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(2 X 1) reconstructed Si(001) surface: Self-consistent calculations of dimer models
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The electronic structure of the (2 x 1) reconstructed Si(001) surface is studied using the self-consistent
pseudopotential method. The calculation is based on the asymmetric-dimer model recently proposed by
Chadi using the tight-binding method. The present calculation confirms that the asymmetric-dimer model
results in a semiconducting surface in agreement with experiment. The density of states is calculated, and it
compares favorably with experiment. A study of the charge distributions and the energy dispersions of
surface states allows us to determine the character of individual surface states. By doing comparative
calculations of the total energy of the symmetric and asymmetric dimers, we conclude that the latter is
more stable because of exchange-correlation energy contributions.

I. INTRODUCTION

The atomic and electronic structures of clean
silicon(001) surfaces constitute problems of great
current interest because of their technological
importance in solid-state devices. As early as
1959, the low-energy-electron-diffraction (LEED)
measurements of Schlier and Farnsworth' provided
evidence for a (2 && 1) reconstruction of the Si(001)
surface. Subsequently, (4 && 2) LEED patterns
were also observed. " The (2&&1) reconstruction
appears to be the dominant one' ' on Si(001) sur-
faces and the (4 && 2) on Ge(001) surfaces. ' Recent
work suggests' that the (2 x 1) and (4 && 2) re-
constructions are similar in character differing
only in the ordering of asymmetric dimers at the
surface.

'To explain the experimental observations, many
distinct surface structural models for the Si(001)
surface have been proposed. "-" Some of these
are shown in Fig. 1; open circles denote surface
atoms, and dark circles represent second-layer
atoms. The ideal surface is shown in Fig. 1(a). In
this configuration, there are two broken bonds per
surface atom making the surface highly unstable.
Pairing of surface atoms as shown in Fig. 1(b) re-
duces the number of dangling bonds by a factor of
2 and leads to a (2 x 1) periodicity. For the pair-
ing (or dimer) madel, "'"the surface-layer dis-
placements can be chosen such that all bond
lengths have their bulk values. Two different
vacancy models'" leading to a (2 && 1) surface are
shown in Figs. 1(c) and 1(d). The doubling of the
unit cell occurs in directions normal to or parallel
to the zigzag chains at the surface for the two
model. s. The "conjugated-chain model"4 for the

(2 && 1) surface and a variation of it are shown in

Figs. 1(e) and 1(f) respectively. The dimer,
vacancy, and conjugated-chain models have all
been suggested at various times for explaining the
surface structure of Si(001), but none have been
found to be completely satisfactory. 'The calcu-
lated surface electronic densities of states for the
vacancy" and conjugated chain models" are in
disagreement with experimental photoemission
spectra. ""The dimer model gives better agree-
ment"; however, all three models give metallic
surface bands in disagreement with recent angle-
resolved photoemission measurements. " Surface
hydrogenation (and dehydrogenation through heating)
yields a (2 && 1)-to-(1 && 1) conversion (and vice
versa) which also suggests" that the (2 && 1) recon-
struction does not result from vacancies. 'The

pairing model was, therefore, reexamined, and
it was shown" that the atomic distortions are not
restricted to the surface layer but extend appre-
ciably into the bulk. LEED calculations'" for
the new dimer model were found to be in much
better agreement with the experimental data than
for other models. The extent of the agreement
was, however, not considered broad enough to re-
gard the problem as completely solved. " In addi-
tion, the problem of metallic surface bands re-
mained unchanged. '

Recent studies based on energy-minimization
calculations' have shown that symmetric dimers
as shown in Fig. 1(b) are unstable with respect to
a buckling distortion. The formation of asym-
metric dimers leads to partially ionic bonds be-
tween the paired atoms and, according to tight-
binding (TB) calculations, to semiconducting sur-
face bands. The top and side views of the asym-
metric-dimer model are shown in Fig. 2. 'The

atomic displacements (in A) of the first two sur-
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dimer gives a lower energy than the symmetric
case by 0.12 eV. In the next section, the calcu-
lational procedure is described. The results are
presented in Sec. III, and summarizing remarks
concerning the results are given in the last sec-
tion.

II. CALCULATIONS

(c)

/ iE

() ()

Ay[i
1

(d)

{) {) () The calculational, procedure of the self-consistent
pseudopotential method is outlined briefly below.
Details of the method are to be found elsewhere. "
'The ionic pseudopotential representing the ef-
fective core-valence electron interaction is de-
rived to reproduce the Si ionic and atomic spectra.
'The parametrized form of the pseudopotential in

q space is

V(q) = (a, /q')(cosa, q+ a, ) exp(-a, q'),

face layers are' &Xy 0 46 ~2 1 08 +Z]
=0.04, and ~Z, =-0.435 as compared to &X, =

-&X,=0.75 and 4Z, = 4Z, =-0.22 for the sym-
metric dimer case. In the present paper, we take
the asymmetric-dimer model for fully self-con-
sistent pseudopotential calculations. Further re-
laxations up to the fifth layer from the surface are
included in accordance with the TB calculations in
Ref. 7, and comparisons are made between them.

The present calculation shows that the Si(001)
surface in the asymmetric-dimer model is semi-
conducting. Other properties such as the density
of states (DOS), the charge density, and the energy
dispersion of surface states are studied in detail.
'The calculation of the total energy of this surface
is attempted for the first time; the asymmetric
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FIG. 2. Top and side views of an asymmetric-dimer
geometry.
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FIG. 1. Possible structural models for the Si(001)
surface. Surface atoms are shown as open circles and
second-layer atoms as solid circles. The structures
shown correspond to (a) ideal unrelaxed surface, (b)
pairing or (symmetric) dimer model, (c) and (d) vacancy
models, and (e) and (f) conjugated-chain models.

where a, =-0.818786 (the volume per Si atom is
189 a.u. ), a, =0.79065, a, = —0.35201, and a,
=-0.01807. These values are given in rydberg
atomic units. 'To facilitate the standard pseudo-
potential method, the repeated slab geometry
simulating an actual surface is assumed. 'The

unit supercell consists of ten layers of Si plus a
vacuum region equivalent to five layers of Si in
thickness. Si ions are reconstructed according to
the model explained in the previous section. Once
the structure of the Si ions is chosen, the valence
electrons of Si are allowed to distribute them-
selves self-consistently. The Xa method (n = 0.8)
is employed to calculate the exchange-correlation
potential.

Because of the large unit cell (20 atoms plus a
large vacuum region), we are limited by the ma-
trix size in solving the Schrodinger equation.
Plane waves up to 2 Ry in kinetic energy are in-
cluded in the basis set (-200 plane waves), and
another set of plane waves up to 5.5 Hy (-600 plane
waves) are included through a second-order per-
turbation scheme. Self-consistent iterations with
eight sampling points in the irreducible Brillouin
zone are carried out until eigenvalues are stable
up to 0.01 eV. At the final stage, the self-con-
sistency is retested with 23 sampling points in the
irreducible zone, and the same degree of stability
is obtained. The latter sampling points are used
to calculate the total charge density and the local
density of states (LDOS). The LDOS curves are
then smoothed to facilitate comparison with ex-
periment. Two independent calculations are done,
one with the asymmetric-dimer model and the
other with the symmetric-dimer model. In the
next section, we will concentrate on the results
obtained from the asymmetric-dimer model.
Comparisons will be made with the symmetric-
dimer model and with the 'TB calculations. '
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III. RESULTS

A. Electronic structure

'The electronic structures for the asymmetric
and symmetric dimer configurations are illustrat-
ed in Figs. 3-12. Figure 3 shows the self-con-
sistent va'. ence charge density of the asymmetric-
dimer model. The charge density is plotted in the
(110) plane perpendicular to the surface. At one
layer below the surface, the charge density is
essentially that of bulk Si. At the surface layer,
on the other hand, the properties of the asym-
metric dimer are dominant. Although the charge
distribution of the new bond on the surface is not
symmetric, the covalent nature of the bond is
clearly evident in the figure. The maximum char-
ge density of the bond (22. 5 electons per bulk unit
cell volume) is almost the same as that of the
average bulk covalent bond (23). This is not sur-
prising since the variation in bond lengths is
maintained to within 270 in the present geometry
in spite of the large rearrangement of the surface
atoms. A small variation of the charge density

(22.4 to 23.5) of the subsurface bonds suggests that
there may be a slightly different geometry which
could lower the energy.

Figure 4 illustrates the calculated projected
band structure of Si projected onto the [001J direc-
tion. The surface-state bands of the asymmetric-
dimer model are superimposed on the figure.
Surface-state bands of the symmetric dimer are
shown in the main gap region for comparison. Also
inserted in the figure is the two-dimensional
irreducible Brillouin zone of the (001) surface.
'The most striking feature in this plot is that the
asymmetric-dimer model results in a semicon-
ducting surface in contrast to the symmetric-
dimer model. 'This confirms Chadi's' results
using the empirical 'TB method. There are some
differences in detail.

'The self-consistent pseudopotential calculation
gives -0.1 eV for the indirect band gap while a
larger value, (-0.6 eV) is obtained in the TB cal-
culation; however, the direct gaps at I" are the
same (1 eV) in both calculations. The top of the
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FIG. 3. Contour plot of the totaL vaLence-charge den-
sity for the asymmetric-dimer model. plotted in a (110)
plane cutting the surface at right angles. The solid cir-
cies represent the Si atoms lying on the plane, and the
soiid lines represent the hypothetical covalent bonds.
Si atoms not on the plane are denoted by open circles.
Normaiization is determined by the number of eLectrons
per bulk Si unit cell (0= 270 a. u. ), and the contour
spacing is 2.

FIG. 4. The calcuiated band structure of buik Si p»
jected along the [001/ direction (projected hand struc-
ture). Bands of surface states of the asymmetric-dimer
model are represented by solid l. ines; when these states
merge with the bulk band continuum, they are denoted by
broken solid lines. In the main gap region, the states
for the symmetric-dimer model are shown (dash-dot
lines) for comparison. The two-dimensional irreducible
Brillouin zone for the (001) structure is given in the in-
sert.
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occupied surface-state bands occurs along JK in

the Brillouin zone, but it is found at I' in the TB
calculation. For both the symmetric- and asym-
metric-dimer models, the calculated (pseudopo-
tential and TB) bandwidths are more than a factor
of 2 wider than experiment (-0.3 eV)." In the for-
mation of the asymmetric (ionic) dimer, the two

overlapping surface state bands of the symmetric
dimer are pushed away from each other until a
small indirect gap opens up in the asymmetric
model.

%hen forming the asymmetric dimer, the upper
band shifts upward and the lower band shifts down-
ward by an almost constant amount except for the
region along I'J direction (Fig. 4). This is ac-
companied by a lowering of the Fermi level by
-0.2 eV. The top of the occupied bands occurs
near J (slightly shifted toward K) at 0.5 eV above
the valence-band maximum for Si bulk (E„), and
the bottom of the unoccupied bands occurs at J'
with E =0.6 eV above E„. The asymmetric dis-
tribution of the charge is the driving force for the
band shift. 'The lower occupied band corresponds
to electronic states localized around the "up"
atoms on the surface, and the upper empty band
corresponds to states associated with the "down"
atoms. This asymmetric distribution of the sur-
face charge takes better advantage of the ex-
change-correlation energy than the more uniform
charge distribution in the symmetric-dimer model
without significantly increasing other contributions
to the energy. This point will be discussed in
more detail later.

In Fig. 5, the LDOS for the surface monolayer
of the (a) asymmetric and (b) symmetric models
and (c) the inner layer corresponding to Si bulk
are presented.

Figures 5(a) and 5(b) are essentially the same in
the valence band region. In the gap region, how-
ever, two peaks (E,F) corresponding to occupied
and unoccupied surface states appear in (a) where-
as one strong peak (E'), which is half filled, ap-
pears in (b). When comparing the calculated LDOS
for the surface with photoemission results, " close
agreement in the positions for the main peaks B
and D is found. Not only are the locations of the
peaks correct, but the shape of peak D is also in
good agreement with experiment. 'The triangular
shape of peak D is characteristic of the dimer
models (symmetric and asymmetric). ""The
DOS of the vacancy model found in Ref. 13 or that
of the conjugate-chain model in Ref. 14 shows a
more or less squarelike peak in this energy re-
gion. 'There is disagreement between our calcu-
lations and experiment" for the positions of peaks
A, C, and E. In our calculation, peak A is shifted
toward higher energy in going from a bulk to a sur-
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FIG. 5. The local density of states (LDOS) plots for
the surface monolayer of the (a) asymmetric- and (b)
symmetric-dimer models and for the (c) inner layer re-
presenting bulk Si. The experimental photoemiss ion
data of Ref. 15 are superimposed on the figure in dashed
lines. The labeling of the peaks is explained in the text.

face layer, but the photoemission data seem to
agree with the bulk DOS (c) rather than the sur-
face DOS (a). The relatively small peak C in Fig.
5(a) is not found in the photoemission experiment.
This peak corresponds to weak surface resonances
around E = -5 eV in Fig. 4. Again, the photo-
emission curve is in better agreement with the
bulk DOS (c). It is possible that the matrix ele-
ment for these states may be very small. Also,
it is to be noted that we plot the LDOS for the sur-
face monolayer while the photoemission experi-
ment may probe a few layers inside the surface.
As mentioned above, the agreement with experi-
ment improves if we average the calculated LDOS
of the surface layer (a) and inner layers (c). On
the other hand, the position of the occupied
dangling-bond states (E) is centered near E„while
the photoemission data show a shoulder at -0.8 eV
helot E„." The question remains whether that
shoulder corresponds to the dangling-bond states
associated with up atoms.

The calculation of the LDOS associated with a
particular atom can be carried out more con-
veniently in a TB representation than in a plane-
wave representation. An eigenfunction can be ex-
pressed in the TB method as a linear combination
of the localized orbitals centered on each atom of
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FIG. 7. Charge-density plot of the surface state at K

(-10.4 eV) in the asymmetric-dimer model. The charge
density is normalized to one electron per unit supercell.
The plotting plane and notation are the same as in Fig. 3.
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FIG. 6. The local. density of states associated with the
up and down atoms of the asymmetric dimer determined
from TB calculations.

Si (001)
Surface States at K
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the system. Therefore, to study the electronic
structure at the surface in more detail, the LDQS
associated with up and down atoms of the asym-
metric dimer obtained from the TB calculation' is
shown in Fig. 6. The strong peaks near the va-
lence-band maximum (top part of Fig. 6) and the
conduction band minimum (bottom part of Fig. 6)
correspond to the filled and empty dangling-bond
surface states on the up and down atoms, respec-
tively.

We now return to Fig. 4 and investigate individual
surface states. A band of surface states (or re-
sonances) exists at the bottom of the valence band
throughout the Brillouin zone. These states split
off from the bulk bands along KJ' whereas they
merge into the bulk bands to become surface re-
sonances in other regions of the Brillouin zone.
Figure 7 shows a surface state atK. This is a
back-bond state localized in the subsurface Si-Si
bonding region. The corresponding state at J' is

0

0 0

0 ,+~ C)

0

FIG. 8 Charge-density plot of the surface state at K
(-4.0 eV) in the asymmetric-dimer model. The plot-
ing plane, charge normalization, and notation are the

same as in Fig. 7
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FIG. 9. Charge-density plot of the surface state at K
(-2. 2 eV) in the asymmetric-dimer model. The plotting
plane, charge normalization, and notation are the same
as in Fig. 7.

FIG. 10. Charge-density plot of the surface state atJ' (-1.3 eV) in the asymmetric-dimer model. The
plotting plane, charge normalization, and notation are
the same as in Fig. 7.

similar in character.
There are two surface state bands in the -8 to

-10 eV region. These two bands are connected at
I' where the states become resonances. They are
mainly s-like states localized near the subsurface
layer. A resonance band contributing a small
peak at -5 eV in the LDOS curve of Fig. 5(a)
exists in a wide region of the Brillouin zone. A

strong P-like back-bond state appears in the
"stomach" gap at K (-4 eV). Figure 8 illustrates
the character of the state clearly. Localization
of the charge is induced very strongly by the asym-
metric reconstruction of the atoms. Otherwise,
the charge would have been distributed evenly
through the subsurface layer.

More surface resonances are found in the upper
part of the bulk valence band. Two such states
are shown here. A surface state at K (-2.2 eV)
is presented in Fig. 9. This state is a covalent
bond between P, + P„and P, —P„orbitals localized
on the two atoms of the dimer (o bonding). Figure
10 shows a back-bond p-like state at J' (-1.3 eV)
which is not affected much by the asymmetric re-
construction and illustrates a rather even distri-
bution of bonding charge in the subsurface layer.

'The surface states in the gap are illustrated in
Figs. 11 and 12. The lower band corresponds to

Si (001) Surface States

(a) Asymmetric dimer (ft) Symmetric dimer

J'(—0.3 eV) J'(—0.08 eV)

a''(~M~~M~~

0 0

0
0 0 0

FIG. 11. Charge-density plots of the lower surface
states band at J' in the (a) asymmetric- and (b) symme-
tric-dimer models. The plotting plane, charge normal-
ization, and notation are the same as in Fig. 7.
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Si (001} Surface States

(a} Asymmetric dimer (b} Symmetric dimer

J'(0.6 eV} J'(0.36eV }

for a more accurate calculation because potential
fluctuations are to be screened and reduced con-
siderably through the self-consistency procedure.

In our plane-wave expansion scheme, the total
energy per atom is"

L.I

FIG. 12. Charge-density plots of the upper surface
states band at J' in the (a) asymmetric- and (b) symme-
tric-dimer models. The plotting plane, charge normal-
ization, and notation are the same as in Fig. 7.

the dangling-bond states of the up atom [ Fig. 11(a)]
as discussed before. This band is responsible for
the large lobe of charge around the up atom in the
total-charge-density plot (Fig. 3). Compared with
a corresponding state of the symmetric dimer in
Fig. 11(b), it becomes apparent how this state
develops from a bonding state of P orbitals as-
sociated with each surface atom.

'The upper unoccupied band corresponding to the
dangling-bond states of the down atom is shown in

Fig. 12(a). Again, compared with a corresponding
state of the symmetric dimer in (b), it is easily
recognized that this state originates from w anti-
bonding of two P, states associated with two sur-
face atoms.

B. Total energy

We now turn our attention to the total energy of
the system. The most fundamental way of deter-
mining the equilibrium configuration of the system
is to minimize the total energy with respect to the
structural degrees of freedom (at 0 K). The com-
putational scheme for calculating the total energy
in the self-consistent pseudopotential method has
been formulated' and applied successfully to Si,'
Mo, and W." 'The empirical TB method was used'
to show that the asymmetric dimer is lower in
total energy than the symmetric dimer. However,
self-consistency in charge distribution is required

&„,=Q„g,.(k,.+ )
' k,. +G)'+ —' V„( )p )

i, G G ceo

+l Qv..(G)p(G)+Q &%)U..(G)p(&)}
G Q sea

+ +1Z + ~E wal d y (2)

where 0„ is the atomic volume, Z is the valency,
the 0's are reciprocal lattice vectors, and S(G) is
the structure factor. (}),.(k,. + 0), V„(G), p(G),
t(.„(G), and U„(G) are Fourier transforms of the
electron wave function, the Hartree potential, the
total (valence) charge density, the exchange-cor-
relation potential, and the local pseudopotential.
'The index i represents both the wave vector k„
and band index n and runs over occupied states of
the valence electrons. n, and y~„„d are

8m'
a, = lim U„(G)+

C-0 at

U„r+—dr,

2 „ I y„ l

(3)

(4)

where the R„'s are lattice vectors to ionic sites.
Hall's correction term" cancels with other elec-
trostatic contributions and is not included in our
definition of yE„„d." An alternative form for the
total energy is

E =Q a; —()..„. Z v„(G)p(5) Z u, „(G)p(G))
g

(6)+ +1~ + ~E +aid y

where the &,.'s represent the eigenvalues of the
valence electron wave functions. Equation (5) is
used to calculate the total energy because this
equation converges faster than Eq. (2) using se-
cond-order perturbation theory. E„,here refers
to the total crystal energy of the system; the
crystal energy by definition excludes the energy
in creating individual Si cores.

The result is summarized in 'Table I. Since our
unit cell has 20 atoms and two "surfaces, " the
difference in total energy per atom between diffe-
rent geometries should be multiplied by ten to get
the stabilization energy per dimer on the surface.
A value of -0.12 eV per dimer is obtained for the
energy gain in going from a symmetric to an
asymmetric model. This value is smaller than the
one estimated in the TB calculation (-0.46 eV)."
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TABLE I. The total energy of (2x 1) reconstructed
Si(001) surface simulated by the supercell geometry.
The supercell geometry is explained in the text as well
as in Ref. 7. The numbers correspond to the average
total crystal energy per Si atom in rydberg. Therefore,
to calculate the relative stabilization energy between
two models per dimer, the difference of the total energy
in the table (0.0009 Ry) should be multiplied by ten (the
number of atoms in the unit cell divided by two because
the unit cell has two surfaces).

convenient to think of the equilibrium configura-
tion of the surface as the balance between the
exchange-correlation energy and the classical
contributions (kinetic and classical electrostatic
energy). The exchange-correlation term tends to
bring about bigger modulation in the charge dis-
tribution while the sum of the classical terms tends
to suppress it.

IV. CONCLUSIONS
Model Asymmetric Symmetric

Kinetic 2.384 42 2.380 07

Qatg S(G)UpI(G)p(G) -20.86145 -21.061 76

Vs(G)p(G)

—,'().tg p..(G)p(G)

~Ewgd

1.023 69

9.809 79

-2.293 09

2.074 81

1.023 69

9.91507

-2.291 89

2.173 87

Total -7.861 83 -7.860 94

Considering that convergence of the present calcu-
lation is quite restricted because of the large unit
cell, these values are not very accurately deter-
mined. It is also possible that other asymmetric
reconstructions may yield even lower energies.
Still, this calculation illustrates that the energy
gain involved in the asymmetric reconstruction is
of the order of 0.01 Ry. We note that the main
contribution to the stabilization comes from the
exchange energy. The exchange-correlation term
contributes 0.012 Ry to the stabilization energy
while all other terms contribute -0.003 Ry. It is

The present self-consistent calculation. on a
particular asymmetric-dimer model has been
motivated by an earlier empirical TB calculation. '
We have not studied all the possible reconstruction
models here. Rather, the asymmetric-dimer
geometry, which was found to give a semiconduct-
ing surface and a relatively low total energy in the
TB calculations, is assumed for this more ela-
borate calculation of the electronic structure and
the total energy. Various surface-state bands are
found, and the character of these surface states is
determined using charge-density plots.

With the present model, the surface is semi-
conducting, and the DOS is in better agreement
with photoelectron data than any other models
theoretically studied thus far. However, discre-
pancies between theory and experiment still exist,
and all problems associated with the (2 x 1) re-
constructed Si(001) surface are still not resolved.
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