,'IP IS J o—r t&

= yi , J3M—',

Photoelastic constant p44 is defined as the change
of dielectric constant ~~2 for a strain S~2. The strain
S~2 is given by

8Q 8Q
S&2- — " +

2 Qp Qx

where u„and u~ are the x and y components of the
displacement associated with a shear wave propagated
along the [001] axis of zinc-blende crystals. In this
case, we should take the z axis, i.e., the [001] axis as
a special direction, so that the wave functions of Eq.
(4) referred to the [001] axis can be used in the cal-
culation of p44.

From Eq. (5), the orbital-strain Hamiltonian H
becomes

(Mcv, ) t(Mv„c)~= (Sl or ]IP.I —,, +—, )

x (—,+ , IP IS[ or—]&

= +i J3M2—

(Mcv )1(Mvic) 2
= (S] or [ I P.I-,', +—,

'

~ (—,'. + —,
'

IP, IS] or ]&

( 3 ) 1/2M2

(Mcvi) l(Mv c)2 (S [ or ]IP.I-', , +-',
&

x (-,', +-,' IP, IS [ or ])
=+I(-')'i'M' .

2

(17)

H~- v3d(LtL2+L2—Lt)S)2 . (15)

By using Eq. (15) and Eqs. (Al), (A2), and (A3)
in Appendix A, we obtain nonzero components of

Inserting Eqs. (16) and (17) with the approxima-
tion [Eq. (14)l into Eq. (21) of the previous paper, '

we obtain the explicit expression of the photoelastic
constant Lkp44'.

[fv„(k) fv, (k) ]k dk—
Ip44

4 mo rr gp san a [ac(k) —ay (k) —tto —it/rcy ] [ay (k) —ay (k) —tD —it/ry y ]

~m, [fy(k) fy (k)]k dk

[ac(k) ay (k) ta) it/rcy ][ay(k) —ay„(k) tft —it/rv y„l

[2fc(k}—fy (k) —fy(k)]k dk

+„t [ac(k) —av (k) —tru —it/rcv„][ac(k) —av, (k) tro —it/rcv, ]—
[fc(k) fv, (k) lk dk-

+4 (18)
[ac(k) av, (k) —tau —It/rcv 1 [ac(k) av (k) tcu it/rcv ]
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' 1/3
1 fef 3 t/38nc

nc
3 277 toe~ 77

(20)

Thus, we obtained the explicit expressions [Eqs.
(12), (13), and (18)] for the contribution from the
interband transitions between the conduction and
valence bands to three independent photoelastic con-
stants p~~, p~q, and p44 in zinc-blende semiconduc-
tors, taking account of the effects of population
inversion and of intraband relaxation. Here, let us
consider some effects which are not taken into ac-
count in our theory.

The first effect is the renormalization of the band-

gap energy due to the carrier-carrier interaction. As
discussed in Appendix B, the fluctuation of the elec-
tron density, induced by low frequency phonons, in

population-inverted semiconductors brings about the
additional change of the band gap through the
carrier-carrier interaction, i.e., the change of ex-
change energy. As a result, the hydrostatic deforma-
tion potential is enhanced as follows:

a" = [(2 —A)/(2 —2A ) ]a

where the constant A is given by

finition of photoelastic constants and Eq. (21), we
can obtain the expressions for the contribution from
the intraband transitions due to the photons to the
photoelastic constants

2 Bhn
n ~nc

t

~o 9Am ~nc a'
I

2%i n inc Bcc 2

T

e Ao I ~o ~nc a1—
4~ ~on mcc 2mnc7c ~~c 2

(22)

The third effect is the contribution to the photoe-
lastic constants p]~, p~q, and p4~ from higher bands
(M],Mq, . . . critical points) which are relatively non-
dispersive in the energy range of the photons con-
sidered in this paper and unaffected by the popula-
tion change of carriers. Here, the contributions from
the higher bands are dealt with as fitting parameters
b,p;,". We adjust the fitting parameters in such a way
that the calculated values of the photoelastic con-
stants agree with the measured values at the low en-
ergy range of the photons.

/) n = eApnc/8rr epnm—cc

4a =e ) inc/grr epnmcc rc
(21)

respectively, where Ao and c are the wavelength of in-
cident and scattered photons and the light velocity in
vacuum, respectively. Similar expressions can be
written for holes, but the effects due to the holes can
be neglected because of m~„)) mc. When a longi-

tudinal sound wave propagates along the [001] axis in

the population-inverted zinc-blende semiconductor,
the electron density nc is modulated through the
enhanced deformation potential a' by the sound
wave. Therefore, the above processes contribute to
the photoelastic constants p~~ and p]~. From the de-

In this expression, e, and nc are the specific dielectric
constant and the conduction-electron density, respec-
tively. For example, in the case of a population-
inverted GaAs at room temperature, the electron
density nc is of the order of 10' cm, so that the
constant A becomes about 0.85. Then, the hydrostat-
ic deformation potential is strongly enhanced; i.e. ,
a'=3.8a. On the calculation of the photoelastic con-
stants p~] and p~q in the population-inverted sernicon-
ductor, we must use the enhanced value a' for the
hydrostatic deformation potential a.

The second is the effects of the intraband transi-
tions due to the photons. The effects are well known
as free-carrier plasma screening and free-carrier ab-
sorption. The changes of refractive index due to the
former process and of absorption coefficient due to
the latter process are given by '

III. NUMERICAL EXAMPLES AND DISCUSSION

Here we show the numerical examples of the pho-
toelastic constants for GaAs calculated based on Eqs.
(12), (13), (18), and (22). Before carrying out the
numerical calculations, we check the values of the re-
fractive index n which should be used in the equa-
tions. The refractive index has a weak dispersion as
a function of the photon energy and has an imaginary
part which corresponds to the absorption (or amplifi-
cation) coefficient. However, the dispersion and ima-
ginary part can be neglected in the calculations of the
photoelastic constants. For example, in the case of
GaAs, the refractive index changes by only 4.4%
(Ref. 11) when the photon energy changes from 1.2
to 1.45 eV. The absorption coefficient for the photon
energy above the band gap is of the order of
10~ cm ',"which corresponds to the imaginary part
of the refractive index of about 4 && 10 ', much small-
er than the real part of 3.6.

The numerical values for various physical quanti-
ties used in the numerical calculations are listed up in
Table I. In the numerical calculations of Ap„ in Eqs.
(12), (13), and (18), the integrations were carried
out numerically with the help of a digital computer.
For convenience, we write down the expression for
the contribution hp~'~ = Ap~'q to the photoelastic con-
stants from the intraband transitions in a numerical
form for population-inverted GaAs:

4p)'t = hpt'p =0.1(1.41/h v)'

x [1 —/2 6x 10 (1.41/h v).], (22')
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TABLE I. Numerical values for physical quantities in GaAs.

E~ =1.41 eV'
LL =0.34 eV'

m& =0.066mp'

my 0.5mp&
h

my -0.09mp
(

my 0.15mp'
5

Tgy Tgy Tgy
I 5

n 3.6"

a = —8.9 eVb

b = —4.1 eV4

d = —5.4 eVf
a" 4a —35.6 eV

hp )') = —0.154"

ap,",-—0.073"

Tv v =Sx10 ' sec~ AP44= —0.122"
A I

'Reference 12.
R. N. Bargave and M. I. Nathan, Phys. Rev. 161, 695 (1967).

'M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Rev.
154, 696 (1967).
P. Y. Yu, M. Cardona, and F. H. Pollak, Phys. Rev. B 3,

340 (1971),
'Q. H. F. Vrehen, J. Phys. Chem. Solids 29, 129 (1968).
A. Gavini and M. Cardona, Phys. Rev. B 1, 672 (1970),

IA. K. Walton and U. K. Mishra, Proc. Phys. Soc. London
1, 533 (1968).
"Values are adjusted in such a way that the calculated values
of p& agree with the measured values at the low-energy

range of the photons.
'O. V. Emelyanenko, Phys. Status Solidi 8, K155 (1965).
~This value was used in the analysis of GaAs lasers [see, M.
Yamada and Y. Suematsu, Proceedings of the Tenth
Conference on Solid State Devices, 1978 IJpn. J. Appl.
Phys. Suppl. 18-1, 347 (1979)j.
"D. T. F. Marple, J. Appl. Phys. 35, 1241 (1964).

where we express h v in eV and assume the electron
density n~ of 10' cm ', which is a typical value in a
GaAs laser at room temperature. ' The real part of
b ptt (or Ipt't ) can contribute significantly to the pho-
toelastic constant ptt (or pt2), while the imaginary
parts of them are negligibly small over the energy
range of the photons considered in this paper. In the
cases of unexcitation, the photoelastic constants p&
are given by the sum of bp& and Lip~', while in the
cases of population inversion, the photoelastic con-
stants p& are given by the sum of 4p J, b p&, and lip]J'.

Strictly speaking, in population-inverted semicon-
ductors, the band gap Eg is renormalized by the
carrier-carrier interaction as discussed in Appendix B,
so that we must use the renormalized value E~'
= Eg —EEg as the band gap. The band-gap contrac-
tion 4E~ calculated with the help of Eq. (B1) in Ap-
pendix B is of the order of a few tens of meV. How-
ever, in the reported values for the energy gap Eg of
GaAs, there is the uncertainty of the same orders of
magnitude as the band-gap contraction AEg. There-
fore, we used the bare value E~ as the band-gap ener-
gy even in the case of population inversion.

We show the calculated values of the photoelastic
constants p~~, pl2, and p44 as a function of the photon
energy in Figs. 2, 3, and 4, respectively. As shown
in Fig. 2(a), there exists a weak resonant enhance-
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FIG. 2. Calculated photoelastic constant p~~ as a function of photon energy at room temperature in (a) unexcited and (b)
population-inverted GaAs. The values of quasi-Fermi levels, i.e., ~g cg =30 meV and ~y —ey =0 meV, assumed in the
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cases of population inversion through Figs. 2 to 4, are typical values in a GaA1As-GaAs heterostructure laser. We assumed the
common quasi-Fermi level ~y for three valence bands.

F
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ment in the real part of the photoelastic constant p~~

under unexcitation, since the contribution Ap~~ from
the interband transitions has the same sign (negative)
as the contribution 4p~'~ from the higher bands. The
imaginary part of the photoelastic constant p~~ cannot
be neglected near the band gap E~. In the case of pop-
ulation inversion, the dispersion of the photoelastic
constant pt~ shown in Fig. 2(b) has the following
characteristic features: (i) there exist two cancella-
tion points, i.e., 1.398 and 1.410 eV in the real-part
dispersion curves and (ii) the imaginary part has the
opposite sign (positive) to the imaginary part of ptt
in the case of unexcitation. On the electronic transi-
tion from the energy level ~y(k) to ~~(k) or vise
versa in population-inverted semiconductors, the fac-
tor ( fc —,fv) in the resonant terms of Eq. (12) can
take a positive value if ac(k) —ay(k) ( tc ay, in

contrast to the case of unexcitation, while the factor
( f~ —fy) takes a negative value if ~~(k) —~y(k)

—6y even in the case of population inversion.
F F

Therefore, the electronic transitions where ec(k)
—6y(k) 4 fg &y contribute with a positive sign to

F F
the photoelastic constant p~~. This is the reason for
the appearance of the cancellations of the real part of
p~~ and the sign reversal of the imaginary part, asso-
ciated with the population inversion. Here, we check
numerically the magnitude of the other contributions
to the photoelastic constant p~~. One is the contribu-
tion to the photoelastic constant directly induced by
electron-density fluctuation due to phonons, which

corresponds to the terms involving 8 fc/Bag of
Bfvl8&v in Eq. (12). Both real and imaginary parts
of the sum of the terms take positive values which
are of the same orders of magnitude as the sum of
the resonant terms over the entire energy range.
Another is the contribution of the intraband transi-
tions to the photoelastic constant. As one can see in

Eq. (22'), the intraband contribution hp~'~ take large
positive values, i.e., -0.1. Therefore, we must take
into account of the both effects of the electron-
density fluctuation and intraband transitions. Finally,
it should be noted that the imaginary part of p~~ in
the case of population inversion is quite dominant
near the band gap.

The dispersion-curves of the photoelastic constant
p~2 in the cases of unexcitation and population inver-
sion, shown in Figs. 3(a) and 3(b), have features
similar to those of the photoelastic constant p~t. The
appearance of the cancellations of the real part and
the sign-reversal of the imaginary part, associated
with the population inversion, are due to the same
reason as that in the photoelastic constant p~~. In
this case, the electron-density fluctuation and the in-
traband transitions make also significant contribution
to the photoelastic constant p~2.

As shown in Fig. 4(a), the cancellation of the real
part of the photoelastic constant p44 occurs at 1.4 eV
in the case of unexcited GaAs but the scattering
cross section never becomes zero at the cancellation
point because of the existence of the imaginary part
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I,/I (asin(ru In pS/2c ) ('e (23)

where Io and I, are the intensities of the incident and
scattered photons, respectively. Also, I and 8 are the
beam width of the phonons and the incident (or scat-
tered) angle in the crystal, respectively. The sub-
scripts of the photoelastic constant p and the strain S
are dropped and the photoelastic constant can be re-
garded as a complex number, i.e., p =p, +ip;. The
refractive index n can be regarded as a pure real
number, as discussed in the first paragraph of this
section.

of p44 at the point. More detailed discussion on this
subject will be made later. Near the energy gap, the
imaginary part of p44 in the case of unexcitation is
also quite important. In contrast to the case of unex-
citation, there exists a very weak resonance in the
real part of p44 in population-inverted GaAs, as
shown in Fig. 4(b).

Let us discuss in more detail the importance of the
imaginary part of photoelastic constant near the band
gap overlooked so far, and discuss some new effects
caused by the existence of such an imaginary part.
Also, in relation to the existence of the imaginary
part, our calculated result on p44 in the case of unex-
citation is compared with the experimental results by
Garrod and Bray, ' which have not yet been clearly
explained so far. As is well known, the scattering ef-
ficiency in Brillottin scattering (Bragg regime) is given
b 13

In the small-signal case; (ao /n'pS/2&
~

&& I, Eq.
(23) can be rewritten approximately in the form

I,/Ia = e a/cases) ( n S-lp (
t/4c (24)

os;~e ' "'esinh (cob& p;S/2c )

In this case, the scattering efficiency I,/Io, i.e., the
scattering cross section is proportional to the square
of the absolute value of the complex photoelastic
constant p. Therefore, if we take into account of the
imaginary part of the photoelastic constant, the
scattering cross section should not approach zero
even at the photon energy ~here a complete cancella-
tion of the real part of the photoelastic constant oc-
curs. Garrod and Bray2 found experimentally that
there exists a finite minimum in the dispersion curve
of the Brillouin-scattering cross section in an unexcit-
ed GaAs and that the depth of the minimum is de-
creased as the phonon intensity increases. Neither of
the phenomena has yet been explained clearly. The
former phenomenon can be explained straightfor-
wardly by taking into account of the imaginary part of
the photoelastic constant. The latter also can be ex-
plained by the existence of the imaginary part as fol-
lows. The photoelastic constant can be regarded as a
pure imaginary number near the minimum in the
dispersion curve because the real part is completely
cancelled out at the minimum. In such a case, the
scattering cross section is proportional to the square
of the sinh function
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On the other hand, in the region such as low-energy
side of the minimum, where the photoelastic constant
can be regarded as a pure real number, the scattering
cross section is proportional to the square of the
sinusoidal function

era, ~ e ' "' sin'((u ln'p, S/2( )

The scattering cross section a ~; increases more rapid-

ly than the scattering cross section ~q„as the pho-
non intensity S increases. This means that the depth
of the minimum in the dispersion curves of the
scattering cross section is decreased with the increase
of the phonon intensity.

Finally, we predict a very interesting effect caused
by the existence of the imaginary part of the photoe-
lastic constant. When the photoelastic constant is re-
garded as a pure real number, the sinusoidal function
is smaller than unity. Therefore, as is well known, I,
is smaller than 10 so far as the semiconductor has no
gain for the incident and scattered photons. On the
other hand, in the case where the photoelastic con-
stant is a complex number, 1, can be larger than /0

even if the photons are absorbed. For example, if we
assume a pure imaginary photoelastic constant, the
scattering efficiency is written as follows'.

that is, the scattering efficiency I,/lo can be larger
than unity for the sufficiently intense phonon flux.
This theoretical result can be explained as follows.
The effective absorption constant for the total field of
the incident and scattered photons is proportional to:

e(x) E(x) 'dx

where a(x) is the loss modulation and E(x) is the
total field which consists of the sum of the incident
and scattered photon fields. As is shown in Fig. 5,
the total field distribution has its rnaxirnum in the
minimum loss points and minimum in the maximum
ones so that the effective absorption constant can be
smaller than the average loss a. Also, as an extreme
case, if the amplitude of the phonon is sufficiently
large, one can expect a gain for the photons even if
the semiconductor has an average loss. The similar
explanation has been proposed by Yariv and Yeh, '

concerning an x-ray laser oscillation in distributed
feedback cavities where artificial periodic loss modu-
lations are assumed.

IV. CONCLUSION

I NC I DENT PHOTON I p
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X

SCATTERED PHOTON I~

CA
O

/, /Ia ——e ~' "'esinh (Ql III pjS/2(') (25)

AVERAGE LOSS

We have derived the explicit expressions of pho-
toelastic constants due to the interband transitions in
zinc-blende crystals based on the general theory
developed in the previous paper. ' The numerical ex-
amples were given on the dispersion curves of the
photoelastic constants for GaAs, taking account of
the effects of the intraband transitions, the non-
dispersive contribution from higher bands, and the
enhancement of the hydrostatic deformation potential
due to the carrier-carrier interaction in addition to the
effects of the interband transitions. We have show'n

numerically the importance of the imaginary part of
the photoelastic constant, over looked so far, in both
cases of unexcitation and population inversion. In
relation to the existence of such an imaginary part,
we have proposed a possible explanation of the
dispersion of the photoelastic constant by Garrod and
Bray, which has not been clearly explained. Also,
we have predicted a very interesting effect that the
scattered photon intensity can be larger than the in-
cident photon intensity, even if the photons are ab-
sorbed, when the photoelastic constant has a finite
imaginary part.
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APPENDIX A: DERIVATIONS OF DEFORMATION
POTENTIALS AND MOMENTUM MATRIX

ELEMENTS IN ZINC-BLENDE SEMICONDUCTORS

The wave functions of p-like valence bands in Eq.
(4) are given by4'

1

(X+iY) 0
2

0
(A1)

0 0' (X-iY&- 0, )Z&- I

1 0

in the representation of angular-momentum operator

electrons which is given by"

E,„- ((e—(i/2rr aoa. ) (3/rr) ' 'nc'", (81)

where e, and nc are the specific dielectric constant of
the semiconductor and the electron density, respec-
tively. The exchange energy due to the holes can be
neglected, since the effective masses of the holes in
III-V compounds are much larger than those of the
electrons and then the correlation parameter r, of the
holes are larger than unity.

%hen a low-frequency longitudinal sound wave
propagates along the [001] direction in the zinc-
blende semiconductor, the band gap of the semicon-
ductor is modulated by the sound wave, as shown by
the solid lines in Fig. 6. Simultaneously, the electrons
and holes are accumulated at the minimum points of
the band gap and conversely depleted at the max-
imum points of the band gap. In the small-signal
case, the ac component of the electron density, in-

duced by the low-frequency phonons, is given by

010 0 —i 0L„101,Ly- i 0 i—1 1

010 0 i 0

e(C(cc) —C; ~ ~ )S;
2

(B2)

1 0 0
L, 0 0 0

0 0 —1

(A2)

(A4)

Using Eqs. (Al) and (A2) with the relations for spins

&II»- &III&-I . (III) - &&II&-0,

we can easily obtain Eqs. (7) and (16) in the text.
From the symmetry consideration, nonzero com-

ponents of the momentum matrix elements are given
by4, 5

P - (&11~.16'I &
-

& Y I IPr 16'1& - &Z I IP, I6'I),

where Te(C& —Ci )Si is the effective poten-(CC) A A

tial fluctuation for the electrons in the population-
inverted semiconductors, which was discussed in Ap-
pendix A of the previous paper. ' In the expression,
the electron density nc can be written

nc= Nc(a)fc(a ac ac) da
0 F

where Nc(a) is the density of states of the conduc-
tion band. The increase of the electron density at the
minimum points of the band gap (or the decrease at
the maximum points) brings about further decrease
(or increase) of the band gap at the points through
the change of exchange energy, as shown by the bro-
ken line in Fig. 6. From Eqs. (Bl) and (B2), the ad-

and similar equations can be written for spin-down
functions. Using Eq. (A4), we can easily obtain Eqs.
(9), (10), and (17) in the text.

ELECTRON

CONDUCTION
BAND EDGE

APPENDIX B: ENHANCEMENT OF DEFORMATION
POTENTIALS DUE TO CARRIER-CARRIER

INTERACTION

%'hen a semiconductor is so highly excited as to be
population inverted, the band-gap energy of the
semi'conductor is renormalized by the many-body ef-
fect due to the excited high-density electrons. The
renormalization of the band gap, i.e., the shrinkage
of the conduction band edge in semiconductor lasers
has been found experimentally by many research-
ers." ' The amount of the shrinkage has been ex-
plained by considering exchange energy due to the

HOLE

VALENCE
BAND EDGE

FIG. 6. Illustration of the deformation potential enhanced
by the carrier-carrier interaction in a population-inverted
semiconductor.
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The additional change of the band gap brings about
further change of the electron density. Thus, the
changes of the band gap and of the electron density
occurs sequentially. As a result, the total change of
the band edge of the conduction band, i.e., the effec-
tive potential change for the electrons can be written
as

e(C'"'-C,, " " )(—,'S,,)(i+A+A'+ )

e(C(cc) CJ a s')(
2 SJ) [1/(1 A )] (BS

where the constant A smaller than unity is given by

t
' 1/3

3 213 Bnc
A =— nc '

3 2''6p&, W 9&g
(B6)

Therefore, the fluctuation of the band gap, which is
enhanced by the many-body effect, is given by

e(C„'"'-C,, "")(—,'S,,)([l/(l-A)]+i}

=e(C;j' ' —Cg~ " " )S,J(2 —A)/(2 —2A)

Because a )) b, it can be regarded that the hydro-

ditional change of the band gap can be written

BE,„'" hn C
Bnc 3 2aeae, e

~

(cc) '~t 'a'
2/3 t)nc e ( CJ C'J )S'j

( )
2

static deformation potential a is enhanced as follows:

a"= [(2 —A )/(2 —2A )]a (B7)

The uniaxial deformation potential b in fourth ex-
pression of Eq. (8) in the text is not affected by the
carrier-carrier interaction, since b in the expression is
related to the interband transitions between the
valence bands Vt, and V, . For the same reason, d in
Eq. (18) is also unaffected by the carrier-carrier in-
teraction.

Before closing this Appendix, let us check the ap-
plicable regime of the above discussion. First, let us
consider the relaxation time of the enhancement of
the deformation potential. There exist two processes,
i.e., one is the carrier accumulation or depletion and
another is the renormalization of the band gap due to
the carrier-carrier interaction. The relaxation time of
the former process is smaller than 100 psec in the
case of population-inverted GaAs, as discussed in
Appendix A of the previous paper. ' The relaxation
time of the latter process is of the order of pico-
second, which has been measured experimentally. '
Therefore, the above discussion is valid for the pho-
nons with the frequency lower than 10 GHz. The
second is the problem on the validity of the perturba-
tion treatment. For example, in the case of
population-inverted GaAs at room temperature, a
typical electron density is of the order of 10' cm '
and the perturbation parameter A becomes about
0.85. With respect to this problem, more exact treat-
ment may be required. Here, we use Eq. (B7) as the
expression for an order estimation.
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