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Final-state correlation effects in Auger line shapes: Application to Si02
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Final-state correlation effects in Auger line shapes are considered within the cluster linear combination of
atomic orbitalmmolecular orbitals-configuration interaction theory with a parametrized Hamiltonian. A
model problem is solved analytically to elucidate the role of final-state hole-hole correlation and to
understand the localization of the holes on rather small subclusters of the system. The relationship of the
correlation effects to the relative magnitudes of the one-center hole-hole repulsion u and the bandwidth I
has been previously reported; however, this previous work has been limited to metallic single element

conductors. This work extends the theory to covalently bonded insulators (and possibly semiconductors)

consisting of more than one element. Application of the theory is made to the 0 KVV and Si L»VV Auger
line shapes from SiO, . A high-energy shoulder at 511 eV in the 0 KVV line shape is interpreted as arising

directly from correlation effects. A peak at 50 eV in the Si L»VV line shape, its intensity significantly

underestimated by the previous theory, is now accounted for; a peak at 70 eV previously suggested to be a
shake satellite is now indicated also to arise from correlation effects. Both line shapes reveal a density of
states primarily localized on an Si,O subcluster. The magnitude of the hole-hole repulsion on the subcluster

and between neighboring Si,O subclusters is empirically determined from the Auger line shapes to be —11

and 4 eV, respectively. The oxygen 2p nonbonding bandwidth is estimated to be -6 eV, but in light of
other theoretical and experimental results, our result is believed to be 1-2 eV too large. Reasons for our
overestimate are discussed.

I. INTRODUCTION

Recently we reported results of an investiga-
tion of the Auger line shapes involving the valence
electrons in SiO, ." In this work we compared
the Si L,L»VV, the Si L»VV, and 0 ZLL experi-
mental Auger line shapes with those predicted
from theory. The electronic structure of SiO,
for this work was described in terms of one-elec-
tron molecular orbitals (MO) on minimum-sized
clusters (i.e., central atom plus nearest neigh-
bors such as SiO', and Si,O" in SiO, ). The re-
sults of this comparison were gratifying, with the
calculated and experimental Auger line shapes in

generally good agreement in all three line shapes.
Figure 1 summarizes these data. The only sig-
nificant discrepancies are (1) the absence of the
high-energy shoulder at 511 eV in the 0 KVV
theoretical line shape and (2) the significant
underestimation of the low-energy peak at 50 eV
in the Si L»VV line shape.

That good agreement between the cluster linear
combination of atomic orbitals-molecular orbi-
tals (LCAO-MO) theory and experiment should
be obtained is perhaps not surprising. The ob-
served Auger line shapes in the more covalent
SiO, are very similar to the corresponding line
shapes in more ionic solids where the cluster
LCAO-MO model is expected to be valid. Thus,
for example, the S and P L»VV Auger line shapes
obtained from the highly ionic Li salts are very
similar in all aspects to the Si L»VV line shape. '
Furthermore, the 0 KVV line shape from the more

ionic MgO is essentially identical to the 0 KVV
line shapein Si0, .4 The valence electron energy
levels for SiO, have been probed by photoemis-
sion, by Si KP and L» x-ray emission, and by
0 Kz x-ray emission. ' These data have been
well described within the Si04 cluster one-elec-
tron LCAO-MO model'; indeed, in our work, the
orbital energies were obtained from the XPS data
and the LCAO-MO populations were adjusted to
reproduce the XES data. Furthermore, the atom-
ic Auger matrix elements giving the Auger in-
tensity

IM-~ I'= P l(f kf
I &illf fg I'

E,—E E E U (2)

(f, and kl represent the original core-hole and
final-state continuum functions, respectively; f,
and f„ the two final-state holes in the Auger
process) were not evaluated in our theory but
were estimated from gas-phase Auger data. '

Despite these successes of the MO model, one
can justifiably question the validity of utilizing
the cluster one-electron MO model to study Auger
transitions in covalent solids. The Auger pro-
cess produces two final-state holes, whereas the
x-ray emission and photoemission processes
produce just one hole. In general, these two
final-state holes see one another, a repulsive
interaction U exists between them, and their rela-
tive motion is correlated. This interaction ex-
hibits itself in the energy of the Auger electron
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because the experimental atomic Auger matrix
elements were utilized. Thus, only the inter-
atomic correlation effects and banding effects
are apparently absent in our earlier one-electron
model.

In the one-electron model one can approximate
U by a difference between two terms, the direct
hole-hole Coulomb repulsion F and static relaxa-
tion term R; thus U=F -R. R accounts for the
shift in the binding energy of one hole state orbi-
tal due to the presence of the other hole. In the
MO model, F and R are expanded in the atomic
equivalents
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where the E's are the one-electron binding ener-
gies of core and valence electrons, respectively.
In SiO» U is substantial, varying from 5 to 20
eV depending on the central atom and the localized
nature of the final states involved. Hole-hole
correlation may also substantially alter the Auger
intensities. We note that the hole-hole correla-
tion effects on the intensities of a single atom
are in some sense already included in our model

FIG. I. {a) A comparison of the experimental (solid
line) 0 KVV Auger line shape with the theoretical line
shape determined previously (Ref. 1). (b) The difference
between the experimental and calculated line shapes.
The peaks at 475 and 495 eV have been identified to be
shake satellites. The peak at 511 eV is the subject of
this work. (c) A comparison of the experimental (solid
line) Si L23p'V Auger line shape with the theoretical line
shape determined previously (Ref. 1). (d) The difference
between the experimental and calculated line shapes.
The peaks at 52 and 70 eV have been attributed to shake
satellites, but in this work are shown also to arise par-
tially from correlation effects. Possible sources of the
peak at 84 eV are summarized elsewhere (Refs. 1,27,
41, and 42).

where the F are the atomic Slater integrals be-
tween atomic orbitals i and j, and x,. is an atomic
intrashell relaxation energy, both defined pre-
viously. '

A problem with the cluster one-electron MO
model is that F and R are cluster-size dependent.
Both F and R go to zero as the cluster size in-
creases. Thus the following question arises:
What is the appropriate cluster size? In the one-
electron band model for a solid, E and R are,
of course, zero. This is merely consistent with
the notion that the holes are completely free to
roam about the solid or cluster, and hence are
completely delocalized from one another. There
is experimental evidence ' that in some metallic
solids, such as in Cu, Zn, and Ni, the final-state
holes, even in the conduction band, are not free
to roam about the solid, but are forced to remain
on the atom in which they were created (the atom
with the initial core hole). This is evident because
the experimental Auger intensity does not reflect
the density of states (DOS) of the band but rather
exhibits multiplet structure consistent with an
atomic model. Furthermore, the apparent mag-
nitude of Uis consistent with the hole-hole inter-
action one would expect if both holes were local-
ized on the same atom.

Electron or hole-hole correlation in metallic
solids has been considered within the context of
the Hubbarde or Anderson'0 model. Within these
models, Cini" and Sawatsky" have independently
examined the role of electron correlation in
metals and have attributed the behavior indicated
above to hole-hole correlation. More specifical-
ly, if the one-center hole-hole interaction U is large
compared to the bandwidth I', energy conserva-
tion forces the two holes to remain localized on
the atom where they were created, producing an
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Auger intensity consistent with the atomic model.
In this work we wish to consider hole-hole cor-

relation within the cluster LCAO-MO-CI model
(CI referring to configuration interaction) with a
parametrized Hamiltonian. Electron correlation
in molecules is normally considered within the
context of configuration interaction theory. It
has the advantage of being easily applied within the
cluster model where the two-center Coulomb-
repulsion integrals are easily included. More
importantly, it can be easily applied to ionic and
molecular insulators and more covalently bonded
systems such as SiO„which may involve more
thanone element, and hence involve several dif-
ferent interaction energies. In Sec. II we sum-
marize the general theory, providing working
formulas for implementing the CI theory. To
elucidate the effects of hole-hole correlation and

attempt to understand why the one-electron clus-
ter molecular orbital model may be adequate for
interpreting Auger line shapes in some covalent-
ly bonded solids, we examine the role of CI mix-
ing on a model problem.

In Sec. III we present numerical results appro-
priate for the 0KVV and Si L»VV Auger line
shape in SiO, . An attempt is made to account
for the two described discrepancies between the
theoretical and experimental Auger line shapes.
The effects of cluster size and the two-center
Coulomb integrals are also examined.

II. CLUSTER LCAO-MO-CI THEORY
WITH PARAMETRIZED HAMI LTONIAN

A. General formulations

The LCAO-MO-CI theory and its application to
molecules is well known. " We briefly summar-
ize here the general formulations, also making
the necessary definitions and indicating our ap-
proximations and limitations.

The molecular orbitals are constructed by a
linear combination of atomic orbitals

y„= Q c„(f,

in the usual manner, the coefficients determined
from the solution of the secular equation

Z)(H;; —2„S;,)c„~——0.

(7)

@.e(2'i 2) = Z D.~ 2V' ("1)W9(2'2) (8)

Here, the y„(P) are the molecular orbitals span-
ning the cluster as constructed above. The re-
striction to filled bands is a good approximation
in an insulator such as SiO„as the unfilled con-
duction bands are approximately 10 eV above the
filled valence bands, and thus an insignificant
amount of configuration mixing between these two
bands should occur for realistic conditions.
This approximation becomes less applicable for
semiconductors and metals where the band gap
is small or zero.

The mixing coefficients D„„,2 in Eq. (8) a, re
determined by the secular equation

In this work, the matrix elements will be treated
as parameters such as the tight-binding param-
eters in a band calculation"; that is, the e,. and

V,, are adjusted so that the resultant one-electron
MO energy levels g„and orbital populations c'„,.
are similar to some previously determined one-
electron DOS. We have reported previously our
best estimates of the DOS and orbital populations
in SiO, .' They were determined from experi-
mental data and ab initio cluster MO calculations.

The decision here to set the off-diagonal over-
laps equal to zero is a matter of convenience for
this model problem. In general, they are not
zero; however, it has been shown" that by in-
cluding them, one in effect scales the V,.&. Since
our V,.&

are parametrized anyway, the ultimate
effect of ignoring the off-diagonal overlaps is
minimal. We have discussed elsewhere" the
effect of S,.~

on the distribution of local versus
bonding charge and the resultant effects on the
Auger intensity. These effects are not important
in this work.

Within the configuration interaction theory, we
shall limit our considerations to filled bands.
This means that all configurations describing
the system after the Auger decay will have exact-
ly two holes, and we can write the final-state
wave function as a sum of the two-hole configura-
tions,

The atomic orbitals f, at this point are completely
unspecified; they may be Slater-type atomic or-
bitals, Hartree-Fock atomic orbitals, or even
symmetry adapted atomic orbitals involving
more than one atomic center. They are specified
through the choice of orbital matrix elements

H B,y6
—~.~s.g, ,6 &.. .,6=o,

y6

where the full Hamiltonian now includes both one-
and two-electron terms H = hy+ hp+ Uy2 Consis-
tent with Eq. (7), the matrix elements are
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and

ff~s, »= &&~«lff
I &v&5&

= &~. lb, I ~,&6~+ &~Bib. l 9 &5., + U. ,
(10)

So~ y6
——5 ~y5g~,

where

U 8, o
—&v' &eI Uia

I & &o&

C ~~Cuff Cy~CGfiufttg ~ (12)

In Eq. (12), the zero-differential-overlap (ZDO)
approximation has been employed to reduce the
two-center integrals U ~ „, to a sum of atomic
Coulomb integrals u „. Throughout, we use the
notation (12

I
r»'I 12&

-=[I'
I
r»'

I

2'] to indicate the
two-electron integrals.

Those integrals involving two centers are
evaluated using an approximation of Mataga and
Nishimoto"

(1). The indices "a" and "b" label atomic orbi-
tals on the atom with the initial core hole; thus
the Auger line shape reflects the two-hole local
DOS. It is this feature which hastens the conver-
gence of the cluster expansion result to the bulk
limit and thus provides a reasonable probability
for the success of the cluster expansion in this
work.

The above analysis ignores the role of hole
(electron} spin. Actually, the spin symmetry
decreases the number of two-hole configurations
which have to be included in the final-state wave
function. Configurations of the "diagonal" type
rp, rp, only take the singlet form cp, «2 '~'(oP —Po, ).
Nondiagonal configurations can take both the
singlet and the triplet forms, respectively:

(0'a%+ p&«)2 (oP —Po) ~

2 '"(oP+Po)
2 ' '(0'dpt —prVa)x io

u „=e'[R „+2e'/(u„+u }]',
and the one-center integrals

u„=If„lr-„lf„) r„

(Is)

(14)

Since singlet final states can couple only to sin-
glet initial states (and similarly for triplet states),
Eq. (16) has the form

E, .=E,—E (15)

in contrast with Eq. (2) which involved the one-
electron MO energies. The Auger intensity now
involves the two-hole DOS

,kl rj2 g„„r„r2

Dye g C gCgg M ~gQ (16)

where we have inserted Eqs. (1), (5), and (8),
and made the usual assumption that only the one-
center Auger matrix elements are significant

are treated as parameters. In Eq. (1S), R „ is
the internuclear distance between the two cen-
ters, and e is the charge on the electron. This
approximation, found in many semiempirical MO
programs, simply takes an appropriate average
of two extrema; for large R„,U „=e /R „, for
very small R „,u „=(u„+u )/2, where u„,u„are
the one-center integrals. r„ in Eq. (14}is the
atomic static relaxation term as mentioned pre-
viously (see Eq. 4); the one-center Coulomb
matrix element can be approximated from the
tabulations of Mann. " In practice, we have
treated u„as a parameter observing hole-hole
correlation effects as u„ is increased.

The Auger electron energy is now given in
terms of the eigenvalues of Eq. (9},

for the diagonal terms, and

(17)

for the off-diagonal terms, where the a sign de-
notes the singlet or triplet states, respectively.
For a=b, the diagonal and singlet off-diagonal
terms are the same except for the additional v 2
factor in the singlet off-diagonal term; the trip-
let terms are zero. For acb, the triplet terms
are generally smaller than the singlet terms.
The spin symmetry has the effect of reducing
the size of the secular determinant since the
singlet and triplet configurations form noninter-
acting subdeterminants.

A common problem with the CI technique is the
rapid increase in the number of configurations
required with increasing molecule or cluster
size. The local nature of the two-hole DOS re-
flected in the Auger line shape, the relative un-
importance of the unfilled bands in insulators,
and the spin symmetry, all points made above,
assist us greatly in making the problem tract-
able. In this work the number of configurations
never exceeded 50; however, this was in some
cases the minimum number necessary for achiev-
ing our semiquantitative results.
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B. Model problem

To elucidate the role of configuration mixing
and hole-hole correlation in Auger line shapes,
we examine here and solve analytically a four-
orbital problem. As indicated above, the limi-
tation to four orbitals and four or less configura-
tions is a severe restriction, but it does retain
the important features and yet is simple enough to
offer an intuitive feeling for the correlation
effects. Indeed, this is an important aspect
the cluster LCAQ-MO-CI model has over the
Hubbard model which treats infinite systems. "'

The restriction to a four-orbital problem and
the desire to have at least two identical subclus-
ters limit us in this model problem to a linear
system with triatomic subelusters B-A-B, where
we assume that the orbitals on B are hybridized
(e.g. , sP hybridized}. In this respect, B will
play the role of the Si and A of the Q atoms in

SiO„as it is generally agreed"'" that Si is
highly sP' hybridized, whereas Q undergoes little
hybridization. Table I summarizes two cases
which are within these limitations: case (a) in-
volving bonding and antibonding orbitals on. A
and B, case (b} involving nonbonding orbitals
on atom A. The secular determinant is most
general for case (a); case (b) being the special
case when n„=a~ and V= I'.

Case (a)

Solution of Eq. (6) for case (a) gives the four
MQ's

(o p~ —9's,+n p~, +9'a, )

where

(IS}

g'= —+ —+ 1
2V ~ 2V

A =Qp —Q~ +I

N' = I/(2 [I + (a')'])

and the MQ energies are

(19)

e...„.„=e,'= o„+—,'A' —I(-,'A')'+ V']'" . (20}

Appropriate for the case, I'«V, Eq. (20) has
been written to emphasize the existence of two
closely spaced bonding orbitals &,

' and two closely
spaced antibonding orbitals g,'. In an extended
system one would obtain a "band" of energies at
&, and one at &, with bandwidths of the order of I'
and a band gap of the order V.

Assuming in "a" that the bonding orbitals are
filled, and the antibonding orbitals empty and

TABLE I. Definition of atomic orbitals and Hamiltonian matrix for two model clusters.

(a) Bonding and antibonding bands: B&-A&-B&-A2-B3

Atomic orbitals: pz, p+
Pg ——(hg) + hP )/V, PH2

——(h~ + h~3)/~2

Hamiltonian matrix:

IvA, ) IPH, ) I'PH, } I9A2&

(q» I
u v o 0

1

H I v nH «0
(&a~l 0 0 V

(b) Nonbonding bands on A: A)-B(~2-B2-A3 B3 A4

Atomic orbitals: Pg, Pg2, 0'g3 Pg41'
Hamiltonian matrix:

I pg) Ip~) I pg) 19'~)

(q+ I
r n„«0

(vg I

&w&4I 0 0 «( A

hz, and h~ are hybrid lobes which point toward A&, h~2 and h~ point toward A2.
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sufficiently removed from the bonding orbitals
(V & U), we have just three possible two-hole
configurations: li, I),

l
fi, fi), and li, ii). Fur-

ther simplification results from symmetry re-

quirements which exclude any mixing of the li, ii)
configuration with the two diagonal configurations.
The problem reduces to a 2&2 problem with the
secular determinant:

lf, i)
(i, i

l
2e~+ ~ U, (AH) + —,

' U„(AH)"

(ii, fi
l

—,
' U, (AH}' ——,

' U„(AH} 2e~ + —,
'

U, (AH) + —,
' U„(AH) (21)

where

,(AH}"= [(0g + &y»)',
l
&,.'l (y~ + &y»)', ] = 4N', [~4 + (s's')'&»+ 2s'»4» ]

and

(22)

U„(AH)" = [(p„+o'y»P
l
~„'l (q„+a'y»)', ]= 4N', [u„„+(a'a')'u»» + a'a'(u„» + u„» )] (23)

represent, respectively, the effective interaction between two holes on a single B-A-B cluster and on two
different clusters (B, A, -B-,) and (B, A, -B-,) in the four-atom system. Solutions of the secular equa-
tion give the eigenvalues

E' = [4(gq+ g~) + U, (AH}"+ U, (AH) + U,~(AH)" + U, ~(AH) ]/4

a —,'([4(e~ —e~)+U, (AH)" —U,(AH) + U,~(AH) — U~(AH) ] /4+[U, (AH)' U,~(AH—)' ]']' '
(24)

and mixing coefficients

2E' —4e,' —[U,(AH}"+ U„(AH)"]
)

The energy of the
l
i, ii ) configuration can be

given by the expression

B =(2 ' '(i, ii+ii, i)lHl2 ~ (i, ff+ii, i))

@ = &2N[(rp„+ asap)»(1)(rp„+ asap» )(2)

+(p~~+ ap» )(1)(p~~ + a%»~)(2)],

q '= &2N[(y„, + asap» )(1)(cp„+ay» )(2)

+ (rp„+ a(p„)(1)(qr„+ay„,)(2)],

(29a)

(29b)
=a~+ a~+ U, (AH)' . (26)

It has already been assumed that U«V. To re-
duce the complexity of Eqs. (24) through (26), we
shall assume here that I' «U, (AH). With this
assumption, the first term in brackets inside
the square root in Eq. (24) is negligible com-
pared to the second. Furthermore, we define the
average quantities

&n = a &a(+ 4) ~

U, (A H) = »'[U, (AH)" + U, (AH) ],
etc. Then Eqs. (24)-(26) become

where we have defined Na= —,'(N'a +N a ). It is
clear that in the states +' and +' the two holes
are localized onthe same8 —A —B subcluster; in
the + state, they are localized on different
subcluster s.

If we insert Eq. (29) into Eq. (16), we can ob-
tain either the A or B Auger intensity. Assum-
ing the initial core hole was on atom A„ the
Auger process picks out the DOS local on atom
A j or (pp y pQ terms. If the initial core hole eras
on atom B„ it picks out the DOS local on atom
B„or the terms ~H +H +H +H and WH +H ~

The results are
E = 2e~+ U~~(AH),

Eo = 2e~+ U, (AH),

E'= 2e~+ U, (AH),

and

D

a, ii ii

Inserting Eq. (28) into Eqs. (8) and (18) gives

(2V)

(28)

.»l =k ~

~i=2N lM.»l —k4

f»~=kN'"IM. M:.I'-
I»~=»N a~lM, +M,pal~,
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where I„ is the total intensity for the band and M
is the atomic Auger matrix element [Eq. (1)] in-
volving the core orbitals on atoms A. and B as
appropriate. Although we have not specifically
introduced s and P orbitals on atom B to this
point, we assume here for convenience that the
orbitals h, and ho are sp hybrids, so that s(p)
= (I/W2)(h, + h, ).

The intensities in Eqs. (30) and (31) can be
contrasted with those obtained from the fold of
the one-electron DOS. They are

(M,„+M,»)' = g(l s hf
I
r,,'I (ss ~P.P, ))'

l

= [R'(ssss) + ,' R'(—sspp)]'

+ —,', [R'(sdPP )]',
(35)

An examination of several cases reveals that
quite generally l~, is less than I~, i.e., M,» and

M„, have opposite signs. For the case at hand,
the sP, hybrid and a 1s initial core hole on B„
we have

I„";"=N IM,»l -41»

I„''~'=N IMo»
I 4 I~ '

(32)

where R is the radial integral:
oo 00 yk

o o

(36)

Is""=N', (a ) IM,»l
I.',"=2N N, (a'a )'IM, »l',
I,* =N'(a )'IM-. I'

at energies

E" "=2e + [U,(AH) +U, (A=H) ]/2,
E'~" =p +op +oU, (AH)'

E' ' = go+ [U,(AH)" + U„(AH)"]/2. .

(33)

(34)

For atoms in the first rows of the periodic table,
R'(ssss) is positive and R'(sspp) is negative. "
For the K —LL transitions in atoms, Asaad" has
found that CI effects decrease the KL,L, intensity
and increase the KL»L» intensity. McGuire"
determined that CI effects decrease the L,PI,M,
intensity in Cu and Zn and increase the L~M23M, 3
intensity.

2. Case (b)

Case (b) involves four nonbonding orbitals on
four A atoms as indicated in Table I. It is a
special case of (a), namely, when e„=e„, and V

= l", hence the molecular orbitals and energies
are still given by Eqs. (18)-(20). More speci-
fically, these equations give

The intensities in Eqs. (30) and (31) are appro-
priate when I'«U, (AH) «V; those in Eqs. (32)
and (33) when U, (AH} « I' «V.

A comparison of these results reveals some
interesting features. For the case of the initial
core hole on atom A, Eqs. (27), (30), and (32)
reveal an overall shifting of the same total inten-
sity from the term involving nonlocal final-state
holes (one hole on B,—A, —B2, the other on B,
-A, —B,) to the terms involving local final-state
holes (both holes on B, -A, —B,} as U increases.
This is a general result, one which will be ex-
amined numerically for larger clusters in SiO,
in Sec. IG. The situation is significantly differ-
ent when the initial hole is on atom B. First, as
U, increases, the total intensity changes due to
increasing interference effects between the M„,
and M,» contributions in the large U case.
Second, even when U»I', the intensity from the
term involving nonlocal final-states holes I~, does
not necessarily go to zero. In fact, it may be
larger than I~, ; this depends on the signs of
M„, and M,». In summary, we can say for
U» I', the Auger process on the A, atom samples
the DOS local to the smaller B, -A, —B, subclus-
ter; the Auger process on the B, atom samples
the DOS on the larger By Ay B2 A2 B3 cluster
but with significant hole-hole "correlation"
effects.

I
&/&I} =N'"«~, + a'&~, + v", +a'v".) (37)

and

a' = + —,
' + (5/4)' ',

~, „,= o„+-,' r(&5+1},

&;;;~;„=n„-&r(W5+1).

(38)

(38)

Eoo —to+ eo (&,'l3 =1 'to tv), (40)

I o NN, [la'a'), (a'), or——1]ilM,~I (41)

where the initial core hole is assumed to be on
atom A, and the proper choice in Eq. (41}is ob-
vious. The total sum P sI o equals IM,» I'.

In the event U= I', the analytical solution of a

Assuming that all the nonbonding orbitals are
filled, we have ten possible two-hole configura-
tions. In the event U« I', a negligible CI mixing
occurs, and the two electron energies and Auger
intensities are given simply as
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10&10 secular determinant is formable even

though the problem is simplified somewhat by
symmetry. Much more instructive at this point
is to examine the problem when U» r. This can

be examined more simply by omitting the con-
struction of the MQ's and constructing the two-
hole configurations directly in terms of the atomic
orbitals y„. The Hamiltonian matrix becomes

&11

&22I o

&ssI o

&44I o

&2sI o

&s4I o

&lsI o

&24
I

o

&14I o

144& I'2& Iss& I'4& I»&

0 0 Q,

&2r 0 0

&2r v2r 0 0 Q)2

0 v2I' &21' 0 0 Qg2

0 0 0 r l 0 Q)3

0 0 0 0 1 r o

o o o o o o r

I'4&
I

'4&

Q)3

r Q$4 )

(42)

where the
I
ij& now refer to atomic configurations

In Eq. (42) we have omitted the 2 a„
term irom each of the diagonal elements and
utilized the ZDO approximation as usual. The

symbols u, &
refer to Coulomb matrix elements

on the same center and between the 1st-, 2nd-,
and 3rd-nearest neighbors, respectively.

The diagonalization of Eq. (42) produces the
same eigenvalues and eigenvectors as the diagon-
alization of the Hamiltonian matrix constructed
from the ten MQ configurations. In general, the
Hamilton matrix is more difficult to diagonalize
in the atomic basis because symmetry consider-
ations do not simplify the problem as in the MQ
basis. Nevertheless, if u,. » I or more critically
(u, —u„)«~ » I', this matrix is essentially already
diagonal and the solution becomes trivial. The
Auger process samples the DOS local on atom A, ;
the entire Auger intensity IM,» I' coalesces to
one narrow peak at energy 2z„+u, .

The case (b) as described is appropriate for the
nonbonding orbitals on Q in the SiQ, system. In
Sec. III we will examine the coalescence to a
single peak as u, increases relative to I', and
also examine the effects of cluster size and the
effects of the two-center u, ~.

III. RESULTS AND DISCUSSION

We have performed various MO calculations on
several different clusters, always with a mini-
mal basis set and at times with a partial minimal
set. The valence one-electron DOS in SiO, fall
roughly into three major groups: the "Q~" bond-

ing states grouped about 20 eV below the edge
(the 4a, and St, orbitals of the tetrahedral SiO,
cluster), the "0»" (b) bonding states grouped
about 6 eV below the edge (the 5a, and 4t, orbi-
tals), and the 0» (nb) nonbonding states located
just below the edge (the le, 5t„and lt, orbitals).
We have examined the 0»(b) and the 0»(nb)
states on the Si,O, and Si,O, clusters with 0 as
central atom, the 0„, 0»(b), and 0»(nb) states
on a Si,O4 cluster with Si as central atom, and
the 0»(nb) density of states on 0„0„,and 0„
clusters. A beta crystobalite crystal structure
(Si-0-Si angle equal 180') is used throughout
with Si-0 bond length equal 1.5 A.'4 The initial
core hole is placed in a central Si,O subcluster,
nearest-neighbor subclusters are placed in the
proper crystal structure building outwardly to
assemble the complete cluster.

The matrix elements in Eq. (6) were treated
as parameters determined so that the resultant
one-electron MQ energies and orbital popula-
tions are similar to our previously determined
SiO, DOS.' An optimal set of matrix element
parameters, determined from the above-indicated
calculations, is reported in Table II and com-
pared with corresponding tight-binding parameters
as recently reported. "" In general, the agree-
ment is quite satisfactory considering our calcu-
lations involve a minimal basis set on rather
small clusters. The V(0», 0„)and V(0», 0»)
elements include both direct and indirect "hop-
ping" or interaction terms, i.e., hopping terms
which involve the Si atom are included. In fact,
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TABLE II. Summary of matrix elements (tight-binding parameters) obtained in this work

and comparison with other reported results.

Matrix
element This work (eV)

Tight-binding calc. (eV)
Chadi et al. ~ Nucho et al.

& (Siq)
& (O~)
n (Og)
V(O„,O„)
V(O~, O~)
V(Sip, Sip)
V(Sip„O„)
V(S „,O~)
u(02, )

u(O&)
u(SiI,)

-~ (-4)'
24

6 (5, 8)'
0
1
2f
5
6f

15 i

11 isj

4 6 (iaB

19 1'
6.3'
0.15
0.45
1.6'
6.2'
5.4'

-7.9

6.p

2h

~Reference 14.
"Reference 25.
'Values in parentheses were used for the S1405 cluster where u(O&(b)) and n(Ou, (nb)) were

allowed to be different, i.e., 5 and 8, respectively.
4.5 eV added to literature values to change zero-point energy from the top of the valence

band to the Fermi level (Ref. 1).
o'(Sip)= [&(Si3,) +3o'(Sis&)]/4 for sp hybrid (Ref. 40). Values of &(Sis ) and &(Sis&) from

Ref. 14.
In the Si403 cluster calculations, a linear combination of the sP hybrids h; were utilized,

i.e., H=(1/~2)(h& + h2). Thus V(SiH, SiH) =2 V(Si~, Si&)=l and V(SiH, O~) =~2V(Si&, O&) =9.
V(Si„,Siz)=~ [&(Si&}-&(Siu)](Ref. 40}. V(Si„,O&~&)=a [V(Si», O»~&J + V(Si3p OQ/p }],

where by symmetry V(Si3p 02, /p ) = p.
"Two different sets of parameters were reported, the values depending upon the region of

the DOS fitted (Ref. 25).
i u was treated throughout as a parameter in the calculations to gradually turn on the ef-

fects of correlation. However, our best estimates are given here as determined from
Mann's (Ref. 18) integral tables and estimates of the correlation or static relaxation contri-
butions (Ref. 1).

u(Si~)= q [u (Sx&, )+u(Sz&, , Si&)]= 7.

the presence of the Si atoms in the 0„0„(nb) cal-
culation is exhibited only through these terms. On-

ly hopping matrix elements involving two oxygen
atoms connected through a commoo, Si atom are
assumed to be signif icant. All others are set to
zero. Likewise, only nearest- neighbor bonded
Si 0 elements are included. Appropriate values
for the matrix elements involving the Si sP' hy-
brid orbital h, are obtained as indicated in the Ta-
ble.

The values of u tabulated in Table II are ob-
tained from the integrals of Mann"; however, a
static relation term r has been subtracted off.
These have been estimated previously' to be 6 eV
for 0 2s and 2P orbitals, and 2(1}eV for Si 3s(3P)
orbitals. Huang" has given the formula for ob-
taining the u(Si„) result from the u(Si» &~) ele-
ments. u(0») has also been determined empiri-
cally by Oleari et a/. 26 who obtained a value of
14.5 eV. The empirical result is said to include
correlation effects (i.e. , static relaxation effects}.

A. 0 KI.L line shape

Results for the O KI.L Auger line shape ob-
tained from the linear Si40, cluster involving the

O» bonding and nonbonding orbitals are given in

Fig. 2. These results were obtained from a 12-
orbital system; namely 3 Sis ——(1/v 2)(h, —h, )
orbitals, 3 0»(b), and 6 0»(nb) atomic orbitals.
In this system, symmetry allows mixing only be-
tween the O,~ and Si„orbitals giving MO's belong-
ing to the 0» bonding and antibonding groups;
however, the antibonding MO's are unoccupied.
Thus the b —b, b —nb, and nb-nb two-hole con-
figurations are mixed in separate CI calculations.
The results show clearly the effects of increas-
ing correlation (increasing u}, most notably in
the coalescence of most of the Auger intensity
into a rather narrow band around 502 eV. Clear-
ly, this band corresponds to both holes localized
on to the same Si-0-Si cluster. The 0»(nb) lines
are shifted down by -15 eV as they are localized
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FIG. 2. Auger energies and relative intensities of the eigenvalues arising from an LCAO-MO-CI calculation on the
Si403 cluster for various values of Qp and Qg ~ Contributions from the 02&(b)-02&(b), 02&(nb)-02&(b), and 02&(nb)-02&(nb)
bands are indicated by the light solid, open, and heavy solid lines, respectively. Contributions involving the 02~ band
are ignored here. Numbers indicate the intensity in arbitrary units.

on a single 0 atom; the 0»(b) lines just 11 eV
(the approximate hole-hole repulsion on the Si-
0-Si cluster in the 0»(b) MO). Note the appear-
ance of residual nonlocal contributions shifted
down by just 4 eV (the approximate hole-hole
repulsion when the holes are on different Si-0-Si
clusters). Ignoring these residual contributions,
the Auger 0» line shape narrows from -9 to -2
eV, giving essentially an atomic 0 Auger spec-
trum.

Since the greatest share of the 502-eV peak of
the 0 KLL Auger line shape comes from the (nb,
nb) transitions, we can for the moment ignore all
other contributions. This allows for a study of
much larger clusters and hence also a study of
cluster-size effects. Results of calculations on

the Oj6 clusters are given in Fig. 3, where just
Auger (nb, nb) contributions are examined. The
one-electron DOS and the two-hole DOS resulting
from a CI involving 3V configurations are shown.
Similar trends are revealed, namely, a coales-
cence to a local peak shifted down in energy by an
amount u, and several residual nonlocal peaks.

Figure 4 summarizes results of calculations on

03 07 and Oye clusters when all two-center hole-
hole repulsion integrals are set to zero. Plotted
in Fig. 4 is the intensity in the residual nonlocal
peaks relative to the total intensity (always nor-
malized to 100 in these calculations) and the dif-

ference in energy between the centroids of the
local and nonlocal contributions versus u/I'. u/I'
is the one-center hole-hole repulsion on the oxy-
gen atom divided by the one-electron 0»(nb)
bandwidth. The results plotted depend only on
u/I' and not on u and I' individually, and no other
parameters are present in these calculations.
As one might expect, the results from the differ-
ent cluster sizes converge with increasing u/I';
for large u/I' the Auger line shape is increasingly
dominated by the local peak where both holes are
on a single 0 atom. In the physical range of in-
terest, u/I'=2-4, it would appear that the 0,
cluster size is already sufficient.

Also plotted in Fig. 4 are results of a calculation
on the O„cluster when the two-center integrals
u, &

are included as estimated from the Mataga-
Nishimoto approximation, Eq. (13). In these
calculations, the u,.&

increase with increasing u/I'.
The inclusion of the u, &

appears to decrease the
effective size of the one-center u„as one might
expect. However, it should be pointed out the
the full effects of u, &

cannot be completely com-
pensated for by decreasing the effective u, . The
shift down in absolute energy of the total Auger
line shape increases when the I,&

are included,
but a decrease in u, would decrease this shift.

The difference peak at 511 eV in the 0 KLL
Auger line shape (Fig. 1) is estimated to have
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FIG. 3. Column one contains the one-electron 02p(nb) local density of states on the central 0 atom arising from an

LCAO-MO calculation on an 0~6 cluster. Columns two through four contain the relative 02p(nb)-02p(nb) Auger energies
and intensities of the eigenvalues arising from a CI calculation on the 0~6 cluster for various values of one- and two-

center hole-hole repulsion integrals u~ and u~~. The total intensity has been normalized to 100. The local DOS energies
are equal to 16 eV minus the energies indicated; the Auger energies are equal to 517 eV minus the energies indicated.
The peak numbers refer to Table III. The 02p(nb) bandwidth as exhibited in column one is -6 eV.

about 20% of the intensity of the theoretical Auger
peak at 504 eV (the shake satellite intensity is
not included in the 504-eV peak here). If this
difference peak is attributed to the nonlocal Auger
contributions, the 7-eV experimental separation
between the local and nonlocal peaks provides an
estimate of 2.5 for u/I' (from Fig. 4, using the
O„nonzero u,.&

plot). Furthermore, the 17/~
experimental intensity ratio between the differ-
ence peak at 511 eV and the total (504-eV peak
plus 511-eV peak) indicates a u/I' value of 2.5
(also from Fig. 4, nonzero u,.~ plot). That the two
estimates are in agreement is most gratifying
and supports rather strongly the assumption that
the 511-eV shoulder is indeed due to the nonlocal
contributions. Note that the O„results obtained
for zero u„would give conflicting values for u/I'.

The value of 2.5 for u/I' is a reasonable one.
The best estimate of u(O»), as given in Table II,
is 15 eV. This indicates a value of 6 eV for I'.
Band calculations"'9 """"have given results
varying from 1 to 5 eV for the bandwidth of the
0» nonbonding band with perhaps the most reli-
able theoretical result around 5 eV. ' X-ray-
emission data and UPS data in SiO, suggest a
value around 4 eV (Refs. 27, 29-31).

We can suggest two possible causes for our
1-2-eV overestimate of I'. The determination

of a bandwidth from a relatively small cluster
calculation is nebulous at best. The Qy6 cluster
calculations provide a spectrum of eigenvalues
the breadth of which provides our estimate of
the bandwidth. This is probably the best pro-
cedure since in band calculations, I' represents
the full width of the DOS. Secondly, our results
depend on the values of the u, &. This is indicated
in Fig. 4 for the two-0„-cluster calculations, one
including the u, ~, the other not. If the Mataga-
Nishimoto approximation underestimates the u„.
(we will present some evidence later that this
may be the case), our estimate of I' will be too
large. Evidently as u, &

i»creases, both the rela-
tive-intensity and energy-difference curves move
to higher u/I' and hence indicate a smaller I'.

It is of interest from an intuitive point of view
to note the relative location of the two holes
formed in the Auger process. Table III contains
the probabilities P,.~

for hole occupancy on the
ith and jth 0 atoms in the O»(nb) band of SiO, .
For simplicity, these results come from an 0,
cluster calculation rather than the O,6 cluster.
The two "local" Auger peaks, peaks 4 and 5
(peak numbers are indicated in Fig. 3), clearly
correspond to a high hole occupancy on the same
0 atom as anticipated for large u. The three
"nonlocal" peaks in order of decreasing energy
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can be described as follows: At peak (3) the hole
occupancy is predominantly on 2nd- and 3rd-near
neighbors with a significant probability (-0.11)
for both holes on the same center; at peaks (2)
and (1), the hole occupancy is predominantly on
nearest neighbors but with significant probability
for occupancy on 2nd- and 3rd-near neighbors
also. The Auger intensity is directly proportion-
al to P» (both holes occupying the atom with the
initial core hole). It would appear the Auger
energy is primarily determined by the total of
the one-center occupancy terms as the "nonlocal"
peaks are ordered in energy accordingly. The
relative occupancy of nearest neighbors and 2nd-
and 3rd-near neighbors is unimportant in deter-
mining energy apparently because the I/R be-
havior reduces u» already to -4 eV (when u, is
15 eV), and the higher terms (e.g. , u», u», etc. )
are only s1.ightly smaller.

FIG. 4. Comparison of results for the O2&(nb) —02&(nb)

Auger line shape. On the lower left is plotted the percent
nonlocal intensity of the total Auger intensity versus u/I".
On the upper right is plotted the difference in energy be-
tween the centroids of the local and nonlocal Auger con-
tributions versus u/I'. u is the one-center hole-hole
repulsion energy parameter; I is the 02& (nb) bandwidth

as determined from the spread of the one-electron DOS

of the corresponding n cluster. Results are shown for
clusters containing three atoms (dotted line), seven
atoms (dashed line), 16 atoms with u;&= 0 (dot-dashed
line), and 16 atoms with u;& & 0 (solid line).

a', -'A, ,

a, t, —'T„'T, ,

t2 —'A„T„'E,'T2,

(43)

and in the nondiagonal case O„-O», the terms

1 3aa, -A, , A, ,

a, t2 —'T, , 'T2,

a,'t, —'T, , 'T, ,

(44)

Since only terms of the same symmetry and multi-
plicity mix, the complete CI is easily tractable
(e.g. , in the diagonal cases, mixing occurs only
between the two 'A terms and only between the
two 'T, terms).

Expressions for determing the Auger intensity
are given in Table IV. These expression involve
the CI mixing coefficients D obtained from Eq. (9),

S. Si L23 VV line shape

Results for the Si L»VV Auger line shape ob-
tained from the tetrahedral Si,04 cluster is given
in Fig. 5. These results were obtained from a
16 orbital system, namely, four Si„orbitals on
the central Si, one Si„orbital on each of the edge
Si atoms and an 0 2s and 2P, orbital on each of
the four O atoms. The O 2P„and 2P„nonbonding
orbitals were ignored in this calculation. The
resultant one-electron MO's are named in the T~
point group 4a, (3s), 3t,(3P), 5a, (3s), and 4t, (3P),
where the dominant contribution of the Si atom in
each MO is indicated in parentheses. Although
the MO calculations are performed with sP' hy-
brids (h, ) on the Si atoms, solution of the secular
equation automatically provides for the proper
linear combination of these hybrids to give back
either an s or P orbital as dictated by symme-
try. Vpon performing the CI with increasing u„
the orbitals rehybridize.

The number of two-hole configurations neces-
sary for an appropriate hole-hole correlation
treatment can again be kept to a minimum. The
energy spacing between the 4a„3f, orbitals (the
O„band) and the 5a„4t, orbitals [the 0,~(b) band]
is large compared to the effective hole-hole re-
pulsion in the Si,O4 cluster, so the configurations
from the O„-O„, O„-O,p, and O,~-O„bands
can again be mixed in separate CI calculations.
Group theoretic arguments can be used to sim-
plify the problem still further. Thus in the diag-
onal cases (either 0„—O„or 0» —0») we have
the configurations leading to the terms
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TABLE III. Probabilities P;& for hole occupancy on the ith and jth 0 atoms in the 2p nonbonding band of an 07 cluster
in SiO&.

Peak
Energy of

state in band b

Same center
ZP;;
i&1

Nearest neighbor
~ 'PU

i&1 i& j&1

2nd and 3rd neighbors, etc.
Z P;.

i~jA]

0
5
8

15

-3.29
0.20
1.31
2.54

0.475
0.275
0.151
0.043

0.016
0.018
0.000
0.000

0.429
0.528
0.563
0.556

0.032
0.092
0.138
0.177

0.048
0.104
0.148
0.224

0
5
8

15

0
5
8

15

-2.00
2.06
3.74
5.60

2.00
5.51
6.63
8.16

0.000
0.019
0.024
0.003

0.429
0.399
0.216
0.072

0.435
0.502
0.322
0.074

0.071
0.007
0.020
0.043

0.000
0.013
0.037
0.024

0.143
0.009
0.034
0.281

0.390
0.460
0.577
0.678

0.143
0.044
0.001
0.056

0.176
0.006
0.039
0.222

0.214
0.581
0.730
0.547

0
5
8

15

0
5
8

15

4.00
7.01
9.19

15.55

7.29
10.38
11.93
16.87

0.000
0.139
0.357
0.447

0.096
0.166
0.251
0.435

0.167
0.342
0.432
0.505

0.079
0.147
0.226
0.379

0.000
0.468
0.042
0.011

0.429
0.401
0.324
0.127

0.333
0.274
0.143
0.037

0.158
0.170
0.142
0.052

0.500
0.197
0.027
0.001

0.237
0.116
0.057
0.007

Peak numbers correspond to those in Fig. 3.
Atom 1 is the atom with the initial core hole.

'Only P~& terms in which i and j are nearest neighbors are included.
Only P~& terms in which i and j are not nearest neighbors are included.
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FIG. 5. Comparison of results for the Si L&3VV Auger line shape. In column one are the Auger energies and relative
intensities resulting from the fold of the one-electron DOS local to the central Si atom as determined from an LCAO-MO
calculation on an S1504 cluster. The position of the final-state holes is indicated at the far left in terms of the MO's as
named in tetrahedral symmetry. The symbols (s, p) in parentheses indicate the dominant central Si atom contribution.
In column two, hole-hole repulsion is included without CI mixing for u, ~

= 10 and u0 ——15 eV. The third column gives re-
sults with CI mixing. The terms "4,& or T) are given as determined by group theory in T„symmetry; the dominant
configuration mixing given in parentheses after the term symbol. Numbers given indicate intensities in arbitrary units.
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TABLE IV. The Auger transition rates after CI mixigg of the terms coming from the tetra-
hedral Si504 cluster.

Molecular term ~ Transition rate

02 -02s

or

terms

02 -02'

terms

f~f {2)

'T2 (2)

T2

sT
1

iE

1/mg (4)

f(3T (6)

«3E

[D(af s Af)cs{af)M~s( S)

+ (t2, Af)c~(t2)M~( S)]

[D(aft2, T2)cs(af)cp (t2)M~( P)

+ D(t2, T2)cp(t2)(0.6)M~( D)]

[cs(af)cp(af)M +( P)]

[cp(tf)M~( P)]

[cp'(t2) (o 4)M~(f D) ]'

[D(a&a&, '/ +)c,(a&)c,(a')I-(~/3$)

+ D{t,t, , ' '&f)cp(t2)cp(t'2)M~(' 'S)]'

[D(af t2 T2)cs(af)cp(t2)~/~( P)

+ D{ ft2 T2)c (af)cp(t2)M~( P)

+ DQ, )2, T2)cp(t2)cp(t2) {0.6)M~p{ D)]

fcp(t2) cp(t2) (o 4)M~(' D)]'

fcp{t2)cp{t2)M~p( ~ P)]

'Number in parentheses indicates number of states having this symmetry.

the atomic orbital coefficients c obtained from
solution of Eg. (6), and the atomic Auger matrix
elements in LS coupling M,».p "I). Expres-
sions for evaluating M,», ('a "L) have been re-
ported by Mcouire ' and others. ' ' The
M,»('S), M,»('D), M,»('P), and M, ('S) matrix
elements are equal to zero in this work, as shown
in Eq. (17) and Sec. IIA. The five'D states in
spherical symmetry split into the 'E and 'T,
terms in tetrahedral symmetry. The 'D inten-
sity splits up equally, one fifth into each of the
states regardless of symmetry. " As determined
by McGuire, M„,('S) and M,»('S) are of different
sign so that the a', +t', has a smaller intensity
than the a', —t 2 state.

Figure 5 compares results with no hole-hole
repulsion effects, with hole-hole repulsion effects
but without CI mixing, and with complete CI mix-
ing. The turn on of hole-hole repulsion without
CI mixing causes additional lines from multiplet
splitting. The turn on of CI mixing then coalesce
these terms into local and nonlocal contributions
for each band (0„—0„, 0„—0», and 0»-0»}.
In this instance, the local contributions corre-
spond to both holes localized on an Si,O subcluster
with U,« = 11 eV, and the nonlocal contributions
to the holes localized on different Si,O subclusters
with U,« =4 eV. Because the initial core hole
was on the central Si atom with a local Si popula-
tion in all four Si,O subclusters, the Auger in-
tensity now does not coalesce into just the local

peak as in the 0 KLL case, but a major part of
the Auger intensity remains in the nonlocal con-
tributions.

Nevertheless, the effects of CI mixing appear to
be evident in the Si L»VV line shape. The local
contribution of the 02,0» band at -54 eV now
matches up more with the 50 eV peak in the ex-
perimental Auger line shape of Fig. 1. The 0.4
relative intensity of this peak also is of the proper
magnitude to account for the intensity under the
experimental peak since the theoretical peak was
way too small in the earlier work. The shoulder
at 68 eV in the experimental line shape we have
previously suggested may be due to a shake satel-
lite. It now appears it could be due to the local
contribution of the O»O» band at -70 eV with a
relative intensity of 0.7. The intensity of 0.7,
somewhat less than the nearby 1.2 intensity of
the contributions at 63 eV, seems qualitatively
correct if it is to account for the 68-eV shoulder.
The small local contribution of the O~O„band at
37 eV falls under the Si L,L»V peak which we
examined earlier. '

It appears that the local contribution is suffi-
ciently removed in energy from the nonlocal
contributions that they tend to fall under different
experimental peaks and thus final-state correla-
tion effects are visible in the Si L»VV Auger line
shape. Although the energy alignment (both abso-
lute and relative} is rather good, it does appear
for both the O»-O» and O»-O» bands- that the
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separation between the local and nonlocal con-
tributions should be about 2 eV larger. This
could easily be accounted for by somewhat larger
values of the two-center repulsion integrals
u(si„, O,). Item Si-0 O-O Si-Si

TABLE V. Comparison of approximations for the
two-center Coulomb-repulsion integrals in SiO&. The
assumed values of u(Si„) and u(O&) were 11 and 15 eV,
respectively.

C. Summary and conclusion

In both the Q KVV and the Si L»VV Auger line
shapes there is some evidence that the two-center
repulsion integrals u „should be larger. The
"classical" approximation is the Mataga-Nishi-
moto (MN) approximation [Eq. (13)], but others
have recently been suggested. In a recent study

by Dewar and Thiel, " the Klopman approximation
(K) (Ref. 36)

Overlap (p I ff()„)

M ataga-Nishimoto u (eV)
Klopman' u~ (eV)
Huang u (eV)

~From Gilbert et al. (Ref. 37).
"Reference 17.
'Reference 36.
Reference 15.

1.5
0.26
5.5
7.7

10.4

2.5
0.063
4.1
5.3
6.3

3.0
0.33
3.3
4.4
6.8

u „=e' [R' „+(2e '/(u„+ u ))'] '~ ' (45)

was compared with the MN approximation and

analytically evaluated two-center integrals. The
K integrals were found to be in general agree-
ment with the analytical integrals, the MN inte-
grals generally too small. In the event that the
two-center overlaps are known, Huang" has
proposed the approximation (H)

u „=S „,'-(u, +u )+(1 —S )e'/R „. (46)

Using the overlap integrals evaluated for SiQ, by
Gilbert et al. ,

" we obtain the values given in
Table V along with the MN and K integrals.

All three approximations behave properly in
the limits R „-0 and R „-~. It is in the
intermediate regions that the approximations
differ. Qn the other hand, it has been argued" "
that the appropriate long-range repulsion should
behave as e'/(kR „)where "k" is the dielectric
constant of the solid and accounts for the back-
ground electron density in solids. In SiO, k = 4,
which would significantly decrease the Coulomb
repulsion. However, in the short-range region
of interest here (nearest neighbor), the macro-
scopic dielectric constant is probably not appro-
priate. The results in Table V indicate the MN

integrals are smaller than the others in the short-
range region. Qur interpretation of the experi-
mental Auger line shapes suggest the H or K
approximations to be the more appropriate.

In summary, we have in this work elucidated
the role of final-state hole-hole correlation ef-

fects in Auger line shapes. In the Q ALL case,
the Auger line shape reveals a strong localization
onto a single Si,O cluster; indeed, it almost
appears atomiclike. In the Si L»VV case, the
Auger line shape reveals significant contributions
from both the local (both holes on the same Si,O
subcluster) and nonlocal (the two holes on neigh-
boring Si,O subclusters) configurations.

Perhaps most significant in this work is the use
of the Auger line shapes to obtain near quantita-
tive information about the hole-hole repulsion
magnitudes and bandwidths. In general, the
absolute energies of the Auger transitions indi-
cate the magnitude of the one-center integrals;
the relative energies and intensities of the local
and nonlocal contributions give some information
about the two-center repulsion integrals and

bandwidths. This suggests that the quantitative
interpretation of Auger line shapes might be a
useful tool for obtaining important electronic
structure information in other insulators and

semiconductors and in chemisorbed systems.
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