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We have developed a general theory of the resonant Brillouin scattering in population-

inverted semiconductors by solving the equation of motion for one-particle density matrix. The
general expressions for the photoelastic constants obtained can be applied to (i) the analysis of
the dispersion of photoelastic constants when the photon energies come very close to the energy

gap and (ii) the analysis of the operation of acoustical distributed feedback )asers. We found the

importance of a new contribution to the photoelastic constants directly induced by electron-
density fluctuation due to phonons. We also found the importance of the imaginary part of
photoelastic constants, which has been overlooked so far.

I. INTRODUCTION

The possibility of the resonant enhancement of the
Brillouin- and Raman-scattering cross sections for
photons with energies close to the band gap in serni-
conductors has been predicted by Loudon. ' After his
prediction, the resonant enhancement and cancella-
tion have been observed experimentally by many
researchers. Experimental results reported so far on
resonant Brillouin scattering are summarized as fol-
lows. Garrod and Bray2 observed Brillouin scattering
in GaAs and found the resonant enhancement and
cancellation of the photoelastic constant pq4. The
resonant enhancement of the Brillouin-scattering
cross section in CdS has been observed by Pine. 3

Many people have observed this kind of resonant
phenomena in CdS, ' ZnO, ' CdSe, ' ZnSe,
ZnTe, "and GaP." Also, Loudon's theory has been
extended to take the effects of excitons' and polari-
tons' into account. The experimental results have
been satisfactorily explained by the theories.

On the other hand, the resonant phenomena simi-
lar to the resonant Brillouin scattering have been ob-
served in piezobirefringence. Feldman and
Horowitz' have found the resonant cancellation of
the piezobirefringence coefficient m~~

—m~2 in GaAs.
Cardona and his co-workers" ' measured the
dispersions of piezoelectroreflectance and piezo-
birefringence in many semiconductors and explained
theoretically their experimental results. Berkowicz
et al. ,' Ando et al. ,

' and Tada et al. " have com-
pared their results on the Brillouin scatterings by
acoustical phonons with the results on piezo-
birefringence by static stresses. As a result, it was

concluded that the dispersion of the Brillouin-
scattering cross section by low-frequency acoustical
phonons is in good agreement with the dispersion of
piezobirefringence coefficient.

Although the resonant enhancement and cancella-
tion of the Brillouin-scattering cross section have
been observed and explained theoretically, it is diffi-
cult to obtain the experimental data of the Brillouin
scattering when the energies of incident and scattered
photons come very close to the energy gap, since the
photons are strongly absorbed by the electronic inter-
band transitions in semiconductors. Even in such a
case, however, it is possible to obtain the scattering
cross section in population-inverted semiconductors,
since the photons can be amplified instead of ab-
sorbed. One of the motivations of this paper is to
give a theoretical basis for such an investigation. The
second motivation is related to acoustical distributed
feedback (ADFB) lasers2''t proposed and demon-
strated by us. In our ADFB lasers, a set of distribut-
ed Bragg reflectors (DBR's) are formed at both ends
of GaAs wafers and surface acoustical waves
(SAW's) are propagated on the planar region
between DBR's. The light beam radiated by popula-
tion inversion is deflected by DBR's and SA%'s, if
the Bragg conditions are satisfied. The photon ener-
gies of ADFB oscillation modes are very close to the
energy gap of GaAs. Therefore, the values of pho-
toelastic constants in the resonant Brillouin scattering
in population-inverted semiconductors must be used
for the theoretical analysis of the operation of ADFB
lasers.

In this paper, we develop a general theory of the
Brillouin scattering in population-inverted semicon-
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ductors by solving the equation of motion for one-
particle density matrix. The density-matrix formula-
tion has merits that the effects of relaxation and of
population inversion can be introduced into the basic
equations in a straightforward manner. In Sec. II, we
describe the assumptions and basic equations in our
treatment. In Sec. III, we derive the expressions for
first-order terms of density matrix, which correspond
to the absorption (or amplification) of photons and
the damping of phonons. Also, the increment of the
dielectric constants due to the transitions between
conduction and valence bands is calculated. In Sec.
IV, we derive the expression for the contribution to
photoelastic constants from the transition between
conduction and valence bands, taking account of the
effects of population inversion and relaxation. The
physical meaning of each term in the expressions are
discussed. We emphasize the importance of a new
contribution to photoelastic constants directly induced
by electron-density fluctuation due to phonons. We
also point out the importance of the imaginary part of
photoelastic constants, which has been overlooked so
far. In Sec. V, the validity of the assumptions used
in this paper is discussed. In Appendix A, the con-
cept of a local equilibrium value of the density fluc-
tuation due to low-frequency phonons introduced in
Sec. II is discussed in some detail. The discussion on
the screening effects of deformation potentials by
free carriers is given in Appendix B.

In a separate paper, we shall derive the explicit
expressions of photoelastic constants for zinc-blende
crystals based on the general results obtained in this
paper and present numerical examples for GaAs.

UCTIOM BAND

ELECTRON HtAVE NUMBER k

VALENCE BAND Vg

FIG. l. Illustration of energy-band diagram of a semicon-
ductor considered in this paper.

II. BASIC EQUATIONS

We make the following assumptions throughout
this paper.

(a) We consider a direct-gap semiconductor with
one (s-like) conduction and three (p-like) valence
bands, as shown in Fig. 1. In this paper, the effects
of excitons are neglected. In the case of some III-V
compounds such as GaAs and InP, this assumption is
valid under population-inverted condition, since exci-
tons disappear by the plasma-screening effects.

(b) By using the density-matrix method, we
derive expressions for the contribution to photoelas-
tic constants from the conduction and valence bands
(Ma critical point) taking account of the effect of po-
pulation inversion. In the derivation, the interband
transitions between the conduction and valence bands
due to photons, the intraband transitions due to pho-
nons and the interband transitions between the
valence bands due to the phonons are considered,
while the interband transitions between the conduc-
tion and valence bands due to the phonons are
neglected.

(c) The effects of intraband transitions due to
photons are considered separately as free-carrier plas-
ma screening and free-carrier absorption in the
separate paper. The contributions to the photoelas-
tic constants from higher bands (Mt, Mt. . . . critical
points) are also considered separately.

(d) We take account of the effects of electron-
phonon coupling due to deformation potential but
neglect piezoelectric coupling. Screening effects for
the deformation potential are discussed separately.

(e) The photon wave number P and the phonon
wave number E are much smaller than the electron
wave number k. The phonon frequency 0 is suffi-
ciently low so that the phonons can be dealt with as a
classical sound wave.

(f) The photon energy tea is nearly equal to the
transition energy (ac —av ).I

(g) The bands are isotropic and the energies of the
bands are represented by isotropic effective masses.

The equation of motion of the density operator is
written

= [H. pl —-'[f'(p —p) + (p —p) &), (&)
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where the total Hamiltonian H = Ho+ H,"'+H,"' is
the sum of the unperturbed Hamiltonian Ho in the
semiconductor, the electron-photon interaction Ham-
iltonian H,",and electron-phonon interaction Hamil-
tonian H,"'

~ The three Hamiltonians are given by

Hp = P /2mp + V( r )

H(" -—eA P/mp

H(l) e( (CC)+Xg t t +Xgc t t
I I J

(I~J)

where e, mo, and P are the charge of an electron, the
free-electron mass, and the momentum operator,
respectively. In the expressions for Ho and H, ",
V( r ) is the periodic potential, and A is the vector
potential due to the electromagnetic waves (the pho-

( VI V))
tons). In the third expression, C;,' ', C( ' ', and

( VI VJ)
C( ' are the tensor components of the deforma-
tion potentials for the conduction band, the 1th
valence band, and the deformation potential which
induces the transition between the 1th and Jth
valence bands, respectively. S~ is the strain tensor
due to the phonons. I on the left-hand side of Eq.
(1) is an operator representing the effect of intraband
relaxation by electron-electron, electron-phonon, or
electron-impurity scatterings. p is an equilibrium
value of p.

We use the Bloch function IC, k) for the conduc-
tion band and I Vt, k) for the valence bands. The
functions are the eigenfunctions for the unperturbed
Hamiltonian HD', i.e, ,

HplC k) =ec{k)IC k),
Hpl V( k) =ev, (k) I V( k)

where the energy ~~( k) in the conduction band and
e v (k) in the 1th valence band are given as

I

(7)

where ~I and ~( are the intraband relaxation times.

The vector potential A( r, t) and the strain tensor
S&( r, t) are written in the plane-wave form as

A(rt) =A, exp[i(P r —p)t)]

S;,(r, t) =S&exp[i(K r —Qt)]
(8)

From Eqs. (5) and (8), we obtain the Fourier com-
ponent of the matrix element of the current density
j „(p):
j,(P) =(e/2mp) (Ile ' a' " P + Pe ' a' ' ll') . (9)

The n th-order component of the current density is
given by

J "=Tr(j p'"')= Xj,p,"II II
II

(10)

Finally, the zeroth-order components of the density
matrix are given as

in successive orders of approximation corresponding
to ascending powers of the amplitudes of the vector
potential A due to the photons and the strain tensor
SJ due to the phonons. In Eq. (6), the suffixes l and
l' denote the eigenfunctions for the unperturbed
Hamiltonian Ho and the matrix element p„,is de-

fined as

p„=«I pl/')

The n th-order element of the density matrix p'"' is
II

given by the iterative equation

(n)

[H (n)] + [H(1) + H()) (n-))]
(('et e 0'

ec(k) =5 k /2mc+e,

e v ( k ) = 5' k'/2 m v + & v—
I I I

p'c-'c-„=fc{k ),
p v", '„v,„=fv,(k), (»)

j (r ) =(e/2mp)[(P —eA)5(r —r )

+5(r —r )(P —eA)]

where the spin current density is ignored and the po-
sition operator 5 is defined as 5( r —r ) =

I
r ) ( r I.

As is the usual procedure, we expand the elements
of the density matrix'.

(0) + (1) + (2) + . . .
II II II II

(6)

Here, mq and mv, are the effective masses of the

electrons, and ~q and ~v are the band-edge energies,I
as shown in Fig. 1.

The current density operator j ( r ) for the electron
is defined as

p =0 for I A I'
II

where, fc(k) and, fv, (k) are the Fermi-Dirac distri-

bution functions for the conduction and valence
bands, respectively. The effects of the population
inversion can be taken into account by replacing the
Fermi levels with the quasi-Fermi levels in the distri-
bution functions; i.e. , fc(k) and fv {k) are given byI

fc(k) = (1 +exp[[pc{ k) e, c ]/KT])
(»')

fv (k) = (1+exp[[ev. , ( k) —ev t/xT])

where ~~ and E v are the quasi-Fermi levels of theF F
conduction and valence bands, respectively. When
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the separation of the quasi-Fermi levels (ec ay ) is larger than the band gap of the semiconductor F.
„

the pop-

ulation of electrons is inverted and the photons with the energies smaller than (6g 6y ) can be amplified.
F F

III. FIRST-ORDER TERMS

Here we derive the expressions for the first-order terms of the density matrix induced by the perturbation en-
ergies H,(" and H,"'. Also, the first-order terms of the current density induced by the photons are derived.
From the results, we obtain the increment of the dielectric constants due to the transitions between the conduc-
tion and valence bands.

Replacing the time derivative with —i cu in Eq. (7), we obtain the first-order terms of the density matrix for the
perturbation H, ":

(e/m—o)(Mc „-v--),(lAI[fc(k+p) fv (k)]—
(1)( )

ec{k+P ) —ev (k) —too —it(1/ crv )
I I

(e /—m o) (Iv,-„-,c-„)t' I
A

I [fc{") fv, ( k + p )—]
(1)( )

ec(k) ev (k+P) +too+it(I/Tcy )

(12)

where the momentum matrix element is defined as

{Mc„,; ),=«, k+ple"'(A/IAI) pl~i. k),
where the suffix i denotes the direction of the vector potential A. The relaxation time Tgy 1s represented by the

intraband relaxation times in the conduction and valence bands

1/rcy, = —,{I/re+1/r y, )

Using a similar procedure, we obtain the first-order terms of the density matrix for the perturbation H, ".
[f ( k + K) f(k) —itBf (k—)/, Be ] Hit

p,"'«)c-,c =
k+K' k ec(k +K) —ec(k) tfI —it(1/r—c)

(»")

Bfc(k) e(CJt —CJ ' ' )Si
BKC 2

[fy ( k +K) fy (k) ItBfv ( k )/Bev &v ]H v„,y
„

p,"'( II) 1k+K' 1k ey (k +K) —ey (k) tQ —i—t(1/r y )
1 1 1

t

Bf,(k) (C' ' C( &)S

@ay 2

p,'"(0)v & v =0 (for 1=2, 3)

and

[fv, ( k + K) —fv, (k)]H,"v',-„,-„,v,-„
p,"'(ft)v, , v

ey(k +K) —ey (k) tQ —it(—1/ vr)y
(l4)

for I ~ J, where the energy matrix element H ", is given by

H,', , = (ileCJSJe'" ' ' li')
s II

(i4')

In the derivation of Eq. (13), the local equilibrium value of the density matrix p was introduced into the relax-
ation term of Eq. (7) and the long-wavelength approxitnation for the phonons was used {see Appendix A).

From Eqs. (9), (10), and (12), we obtain the j-directional component of the current density induced by the
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photons

(~, )8)],= XX[[j(p) v, „c-„,;-]jp'"(~)c„;-v,,„+-[j (/1 )c„v-,,„,-l-jp,"'(~)
v,„,,c„]

'2 /'c( k, ) /Y, ( —k
,)

IAI X [Mcv t [Mv c]jXn)o j ' '
), oc(k) —ov, (k) to) ——it(1/rcy, )

In the derivation of Eq. (15), it was assumed that the photon energy h~ is close to the energy gap of the semi-
conductor and then p())(o)) y c is negligibly small compared with p(')(o))c

Y . Also, we assumed that
I k+P' k k+P

' I k

l P l is much smaller than l k
l

and that the momentum matrix element is independent of the electron wave

number k. By using the macroscopic relations,

QA; gp~
E; = = I OJAI, Jg = = I CdPg

er
' ' ' ar

Pg = b, ~gE; (16)

(where P is the electric polarization) with the help of Eq. (15), we obtain the increment of the dielectric constants
due to the interband transitions between the conduction and valence bands as

'2 ' '2
k [fc(k ) fy ( ,k ) ] k d—k

hoq (o), P) = X(Mcy ) (My c)j. Jl
jno 2ro) j ' oc(k) —o v, (k) —to) —it/&cv,

(17)

where k is the maximum wave number, whose order is the inverse of the atomic distance of the semiconductor.
The real part of hoj" (o), )8 ) represents the enhancement of the dielectric constant by the
conduction —to —valence-band transitions. The imaginary part of lb~,&"(~, P ) is proportional to the absorption (or
amplification) coefficient of the photons.

IV. SECOND-ORDER TERMS: PHOTOELASTIC CONSTANTS

We can derive the expressions for the photoelastic constants from the second-order terms of the current densi-
ty due to the mixing of the fields A and S&, because two photons and single phonons are involved in the ordinary
Brillouin scatterings.

The iterative relation of Eq. (7) is written for n =2 as

( )

[/f (2)] + [/f (1) + /f (1) (() + (I) ]

( )

Ih (2)

II

(17')

From Eq. (7'), one can see that there are two kinds of second-order terms of the density matrix due to the mix-
ing of A and S&. One is due to the mixing of p,"' and H,"', and the other is due to the mixing of p,"' and H,"'.
Let us denote the former as p' ' and the latter as p,', '. The term~ due to the rnixings of p,"' and H,"' and of
p,"' and H,"' represent nonlinear effects by large-signal photon and phonon fields, so that these terms are
neglected in this paper.

From Eq. (7') with Eq. (2), we get

p")(~+ n) c- ——.v-k+P+K' I k

mo

—X(Mc y )p, (0) y y [oc(k + P + K)—oy (k) t(o)+ 0) it/rcv ]

p„"'(o)+0) ].
I k+P+7' k

(1Sa)

t

—X pg (0)v-„-~ v-„-(Mv-„-.c-)i [ac( k ) ov (k+P+K)+t(o)+&)+it/~cv ]
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and

pcs ( «) + Q )c- —-,v—(2)
k+P+K' I k

H (1) (1)r
pe («)) c —,v — "s v —,v — "s c- ——,c- pe («))c- —,v-k+P+K' I k+K I k+K' I k k+P+K' k+P k+P' l k

+ $s'"( )c-„,—,-„.,-„-„&.,-„-„.,-, (/( c(r + e +(() —~,(k) —s( +())—s/ „)
(lsb)

zr (1) ()r (1)r 0 (1)
v - - -, v - -p~ ~~~ v - —,c-—

P~ ~~ v - - -,c- -HJ c- —,c-I k+P+K' I k+P I k+P' k I k+P+K* k+K k+K' k

+Xe. p().c /(c(k) —,(k+e+K)+s(+())+s(,. l
i

From the approximation (f), we obtain the inequalities

Making use of Eq. (10) with the above assumption, we obtain the second-order term of the current density as

J («) + Q, P + K) = X X [ j ( P + K ) v —c- - -petit(«) + Q) c- - v—

Substituting Eq. (9) into j (p+K) i, Eq. (18a) into p t(~t+«)Q), and Eq. (18b) into pt2'(«)+ Q) ) in the

above equation, the j directional component of the current density is given by

[T (~+ Q, ig+K)],

IAI X (Mcv, )((Mylc)i X~0 l k ec(k) ay (k) t( +«Q)) It/TcyI I

(1)
pJ v, v

X(Mcvi);(Myse)i X
Jgal k ec(k) —ev, (k) —t(~+Q) —it/Tcv,

[fc( k ) fy ( k )](Hg v. v& Hs c,c)
+ (Mcv, ), (Mv, c)i X

k [ec( k ) —ev (k) —it«) —it/Tcy ]I I

[fc( k ) fy ( k ) ]H,"'y y-
+ X (Mcy, );(My c)ix

Jsel k [ec(k) —ey (k) t«) —it/Tcy ][ac(k) —'ey ( k ) —t«) —it/Tcy ]
(

In the derivation of Eq. (19), we neglected (8 and K compared 'with k, and neglected Q compared with «), from
the approximation (e).

From the definition, the photoelastic constant pal is given by

p(i«( = lh e(i / ( ii 0p)Sae«((2)

where L~& ' is the increment of the tensor component of the dielectric constant induced by the strain Sg.
and ~0 are the diagonal tensor components of the specific dielectric constants and the free-space dielectric con-
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stant, respectively. From Eqs. (13), (14), (16), and (19), we obtain the expressions for d ej". Substituting the
results into heji" in Eq. (20), we get the expressions for the increments of the photoelastic constants due to the
conduction —to —valence-band transitions

[8I,(k)/8ec+8»»8fv (k)/8ev ][e(Cg ' C„—,
' ' )/2]k~dk

dpi»k»=
& 2 X(Mcv ) (Mv c}j

21K cd SPY;;6JJ I ec(k) —ey (k) t—a& —it/rcy

[fv, (k) fv (k)—]eCkI k dk

Xj(Mcv ) '(Mv c)j [ac(k) —ev (k) —ta» —it/rcv ] [ay (k) —ev (k) t0——it/Ty v ]
(I~J) J J I J I J

[fc(k) fy, (k—)]e(Cki ' —CkI
' ' )k'dk

—X (Mcy ),(My c)j [ec(k) —ey (k) —tee —it/rcy ]'
I I

[fc(k) fy (k) ]eCkI k dk
+ X X (Mcy ),(My c)j [&c(k) —& v (k} tea —i—t/rcv ] [&c(k) —

& v. (k) tea —i—t/Tcy ]
(I g»g J) I I J J

(21)

where

ti for 1 1

(0 for 1=2 or 3

Strictly speaking, we must consider the screening ef-
fects for the deformation potentials by the free car-
riers in the conduction and valence bands. But, as
discussed in Appendix B, under the population-
inversion condition, the deformation potentials are
not screened because the semiconductor at high exci-
tation levels is intrinsic and the local charges induced
by the low-frequency phonons are perfectly neutral-
ized. Therefore, we can use the bare values for the
deformation potentials in Eq. (21). Rather, the de-
forrnation potentials may be enhanced by the many-

body effects due to high-density electrons under the
population-inverted semiconductors. The enhance-
rnent of the deformation potentials will be discussed
in a separate paper.

We consider the physical meanings of each term in
Eq. (21).

(i} The first and second terms in Eq. (21}are due
to pit», i.e., the mixing of H,"» and p,"'(0).
p,"»(0) is the first-order fluctuation of the electron
density due to the phonons. Therefore, these terms
represent the modulations of the refractive index and
the absorption (or amplification) coefficient for the
photons directly induced by the phonons. In the case
of unexcitation where f~=0 and fy =1, these

terms are negligibly small, while in the population-
inverted semiconductors, these terms make some
contributions to the photoelastic constants since
8fc/8sc and 8fy /8ey, have finite values and

fv, (k) &fv (k). These terms have not been con-

I

sidered in the previous papers. "'"
(ii) The third and fourth terms are due to p,t~»,

i.e., the mixing of H, " and p,"', which correspond to
straightforward extensions of the resonant terms in
Loudon's theory. The terms involve the effects of
the population changes and the intraband relaxations.
If we put fc-0, fv=1, and r„,= ~, each of the

terms reduces to the resonant term in Loudon's
theory.

(iii) The first and third terms are due to the intra-
band transitions of the electrons by the phonons.
The second and fourth terms are due to the inter-
band transitions between the valence bands.

(iv) The third and fourth terms include the factor
.f~tk) —fy, (k). In low excitation, the factor has a

negative value, while in population inversion, the fac-
tor has a positive value for ec(k) —ey (k) smallerI
than ~~ —~[ . Therefore, the changes of sign of the

photoelastic constants at high excitation levels may
occur. Some numerical examples of such a
phenomenon for GaAs will be described in a separate
paper 23

(v) As described in the above paragraph, Eq. (21)
includes the relaxation terms. As a result, Eq. (21)
does not diverge even for the photon energy which is
equal to or greater than the band-gap energy of the
semiconductor. Also, hp&k» in Eq. (21) is a complex
quantity. The imaginary part of the photoelastic con-
stant represents the modulation of absorption (or am-
plification) for the photons. When the photon ener-
gy becomes very close to the band-gap energy, the
imaginary part of the photoelastic constant may be
larger than the real part. The importance of the irna-
ginary part will be explicitly shown by the numerical
examples in a separate paper.



4770 MASAMICHI YAMANISHI AND NOBUO MIKOSHIBA 21

V. DISCUSSION AND CONCLUSION

We obtained the general expression for the contri-
bution to photoelastic constants from conduction and
valence bands (M0 critical point) taking account of
the effect of population inversion. Assumptions
(a) —(g) made in Sec. II are sufficiently allowable but
we must check the validity of the assumption that we
can use the Bloch functions for the electrons as base
functions. The use of Bloch functions means that the
k selection rule at electronic transitions holds good.
On the other hand, it is said that the k selection rule
may be broken by carrier-carrier interactions at high
excitation levels even in a pure semiconductor.
However, from the recent works on semiconductor
lasers, we feel that the k selection rule holds good
to some extent at high-temperature region (77 to 300
K). Therefore, Eq. (21) can be used to calculate the
photoelastic constants of direct-gap III-V compounds
such as GaAs, InP, and their mixed crystals which is
highly excited at the high-temperature region. In a
separate paper, ' the explicit expressions for the pho-
toelastic constants of zinc-blende crystals will be
derived from Eq. (21) and the numerical examples
will be given for the photoelastic constants of GaAs
under population-inverted condition together with the
discussion on the enhancement of deformation po-
tentials.

Finally, we point out that in the cases of highly
doped semiconductors and II-VI compounds, the
present theory should be modified. In the former
case, we must include the wave functions of impurity
levels (or impurity band) in the base functions for
density-matrix calculations. In the latter case, the ef-
fects of excitons must be taken into account. Also,
at intermediate excitation levels where no population
inversion is attained, we must take account of the
screening of the deformation potentials by free car-
riers.
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APPENDIX A: LOCAL EQUILIBRIUM VALUE
OF DENSITY MATRIX

In calculating the first-order terms of density rna-
trix due to phonons p '„„weobtain incorrect results

if we use the zeroth-order component of density ma-
trix p for the equilibrium value p. In such a case,
we must introduce the concept of local equilibrium
value p since electron densities are spatially modulat-
ed by low-frequency phonons. On the analysis of in-
teraction between electrons and phonons in semimet-
als and semiconductors, Mikoshiba" and Spector'
have introduced the local equilibrium value of elec-
tron distribution into a classical Boltzmann equation.

According to their procedures, we replace p in the
relaxation term of Eq. (1) by p. Therefore, the
first-order term p" should be calculated by

[H (1)j + [H(l) (0)}

We determine the local equilibrium value p from
II

physical consideration. As shown in Appendix B, the
potential fluctuation, due to phonons, for the elec-
trons in the conduction band of a population-inverted
semiconductor is given by

(i) [ (cc) ( v, v&)
H, e c = —,e(CJ —Cj )S'Jk+K' k

We can assume that the quasi-Fermi level in the con-
duction band is spatially constant, since the dielectric
relaxation frequency of the electrons is much higher
than the frequency of the phonons which can be
dealt with as a classical sound wave. Therefore, tak-
ing account of only the effect due to the potential
modulation, the local equilibrium value of density
matrix pc c is written

k k

(v v)
(0) ~pc-„c-„e(g.(cc) g. » )g.pc-c-= pc-c-+

&c 2

Bf (k) e(CJ C'J )S'J

Sic 2

(A2)
Substituting Eq. (A2) into Eq. (A1), we obtain the
first-order fluctuation of density matrix

[fc( k + K) fc( k ) —it[Bf (k—)/Be j/r [ 2
e(cjt ) —Cj ' ' )Sj

"+"' " e, ( k + K) -e, (k) -an it/r, —

In the long-wavelength limit (K 0 and 0 0), Eq. (A3) reduces to

Bf,(k) e(C,,&")-C,, ' ')S„

(A3)

(A3')
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Using a similar procedure, we can obtain the first-order fluctuation of density matrix for the electrons in the
valence band V~'.

( fy ( k +K) fy (—k,) —it(f)fy (k)/Bey ]/ry }—e(CJ ' ' —C~ )SJ
p."'(&)v ——,v -=

1 k+K' 1k ey (k+K) —ey (k) —t0 —it/ry

af, , (k) .(c„(' ')-c'"')s,,
~~v

1
2

(A4)

For the valence bands V2 and V3, we can put

p."'(~)
v,-„-„,v, -„-—0 (for I =2, 3) (AS)

since there are very few holes in the bands.
In the cases of interband transitions between

valence bands, electron densities are not modulated
spatially. Therefore, the concept of the local equili-
brium value of density matrix is not required in the
derivation of Eq. (14) of the text.

APPENDIX B: SCREENING OF DEFORMATION
POTENTIALS IN POPULATION-INVERTED

SEMICONDUCTOR

Kl{-« 1, Kly « 1

We must consider the screening effects of defor-
mation potentials by free carriers in a population-
inverted semiconductor. In principle, we can obtain
an exact solution for the problem by solving the
simultaneous equations which consist of the equation
of motion of density matrix and Maxwell's equations.
However, it is very difficult to solve exactly the
simultaneous equations. Fortunately, in the
population-inverted semiconductor, the deformation
potentials are not screened for the following physical
reason. When a semiconductor is so highly excited
as to be population inverted, the density of the excit-
ed carriers is much higher than carrier density at
thermal equilibrium. In such a case, the excited
semiconductor can be regarded as intrinsic unless the
semiconductor is highly doped. Therefore, any local
electron charge induced by low-frequency phonons is
neutralized perfectly by holes and vice versa. The
deformation potentials in the highly excited semicon-
ductor are not screened substantially, since no net
charge is induced by the phonons. Mikoshiba'
analyzed theoretically the interaction of electrons and
holes with acoustic waves in intrinsic semiconductors.
Following his analysis, we can confirm quantitatively
the above speculation on the screening of deforrna-
tion potentials and examine the effective potentials
which act on the electrons and holes. The phonons
considered in this paper can be regarded as a low-

frequency acoustic wave; i.e., the phonon frequency
«10 GHz and

Ne (0/K)(C" ——C )SJ
J{-—Jy =

KT

3rc/r 3r y/r
)( 1 —— + (1 —inr)

K2(2 K2l2

3rc/T 3ry/r+- + (1 —i A~)'
4 K lc K lv

J +J (C(cc) +C(yy))S
(B1)

(&+g/2)tnc(1 I &r)
x

(1+8)rcrK ~T

where

mph' y5=— —1
myTg

C(yy)+(C(cc) C(yy))/(2 2(f)r)a= —5
ij ij

C" +C'"'ij ij

and the equations are rewritten with the notation
used in this paper. Substituting Eq. (B1) into Eq.
(2.2) of Ref. 30, we obtain an ac component of elec-

I

where l{- and lv are the mean-free paths of the elec-
trons in the conduction band and of the holes in the
valence band, respectively. The densities of the ex-
cited electrons and holes are sufficiently high and are
nearly equal to each other. For example, in the case
of GaAs, the excited carrier density, required to real-
ize population inversion at room temperature, is of
the order of 10"crn '. Therefore, the present situa-
tion belongs to category (C) in Ref. 30:

3 T{ 6' g
2« (Klc) « 1,

2 &»a,c. Qrc « 1
K

where T, ct)g and v, h ~ are the recombination life-
time, the electron-plasma frequency, and the thermal
velocity of the electrons, respectively. Similar rela-
tions are valid for the holes.

In this case, the ac components of electron-current
density J{-and hole-current density Jy are given by
Eqs. (3.8) and (4.6) in Ref. 30:
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tric field as

E=(—,'iK)(C' '+C '")S;,

mc(d + —,
'

g) (1 —i Qr)
x

(1+8)rcK xTr

The local field, which acts on the electron, is given
by Eq. (2.10) of Ref. 30 as

Ec = E —iKC(cc)S~ (B3)

By using Eqs. (B2) and (B3) with the relation grad
@-—E, i.e., —iK@=E, we obtain the local potential
for the electrons as

e$ = —e (C(c ) C( )) +(C(cc)+C( v))

( e)d,
' t e (C(cc& C(vv)) (C(cc)+C(vv))

(~+ —,
'

g) (1 —I n. ) m,
x '

S,J . (B4)(1+8)rcK KTr

By the similar procedure, we obtain the local poten-
tial for the holes as

electrons in the conduction and valence bands are
given by —,(C' ' —C'"+) and —, (C ' —C' ')
respectively.

In Ref. 30, it was assumed that the semiconductor
has one conduction band and one valence band. Us-
ing the above discussion, we can examine the effec-
tive deformation potentials in our case where the
semiconductor has one conduction band and three
valence bands. Almost all holes occupy the highest
valence band, i.e., the valence band V~ in Fig. l.
Therefore, the suffix V in Eq. (B6) should be con-
sidered as V~. For the valence bands V2 and V3, we
can consider that the relative relation between the
valence bands V~ and V2 (or V3) in energy scale is
unchanged compared with that at unexcitation.

Summarizing the above discussions, the effective
deformation potentials in population-inverted semi-
conductor are given by, for the conduction band,
valence band V~, and valence band V2 or V3, respec-
tively,

t(( (cc) C 1 I )ij ij l

ij ij
~ (C 1 I C(cc))

(~+-,' S)(I - i n. ) mc
SQ . (BS)(1+s).,K'K Tr

In usual cases, i.e., ~c —~v —10 "sec, v —10 sec,
and T =77 —300 K, the second term in the large
parentheses of the right-hand sides of Eqs. (B4) and
(BS) are much smaller than the first terms. There-
fore, the potentials for electrons and holes are ap-
proximately given by

ey' = —'e(Cj —
C/J )S,J

( e) d ' = 'e (C,,"-" C,,"-~)S,, —

Thus, the effective deformation potentials for the

(v/v, ) t (v( v/) ( ( )= C" ' ——C"Ij 2 tJ
——C"

2 ij

The intraband deformation potentials are involved in
the form of the difference of the deformation poten-
tials for the conduction and valence bands in the
third term of Eq. (21). Therefore, even if we replace
the deformation potentials in the third term of Eq.
(21) with the above effective values, the factor

(cc) ' v(v(' ~

(CJ ' —C&
' ' ) is unchanged. Apparently, the de-

formation potentials in population-inverted semicon-
ductors can be regarded as being unscreened by free
carriers. Also, in the cases of interband transitions,
the deformation potentials are not screened, since no
net charge is induced.
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