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The effect of energy-band structures on the transverse magnetoresistance in degenerate semi-
conductors has been studied for the case where acoustical phonons are the dominant scattering
mechanism. The calculation has been performed taking into account the inelasticities in the
electron-phonon scattering due to the finite energy of the phonons involved. Results show that
the transverse magnetoresistance for the nonparabolic band structure is enhanced much more
considerbly than that for the parabolic band structure. We also found that the transverse mag-
netoresistance for both parabolic and nonparabolic band structures oscillates with the dc magnet-
ic field owing to the degeneracy of the electron gas. However, the number of oscillations for
the nonparabolic band structure is larger than that for the parabolic band structure.

I. INTRODUCTION

Transverse and longitudinal magnetoresistances are
the two most commonly investigated properties of
semiconductors in which the effect of the dc magnet-
ic field on electronic transport properties is exhibited.
Arora' found that the transverse magnetoresistance
changes dramatically with inelasticity, while the longi-
tudinal rnagnetoresistance remains essentially un-
changed. Consequently, inelasticity may be expected
to play an active role and should be included for the
electronic transport in the transverse configuration.
Some experimental results for the inelastic scattering
mechanism show that the transverse magnetoresis-
tance depends strongly on the dc magnetic fie}d.2

The transverse magnetoresistance for nondegenerate
semiconductors with the isotropic parabolic energy
bands has been investigated for the case where
acoustic phonons are the dominant scattering
mechanism. ' lt was shown that the transverse rnag-
netoresistance increases with the dc magnetic field in
the quantum limit. Arora et aI. also discussed the
behavior of the strong-field magnetoresistance under
conditions where the acoustic phonon scattering in
the high-temperature limit is considered to be the
dominant mechanism of scattering. They found that
the transverse magnetoresistance increases linearly
with the dc magnetic field in the quantum limit. In
our previous works, the effect of nonparabolicity
on transverse magnetoresistance in nondegenerate
semiconductors has been studied for the inelastic
scattering of acoustic phonons. We found that the
nonparabolicity of the energy-band structure changes
the effect of the temperature on the transverse mag-
netoresistance besides the enhancement of its magni-
tude. Askerov etal. ' have pointed out that in the

case of degenerate semiconductors the band nonpara-
bolicity and the scattering inelasticity have a strong
influence on the field dependence of the magne-
toresistance. Ho~ever, they considered only the ultra-
quantum limit by assuming that all electrons are in
the lowest state. For the nonparabolic band structure
one has to consider the effect of the band shape not
only in the density of states but also in the scattering
probability. It is the purpose of our present paper to
study the effect of energy-band structure on the
transverse magnetoresistance in degenerate semicon-
ductors. From our previous paper, 6 it was shown
that the deformation-potential coupling mechanism
plays the dominant role for the transverse magne-
toresistance in strong magnetic fields in nondegen-
erate semiconductors. Therefore, we shall take into
account the inelasticity in the electron-phonon scat-
tering from the deformation-potential coupling only
in our present work. The scattering is treated in the
Born approximation for strong magnetic fields. For a
degenerate semiconductor, the distribution function
of electrons is represented by the Fermi-Dirac statis-
tics. In Sec. II, we perform the calculation of the
transverse rnagnetoresistance of degenerate sernicon-
ductors with the nonparabolic band structure
throughout the strong-field region. It is assumed
here that the inelasticity is the dominant mechanism
in resolving the divergence which occurs for the
strong-field transverse magnetoresistance. In Sec. III,
we present numerical results and give a brief discussion.

II. FORMULATION

In the nonparabolic model, the energy eigenvalue
equation for electrons in a uniform dc magnetic field
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B directed along the z axis is'

Hp(1+ Hp/Eg) 4-„„=(1/2m")

x [ p,'+ ( py
—eBx/c)'+p, ']Ok „

where b„=1 +2(n +T~}t,/Eg. When (n +
+t'kz/2m' « Eg, the energy eigenvalues reduce to
those obtained using the parabolic model for the
band structure

=E-„„(1+ E-„„/E ) 0 -„„ Ek„=(n +
z

)tcu, +t k, /2m' (5)

where E~ is the energy gap between the conduction
and valence bands, m" is the effective mass of elec-
trons at the minimum of the conduction band, and

E-„„is the true energy of the system, defined by

HOW k „=E-k„0-k„.The eigenfunctions and eigen-

values for Eq. (1) are given by

9'k „=4„[x—(tc/eB) k~] exp(ikey +ik z) (2}

and

E-„„= Eg(1 ——(1—+ (4/Eg)[(n +
z

)tr»g

+t k'/2m "] ]'i') (3)

However, when the dc magnetic fields come into the
high-field region, the energy levels of electrons are
quite different from those predicted by using the par-
abolic model.

For the scattering due to acoustic phonons, the dis-
sipative current lying in the direction of the total
electric field is given by'" "

le IL'vnt
Jg = X z (kg —kg')z

kgT
kn, k n

x f-„„(1 f-„. , ) tt'-„—„-„.„. , (6)

Ek „= Eg(b„—b„—') +t k, /2m "b„ (4)

where k~ and k, are the y and z components of the
electron wave vector k, 4„(x) is the harmonic-
oscillator wave function, and ru, = ~e ~B/m "c is the
cyclotron frequency of electrons. Since (tk, ,„)'/
2m' ( E~ and AT (( Eg in strong magnetic fields
and at the low temperatures in which we are interest-
ed ( T & 10 K), Eq. (3) can be expanded as

where L = (t/m'cu, )'i is the classical radius of the
lowest Landau level, vn = c (E x B)/B' is the Hall
velocity with the applied electric field E, f-„„is the
distribution function of electrons, and W- - is

kn, k n

the transition probability in the Born approximation
between the Landau states kn and k'n'. Following
the same method as our previous papers, 5 p Eq. (6)
becomes

2V
't

Jg = X ~C(q) ~'q) N, (N, +1) ( f- —f-„„) '
( L'qq~)" "ex—p( — L'qq )—

~g n'!
kw, k n, q ~ I I

x [L„" "( L'qj)]'8(E-„—„E-„,, t~—,)5(k, —k,
'

q,)——

t

—( f-, —f-„„) '
( z

Lzqtz)" " exp( —, L'qtz)—

x [L", " ( —,
' Lzq~z)]zg(E-„„—E-, , +frag)8(k, —k,'+q, )

where q(iq) denot, es collectively the branch and wave vector for the phonon mode with the energy tcog, C(q)
is the electron-phonon coupling constant, qj and q~ are the components of the phonon wave vector normal to the
dc magnetic field and in the B x E direction, respectively, N, = [exp(tr»g/ka T) —1] is the Planck distribution
function for the phonons in thermal equilibrium, 8(x) is the Dirac 5 function, and L, (x) is the associated
Laguerre polynomial. " 5(E-„„E- —tg»g) and 8(E-„—„—E- +tr», ) in Eq. (7) are given as follows:

(m'/t'q, )b„b,(b —b„) '(8[k, +q, b„/(b, —b„) +q, ]+5[k,+q, b„/(b, —b„) —q, ] ]

8(E-„—E-, , tee )=-
km

with

q, (m'Eg/2f }'i [1+b,b„+4p»gtb b„/Eg(b, —b„) +2qztzb, b„/m'Eg(b —b„) ]'i

for n') n, (Sa)

(m /tzq )b»b (b» b ) t[8[kx+qgb»/(b» —b»)+q ]+5[kx+qgbg/(b, —b ) —q ])
for n' & n, (Sb)
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For acoustical-phonon scattering in semiconductors via the deformation-potential-coupling mechanism, the
electron-phonon coupling constant is given by""

JC(q) J'-Et'qt/2pu, ,

where E1 is the deformation-potential constant, p is the mass density of the crystal, and v, is the sound velocity.
We employ the high-temperature approximation which is generally satisfied at the temperature where the
acoustical-phonon scattering dominates, 3 ""then we have N, = ks T/tru, = ka T/fu, Jq J. Therefore, we obtain
the expression for the dissipative current via the deformation-potential-coupling mechanism using the Ferrni-
Dirac statistics

Je JL u//m' ru, Et'k//T
Jg=

Sw'pv, 'a4

P M m!x X X J qzt dqi
'

( —, L'qq )Pexp( —, L'qq —)[LP(t L'qq)]2(bp+ bp)'/'
,--p -o ' (p+m)l

1/2 1/2 1/2t

l 'P' + P + ' + Q +2P + ' P''+
g g

x Po/~+ Pppp—
I

1/2
&$qPbp+w

Eg
+ Qp +2Pp

1/2 1/2t -1
+$q J~bp+ m 1/2 +$q j~bm

Ep
'

Ep

(10)

with the condition (M + P + —, )fry, & Ep(1 + EF/Ep), where Ep is the Fermi energy at 8 =0, Pp = (Ep/Ep) bp+
——(bp'+ —1), and Qp =(EP/Ep)(b +bp+ ) +T~[(b /bp+ ) +(bp+ /b ) —2bp+ b ] The quant. um number

m indicates the Landau level n or n' in Eq. (6) or (7), and p is the transition quantum number between n and n'

The corresponding maximum, values of m and p are Mand P, respectively, which should satisfy the condition in
Eq. (10).

In strong magnetic fields, the transverse magnetoresistance, pq can be approximated by

pg= Ejg/(npeu//)',

where na= (2m'Ep)'/'/(3m2f') is the electron density of semiconductors. The expression for the resistivity in

the absence of a dc magnetic field due to the deformation-potential coupling in the degenerate case is'

pa =(m'/nae )(E ksT/pu )(Ep /2rrf)(2m'/t )

From Eqs. (10)—(12), the transverse magnetoresistance due to the deformation-potential coupling for the non-
parabolic band structure can be obtained as

1

px

po

3 Mc

32u, (m'Ep) t

P M m!x X X q j dqi
'

( L'q~ ) pexp( — L—'qg ) [L' ( , L'q—g ) ]'(bp~ b —)'/'

p pm 0 — p™
v tbJp1/2 + p + sql. fNx n

J
p~ o~ E

~b
1/2 1/2t

+2 p + $qP ~ p1/2 tqgh'bp+~

g

X Po m+ Ppm—1/2

' 1/2
vgqgt bp~ + Qpm+2 Pp,

' 1/2
'

1/2t -1'
+$q J, p+ttt p1/2 $q +bett

E, ' E,
J

(i3)

with the condition (M +P+
2

)tro, & Ep(1+ Ep/Ep) Similarly, the trans. verse magnetoresistance due to the
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deformation-potential coupling for the parabolic band structure is obtained as

px

Pp

4 P M

qq dqq
'

( Lq—q )~exp( — Lz—qq2)[LI'(
z

L qqz)]z
32v, (m'EF) ~ p~ 0

a ( p + m)!
I

[EF+v,qqf —(nt + —)frv, ]' + [EF—( p +m + —)itch, ]'
xln (14)

[EF (n—t + —,')ltru, ]' '+[EF v, q,—t —(p+m+ ,')trv—,]' '

with the condition (M +P+ —, )ttru, ( EF

III. NUMERICAL RESULTS AND DISCUSSION

The expressions in Eqs. (13) and (14) can be approximated by making use of the conditions for the strong
magnetic field region, " "'z tru~ =h'

vqz && m'v, and fru =g lm'Lz && m "vz. Using the integral representa-
tion'5

z
1'(1 + n +P) 1'(1 + n + k )

(1 —h)nF(t (1+n +P). 1+ t (n +P);1+n;4h/(1+h)z)
X

( 1 + h ) t+n+P
, , A p

where f'(z) is the gamma function and F(a, b;c;z) is
a hypergeometric function, we obtain the transverse
magnetoresistance for the nonparabolic and parabolic
band structures in the Appendix.

As a numerical example in highly doped n-type
InSb, the relevant values of physical parameters are
v, -4 x10' cm/sec and those in Table I.' Our nu-
merical results are shown in Figs. 1—3. It can be
seen that the transverse magnetoresistance for degen-
erate semiconductors oscillates with the dc magnetic
field for both parabolic and nonparabolic band struc-
tures owing to the degeneracy of the electron gas. It
can also be seen that the amplitudes of these oscilla-
tions will increase with the dc magnetic field. These
results for degenerate semiconductors are quite dif-
ferent from those for nondegenerate semiconductors
in which the transverse magnetoresistance increases
monotonously with the dc magnetic field." How-

ever, the transverse magnetoresistance for the non-
parabolic band structure oscillates more strongly than
that for the parabolic band structure. Askerov
et al. ~ discussed the effect of the inelasticity of

Re(n +P) & —1, (15)
I

scattering and nonparabolicity on the magnetoresis-
tance in n-type InSb for the ultraquantum limit with
the quantum number n =0 in strong magnetic fields.
But this could not be a good approximation for de-
generate semiconductors in which the distribution
function of electrons is represented by the Fermi-
Dirac statistics. Since the effective mass for electrons
in an energy level of the nonparabolic band structure
with the quantum number n is m'b„, the effective
mass of electrons defined by m'b„will depend
strongly upon the dc magnetic field. Therefore, the
transverse magnetoresistance for the nonparabolic
band structure is enhanced much more than that for

TABLE I. Physical parameters for n-ty pe InSb.'

np (cm-" m' (mp) E, (eV) E, (eV)
'I
I
I

I I I

3 „10is
1019

3~ 10»

0.029
0,039
0.054

0.38
0.50
0.85

0.2616
0.4340
0.6520

'Note that np is the electron density of n-type InSb at B -0;
mp is the mass of a free electron.

1 p 3

8 (105 G&

FIG. 1. Transverse magnetoresistance ( p&/pp) as a func-
tion of dc magnetic field B in degenerate n-type InSb
(np-3 x 10 cm ) for parabolic band structure (dashed
curve) and nonparabolic band structure (solid curve).
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FIG. 3. Transverse magnetoresistance ( p~/po) as a func-
tion of dc magnetic field B in degenerate n-type InSb
( no 3 x 10 cm . ) for parabolic band structure (dashed
curve) and nonparabolic band structure (solid curve).

FIG. 2. Transverse magnetoresistance ( p~/po) as a func-

tion of dc magnetic field B in degenerate n-type InSb
(no 10 cm ) for parabolic band structure (dashed
curve) and nonparabolic band structure (solid curve).

the parabolic band structure. Moreover, the number
of oscillations in the transverse magnetoresistance for
the nonparabolic band structure is larger than that for
the parabolic band structure. The electron wave vec-
tor, which is defined by k„ i [(2 m')'~'/t] [E(r1

+Er/E, ) trru, (—n + —,) ]'I' for the nonparabolic band

structure and k„=i [(2m')' /Ir][Er fru, (n—+ t )]'
for the parabolic band structure owing to the degen-
eracy of the electron gas, gives a significant contribu-
tion to the scattering rate of phonon emission and ab-
sorption processes. As the magnetic field increases,
the quantum numbers Mand P in Eqs. (13) and
(14), or Eqs. (Al) and (A2), decrease, so the
number of oscillations in the transverse magne-
toresistance for both band structures will decrease.
From our expressions for the transverse magne-
toresistance in Eqs. (13) and (14), or Eqs. (Al) and

(A2), and Table I, we can see that the quantum
numbers M and P increase with the product of m'

and EF, the transition quantum number P will thus
increase with the electron density. Therefore, the
number of oscillations with the magnetic field in-
crease with the electron density. However, the am-
plitudes of oscillations in the transverse magne-
toresistance for the nonparabolic band structure are
enhanced as the electron density decreases. This
kind of quantum oscillation can be interpreted as the
"giant quantum oscillations, """which occur in a de-
generate electron gas in the case when the electron
level is near the Fermi surface and the sound wave
vector q has a component along the dc magnetic
field. These oscillations arise because the electrons
in semiconductors interact with the acoustical phonons.

ACKNOWLEDGMENT

Partially supported by National Science Council of
the Republic of China in Taiwan.

APPENDIX

For the nonparabolic band structure, ( pJpo) is
given by

1 $ 1 3
P$ 3 A cion 7AM 5AM
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pO 32 EF sw ~O 4' 16EF

'9/2 ' ~ 2
'1/2'
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with the condition (M +P +
z )tru, & Eq(1 + Eq/Er). For the parabolic band structure, ( pJpp) is given by

t 3

X (2m +1) 1+pi 3

Po 32 ~F m 0

(2m +1)tee, 3 ( p +2m +1)h'cu,
+— X X (p+2m+1) 1+F, , F, p-& yyy 0 4EF

(A2)
with the condition (M +P + —,)geo, & EF He.re

,k, (n —k)!k!
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