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Thermal behavior of the Debye-Wailer factor and the specific heat of anharmonic crystals
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We study, within the framework of the variational method in statistical mechanics, the influence of the
cubic and quartic crystalline anharmonicity on the classical and quantum thermal behavior of the specific
heat, Debye. temperature 8, Debye-Wailer factor W, crystalline expansion, and phonon spectrum. The
systems we mainly focalize are the single oscillator, the monoatomic linear chain, and the simple cubic
crystal, The. trial Hamiltonian is a harmonic one, therefore the various anharmonic influences are mainly

absorbed into the renormalization of 8(T). Several differences between the classical and quantum results are
exhibited. Satisfactory qualitative agreement with experience was obtained in the low-temperature. regime, in

particular on what concerns the existence of a minimum in 8(T) which has been observed in Cu, Al, Ag,
Au, and Pb. For the intermediate-temperature regime the customary linear behavior of W(T) Ihence 8(T)
almost constant] is reobtained. Finally, in the high-temperature regime, the present treatment leads to a QT
dependence for the W factor, which implies the wrong curvature with respect to experimental data. A
possible explanation of this disagreement might be related to the melting phenomenon, which is not covered

by the present theory.

I. INTRODUCTION

or

W(T,) —W(T) = (sin'8/2X ) Y(T, T,)

Y (T,T ) = (X /sin'8)in[I(T)/I(TJ] '.

(2)

(2')

In quite general situations, Y(T, To) does not de-
pend either on the incident wavelength A. or on the

After the starting point given by the works of
Debye' in 1914, Faxen' in 1918, and Wailer' in
1923, a great quantity of theoretical and experi-
mental work has been dedicated to the study of the
thermal behavior of x ray (ne-utron, y-ray, etc.)
scattering by a vibrating regular lattice. Various
improvements have been introduced, through dif-
ferent generalizations of the historical "single-
atom harmonic perfect crystal", by taking into
account the anharmonicity of the crystal, the pre-
sence of more than one atom per unit cell, the
existence of different kinds of defects (impuri-
ties, dislocations, and others) in the crystalline
periodicity, the quantum effects, etc.

Let us recall that the scattered intensity I we
are talking about is proportional, for a single-
atom crystal, to e '~'r' where W(T) is the so-
called (temperature-dependent) Debye-Wailer fac-
tor. If we call T, a reference temperature, it ob-
viously holds that

I(T)/I(T, ) =exp]-2[W(T) —W(T,)]). (l)

It is customary to introduce a quantity designated
Y'(T, T,) through

&„=a(T/9,), (4)

where g(x) is a well-known function (see for ex-
ample Ref. 5) which behaves as x'~ [d is the space
dimensionality) in the limit T-0 and tends to be
constant in the (classical) limit T- ~, 9o being
once more the characteristic temperature which

separates the two regimes. If we now assume
the validity of relation (4) and try to fit experi-
mental data, we obtain (quite generally) another
temperature -dependent Debye temperature which
we shall note 9,„(T).Usually 9n~(T) and 9sH(T)
do not exactly coincide, hence there is no hope for
any theory which (explicitly or implicitly) adopts

scattering angle 8. Let us also recall that, within
the quantum harmonic hypothesis, we have

W=f(T)/9o,

where f(T) is a well-known function (see, for ex-
ample, Ref. 4) which tends to be constant in the
limit T 0, and increases linearly with T in the
(classical) limit T- ~; the characteristic Debye
temperature OD separates these two regimes. We
remark that expression (2') is well adapted for ob-
taining Y(T, T,) directly from experience; con-
sequently, the assumption of validity of relation
(2) leads in general to a temperature dependent-
"Debye temperature" which we shall designate
9o~(T). Furthermore, always within the quantum
harmonic hypothesis, we know that the vibrational
contribution to the constant-volume specific heat
is given by
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a. quasiharmonic framework to simultaneously in-
terpret, with accuracy, scattering and specific-
heat experimental data. . This criticism holds for
most available theories, and our own treatment
does not escape it. Nevertheless, pa.rtial success
is of course not excluded, as will become clear
later on.

The W factors of copper (in the range 4-500'K')
and aluminum (in the range 4-400'K') have been
measured and interpreted within central-force
models. However, it is known' that these models
are inadequate to explain, over the entire wave-
length region, other vibrational properties. For
what concerns copper, DeWames et al. ' calculated,
by using several sets of force constants, ' "its p'
factor; they concluded that the experimental a,c-
curacy is not high enough to spot the most ade-
quate among them.

The anharmonic contribution to the W factor
has been taken into account in several works. For
instance, Owen and Williams" have phenomenolog-
ically introduced the anharmonicity of a. single-
atom crystal through a. characteristic temperature
O(T) =8(T,) [1 —cry(T —T,)j, where T, is a refer-
ence temperature, y is the Gruneisen constant,
and n is the cubic thermal-expansion factor.

This procedure leads to a Yparameter which rea-
sonably fits the experimental data (in range 300
-900'K) for gold and copper, but not those for
aluminum. Maradudin and Flinn" have explicitly
introduced, within a classical framework, the
cubic and quartic anharmonic contributions to the
8' factor; they obtained, besides the usual linear
(in T) harmonic term, corrections in T' and T',
which allow for a satisfactory fit to experimental
data in what concerns the Y factor, but not in what
concerns 8~„(T)." Since then there has been a
renewal of interest in calculating the 8' fac-
tor.""'" In particular there was some suc-
cess" "in interpreting at the same time, the fre-
quency spectra and W-factor measurements in
cubic metals.

In the present work we study, by taking into ac-
count the cubic and quartic anharmonicity, within
a variational statistical framework, the thermal
behavior of the frequency spectrum, the crystal-
line expansion, the Debye-Wailer factor, and fi-
nally the specific heat of single-atom crystals.
In particular, this theory predicts for the 8" fac-
tor: (a) a small temperature dependence in the
limit T-0; (b) a linear dependence for interme-
diate temperatures; (c) a, ~T dependence in the
limit T- ~. Furthermore, it becomes possible to
interpret the minimum of 8,„(T)observed by Hor-
ton and Schiff" and Flinn and McManus' in Cu, Al,
Ag, Au, Pb.

In Sec. II we perform, in order to demonstrate

the: kind of approximation we use, the cia,ssical and
quantum calculation of the thermal expansion and
thermally renormalized vibration frequency as-
sociated with a single anharmonic oscillator; in
Sec. III we establish the same physical quantities
for a. first-neighbor linear chain. In Sec. IV we

present, for a, single oscillator as well as for a
one-, two-, and three-dimensional crystal, the re-
sults obtained for the vibrational contribution to
the constant-volume specific heat; in Sec. V we
discuss, for a three-dimensional crystal, the ther-
mal behavior of the Debye-%aller factor; fina, Qy
in Sec. VI we conclude and compare the predictions
of the present theory with available experimental
information.

ff =P'/2m+ ,'mor'x'- cx'—+bx',

where or, c, and 6 are real positive quantities (or

and c are conventional; b is introduced to ensure
stability). According to the relative values of or,

b, and c the potential energy might present one or
two minima. The two-minima possibility might
lead, in the case of systems of interacting oscilla-
tors, to structural phase transitions. As this even-
tuality lies beyond the scope of the present paper,
we shall impose the existence of only one mini-
mum, hence

C ~+ 9N(d 5.
Furthermore, by introducing the variables

(6)

where (x) is the thermal mean value, the Hamil-
tonian (1) can be re-written in a convenient form
for variational purposes with a trial Hamiltonian

given by

H, =p'/2m+-, 'mn'u'.

The variational free energy E (not to be confused
with the exact free energy) is given by"

(6)

II. SINGLE OSCILLATOR

Introduction

In order to present the problem and exhibit the
nature of our approximation, we shall discuss in
the present section a single anha. rmonic oscillator
(with cubic and quartic contributions) within the
framework of the variational method in both cia,s-
sical and quantum statistical mechanics. We

shall focus on the thermal behavior of the re-
normalized frequency and of the expansion. We

shall assume the following Hamiltonian:
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where E, and (.. .), denote, respectively, the free
energy and the canonical mean value associated
with H,.

where we have used the relations

' = 0'(u'),

Classical statistics

Introducing (5) and ("I) into (8) leads to

+=go + & vied Tj —ci/ + 57/

+ (-,
' m(u' —.3' + 6b}i' ——,

' mn') (u'),

+ 3b(u')'„ (9)

where we have used that (u )0= 3(u')', . Next we

impose the minimization equations BE/BA = 0 and

sE/sq = 0, which lead to

—,
' mQ'(u'), = —,

'
k~ T,

(classical equipartition) and have introduced the
reduced variables

v -=n/(o; Z =—q (mu)/b)'t' .

t -=43 T/k&u; 8= bS/m'v—'; C = c(k/m'a}')'t'.

The constant h has been artificially introduced in
order to make easier the comparison with the
quantum case. The restriction (6) becomes

(6')

v'(v' —1+ 6CA. —128}}.') —128t = 0,
v'(A —3' +48k') —(3C —128}}.)t =0,

(10a)

(10b)

Equations (10a) and (10b) implicitlygive v(t) andA. (t)
(see Fig. 1), whose asymptotic behaviors are v

-1+ (68-9C')t, A. -3Ct in the limit t -0, and

v-(12Bt}"' }~ 1 — t-'~'+ }— ' L'- —(128) ''~l} — t-''}
4 48 32 48 . 4 32 ( 48

A. -A.„—I.t 't' -'(128)'t'(1 —3 '/48)t ' —(128) '(1 —3C'/48)L, t

in the limit t - ~ with h. „=-C/48 and

L = [C/8~38't'](1 —C'/28).

Note that within restriction (6 ), it is I & 0.

Quantum statistics

Th«»» Hamiltonian (&) may be rewritten in
terms of boson operators

~ = (b/2 mn)'t'(8'+ 8)

P =i(-,'hmD)'t2(8~ —8),
which must be defined in terms of the renorma-
lized frequency. "

The expression (9) still holds with

Zo = k'gTln 28k

H, =SO(8~8+ )

with the well-known transformation

and

(u'), = cothi
n }' nn

2 rnid I 2k~ T

l,0)

FIG. 1. Classicaj. thermal behavior of the: (a) reduced renormalized frequency; and (b) reduced linear-expansion
parameter. The saturation value denoted by X„is C/48. In the limit t 0, v-1+ (6B —9C ) t and A, -BCt; in the limit

, v- (12bt) ~4 and X-A, —I t ~2
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The minimization equations sE/BQ = 0 and BE/sq
= 0 now become

v'(v' —1+6'. —122%') —6B coth(v/2t) = 0, (11a)

v(z —3'.'+ 4&.') + —,'(12Eh- 3C) coth(v/2t) = 0. (11b)

The v and A. thermal behaviors are given, in the
limit t 0, by

t -v +C e-"/' X-X +C 8-'~'
0 v o

with

v, (X, —3'�', + 4Ba.,') + —,(12&.,—3C) = 0,
po po + 6', ovo 12BA.()vo 6JB 0

12Bvo —18v, (C —4',)'.
2vo+ 6BVO —(3C —122%0)

Gv', (C —4&.,)
2v', + 6B (3C —-122K,)'

As expected, Egs. (11a)an d (11b) reproduce (10a)
and (10b) in the classical limit t -~. Within this
limit we have the following behaviors:

v —(12gy)~&4(j + —'(12B)-~&2(1 3C /4B)t -~&2+~ (12B}-~(1 3C /4B) g
-~

+ [-,'(12B)'~'L'-~ (12B)-'~'(1-3C'/4B)'+~ (12B)'~']t -'~'],

—Lt ' '+ (12B) ' '(1 —3C/4B)t ' —(12B) '(1 —3C'/4B)'Lt ' '

where, for v, we have exhibited the quantum cor-
rection with respect to the classical behavior. It
is remarkable that, within a high asymptotic order,
classical and quantum results coincide [the same
occurs with A. (t }].

The solutions v(t) and X(t) of (11a) and (11b) are
represented in Fig. 2. Analysis of v„A.„C„and
C„shows that, within the restriction (6') and de-
pending on the relative values of B and C, we have
(see Fig. 3):

The fact that, in contrast to the classical situa-
tion, we have, at vanishing temperatures, vo+1
and Xo c0, is clearly a consequence of the energy
of the fundamental state being —,'SQo above the bot-
tom of the potential.

III. LINEAR CHAIN

Introduction

In this section we discuss, within the variational

II, 2 Pl

+5(x„,—x,.)') (12)

with the constants e, c, and 5 satisfying the same
restrictions as for the single-oscillator case.

By introducing the new variables x,. =u,. +q, the
Hamiltonian becomes

H= ' +(-,'neo' —3cg+6bq')(u, .„—u, )'2 Sl

+ b(u&„—u&)'+ N( —,
' nnu'q' —cg'+ bq ) + ~ ~ ~ . (12')

where the dots represent odd terms in (u,.„—u,.).
Then, through the Fourier transformation given by

l

framework, a cyclic linear chain made of %iden-
- tical first-neighbor interacting oscillators. Once
more we shall be interested in the thermal beha-
vior of the crystalline expansion and frequency
spectrum. %e shall assume the Hamiltonian

FIG. 2. Quantum behavior of the: (a) reduced renormalized frequency; (b) linear-expansion parameter. In the limit
t-0, it is v-vo+C„e o and ~-Ao+C&e "0; inthe limit t 0, the classical asymptotic behaviors are re-ob-
tained (see Fig. 1).
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C

O,T- 8= 9 C' = 0.652

0.6

0,5

0.4

0,5

0,2

O. l

0 O.OI 0.05 O.l O.I5 0.2

FIG. 3. Mapping of the B-C space according the cases C„~Oand v 0 ~ 1. The region I is forbidden by condition (6');
region II corresponds to C„&0 and vo&1; region III corresponds to C„&0 and v p&1; region IV corresponds to C„&0
and vo&1.

(q runs over all of the first Brillouin zone), the
Hamiltonian takes the following form:

H= Q -' +2( m(o' —3eg+6bq')(1 —cos&l)Ix, i'
Q

+ -g j(e "—1)(e '&""'—1)(e " —1)(e '&' ' ' —1)x,x, .„,,x,„x,„,,]+X( m&u'g' —cg'+by )+ ~ ~ ~, (12")
Qq

where the dots stand for the corresponding odd
terms in (u,.„-u,) on (12').

rWe now introduce the following trial Hamiltonian:

(13)

Classical statistics

The use of relations (8), (12"),and (13) leads to
the following expression for the variational free
energy:

I

x=F,+ g ([(mrc' —scc srsrc')(r —cosa) ——,'mrr')1&(x, ('), +—() —casa)'&(x, (')',)
+ g (1 —cosq)(1- cosq')((x, I'),(~x, ,

~ ),+N(-,'m~'7i' —cg'+by').
ee'

(14)

Then the minimization of g with respect to Q, and

q leads to

p.'(p, ' —1+6CA —12Ah) —12Bf = 0,

p,'(g' —3~'+4gy, ') —(3C —12')t =0,

(15a)

(15b)

where we have -used the classical equipartition
principle and the phonon frequency spectrum

0', = 2&v'p, '(1 —cosq),

and we have introduced the same reduced variables
of Sec. II.

We remark that, within the substitution LU, -v,
E&ls. (15a) and (15b) rigorously reproduce E&ls. (10a)
and (10b). However, it should be clear that p, rep-
resents the renormalized longitudinal sound ve-
locity, while v is the renormalized frequency of a
single oscillator.

Quantum statistics

In order to study the quantum statistics of the
Hamiltonian (12"),we sha]1 put it into a second-
quantization form through use of the transforma-
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tion

ex = — (B' +B),
2mQ,

emn 'I '~'. emn.

where

[B„BJ,]=6„,.
This procedure leads to a free energy

&1- 6Cz+12m' 1F=F,+ g ~
(1 —cosq)-2p, F,

2

+ Q(1 —cosy) —'
i

+N(-,'X' —CX'+ m'),

where / and E, are given in pgz units and
(17)

We remark that, through the transformations

vo~ Cp ~ (1T /24vo)cp q

~3/2
8 4n'8, Cg,„2C)„

zsV0

C —2~wc,

&,- (2An )~„
the above relations exactly re'produce the ones we
obtained in Sec. If.

Iy. SPECIFIC HEAT

Introduction

I.et us now calculate the constant-"volume" spe-
cific heat C„for both the single-oscillator and the
linear-chain cases. Within the variational ap-
proximation it is

F=t p In[2 sinh(p, /2t)],

F,=(BtB,+ ',&, = ,'coth(p, ,/-2&)-,

v,,= n, /~-.

From the conditions &E/&p, = 0»d sF/s~ = 0 we

obtain

v, (p,
' —1+6' —12&.')

12B F . (~(P StPO') 0

v. (X —3CX'+ 4W')

12&. , V' sing
psinq coth—

(18a)

(18b)

As expected, these equations reproduce (15a) and

(15b) in the classical limit t -~. On the other
hand, in the limit t 0, we obtain

c„= (B), (20)

f svC„=u,~1--—,
v Bt (21)

where we have used (10a) and (10b). Note that the
thermal expansion enters only indirectly, through
its influence on v(t). Furthermore, if v monoton-
ously increases (with f), then C„monotonously de-
creases; if v presents a minimum (see Fig. 2a),
then C„presents a maximum (see Fig. 4). Its
asymptotic behaviors are

1 —3C'/4B
C„-~hei(1+

(1 ),~, t '~') (22)

Single oscillator

Within classical statistics, expression (20) may
be rewritten as follows

24a

Rgb',

p, (p,
' —1+6CX —122k') - + (19a)

in the limit t -~, and

C„-he[1 —(6B-9C')f ] (22')
6c- 24m ~(c- 4~.)&.

p, (X —3'.'+ 4Eh. ') + 2 f )
~0

(19b)

where we have used the quasicontinuum limit
(N-~) These e.quations lead to

0+ Cp t ~ ~0+ Cgt

with

V.o(pp 1+ 6CX0 —122@0)=24B/7/ )

g, (Z, —3'', +4m,') = (6C-24m, )/n,

s'[2'.' —3(C —4En. ,)']
2p, [gg', (V,', +12B/s) -18(C-4',)'] '

m'(c —4m. )
2[my'(V'+ 12B/n) —18(C—42K,)']

in the limit t 0.

C

FIG. 4. Thermal behavior of the classical specific
heat. a: 1&g(C /B) &2; b: y (C /B) & 2; c:p(C /B}9

(1.
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B& ~~C
C2

4

FIG. 5. Thermal behavior of the quantum specific
heat for both cases B ~ ~ C .

The discussion of these asymptotic behaviors
leads to three different cases (see Fig. 4). Within
quantum statistics, expression (20) becomes

8 V
C = =k v —coth-

ef, 2t

where we have used (1la) and (lib). The a.symptotic
behavior in the limit t -0 is

C„-4v, (e 'o/& /t ),
while in the limit I;-~, it is still given by ex-
pression (22) (see Fig. 5).

Linear chain

The classical specific heat for this case is given
by

FIG. 6. Thermal behavior of the quantum specific
heat of a linear chain for both cases B~ ~ C .

u. - p,,+ C„t4" (t -0)
~~ tl/4 (t ~)

(27a)

(27b)

where C„is related, for any value of d~ 1, to C,
through a transformation similar to the one we
exhibited in Sec. III C.

V. DEBYE-WALLER FACTOR

the well-known h~xrnonic Debye case. At high tem-
perature, all cases (for any value of d) are expect-
ed to present the same type of asymptotic beha, -
vior. I et us conclude by saying that these con-
sider ations lead to

C„=Nk~ 1--—t apl
dt j. (24)

I et us recall that the amplitude of scattered x-
rays (and other similar beams) is given by

which differs from the single-oscillator case
only by a factor N. In the quantum case we ob-
tain, through use of Eqs. (18a) and (18b),

C = k p,
— sin —coth —san-d'

Bt 2 t 2
(25)

Clearly, expression (25) reproduces (24) in the
classical limit. On the other hand, in the limit t
-0, we have

e ~=(exp[iK (u,. —u, )]), (28)

where K =k —k' is the scattering vector, u,. is the
displacement of the jth atom from its equilibrium
position, and (. . .) denotes the thermal canonical
average. In any qua, siharmonic approximation the
proba. bility distribution of the displacements is
Gaussian in both classical and quantum treatments
(see, for example, Ref. 27). Hence (see for ex-
ample Ref. 28),

C„-(Nnk~/3p. ,)t . (26) e "=exp[——,'([K (u,. —u, )]'),), (28')

The temperature dependence of C„is shown in
Fig. 6.

If we compare Eqs. (lla) and (lib) with (18a) and

(18b) we observe a great similarity between them.
The difference consists in the fact that, while in
the first case (single oscillator) the temperature
dependence appears explicitly in the unique coth
term; in the second one (linear chain), it appears
through an integral on coth terms. Therefore it
is clear that for a d-dimensional crystal we shall
obtain a d-dimensional integral over the same type
of coth terms. Hence, in the limit t -0, the as-
ymptotic behavior (26) will become C„~t~, as in

where now (. . .), denotes thermal average with a.

Gaussian law. Within the variational treatment we
are dealing with, we obtain

~=~If'&(u~ -u, )').=
6 Q&ls, l'/. ,

3 Kk T
2 mu, [e(Z)]' .,

e(r &/r t 1
(28)

e —1 2f

where we have performed a Fourier transforma-
tion. Within the quasicontinuum limit and the Deb-
ye approximation, we obtain for d= 3 (see also
Ref. 24)
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w'

FIG. 7. Thermal behavior of the quantum Debye-
Waller factor of a three-dimensional crystal in both
harmonic (dashed line) and anharmonic (continuous line)
cases. G."might be greater than Q. (as in this figure)
or not, depending on the values of B and C.

where m is the mass of the atom and O(T) is the
thermally renormalized Debye temperature.
Therefore, the anharmonic influence appears ex-
clusively through e(T), which is given by

8(T) = ~ = MaqD(op, (T),
an (T)

k~
(3o)

where a is the characteristic crystalline parame-
ter, Q~ is the Debye frequency, and qD is the Debye
wave vector. By using relations (27a), (27b), (29),
and (30) we finally obtain

w- —'(K'ia'q )(sk ib)' 2T' '

in the limit T-~, and

W-o+PT'+yT'

in the limit T-o, where

3K 5
].6maga~po ' 96mha @DE po po

In Fig. 7 we present typical harmonic and anhar-
monic Debye-%aller factors as functions of tem-
perature.

VI. CONCLUSION

The purpose of the present work was to study
the influence of (cubic and quartic) anharmonicity
of real crystals on the thermal behavior of some
relevant physical quantities [constant-volume spe-
cific heat, thermally renormalized Debye tempera-
ture (8), Debye Wailer factor (-W), crystalline ex-
pansion, phonon spectrum]. The calculations were
performed within the framework of the variational

method in statistical mechanics, which in a rela-
tively simple and unified manner provides the ther-
mal dependence, for the sohole range of tempera-
tures, of the above quantities. Precisely, our
methodology consisted in first presenting the sin-
gle-oscillator case, then the linear chain, and fi-.
nally we generalized some of our results to d-di-
mensional monoatomic crystals. Because of our
harmonic choice for the trial Hamiltonian, most
of the physical quantities were given, as functions
of temperature, by relations formally equal to
those customary for the purely harmonic case,
and the anharmonic influence was mainly absorbed
into the renormalization of 0(T).

For what concerns the low-temperature regime,
the present treatment succeeded in providing
forms of e(T) which qualitatively fit well experi-
mental data. In particular we obtained (for a. de-
fined region of the space of the harmonic and an-
harmonic elastic constants) the minimum of O(T)
which is typical"~ of Cu, Al, Ag, Au, and Pb.

For the intermediate-temperature regime, we
obtained the customary (Refs. 7, 12, 14, 18, 23, 29)
linear dependence of the W and I' factors [in
other words, e(T) approximatively constant].

Finally, in the high-temperature regime, the
present treatment leads to a ~T dependence for
for the 8' factor, which implies the sarong curva-
ture when comparison is made with experimental
results for Al (Ref. 12) and Na (Refs. 23, 29).
Nevertheless, let us point out that the high-tem-
perature regime practically coincides with the
region just below the melting point where the
phase-transition effects, not included in the pre-
sent treatment, are expected to be important (in
the sense of accelerating the increase of the 8'
factor with temperature). More precisely, Al and
Na were, respectively, studied"'"'" in the regions
300-900'K and 100-370'K (we recall that their
melting points are, respectively, 933 and 371 'K).
Furthermore, it is significant that several other
substances (which were observed in regions rela-
tively far from their melting points) did not deviate
from the linear increase of W(T); namely, Cu [ob-
served in the 300-900 'K region (Ref. 12); melting
point 1356'K], Au[300-900'K (Ref. 12); 1336'K],
I"e [200-1100'K (Refs. 18, 23, 29), 1809'K], Mo
[100-500 'K (Ref. 23); 2890 'K], and Cr[100-500'K
(Ref. aS); 21SQ'K].
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