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Theory of the quantum diffusion of parahydrogen impurities
in solid orthohydrogen
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The hopping of parahydrogen impurities in solid orthohydrogen due to resonant conversion
processes of para-ortho into ortho-para pairs is investigated theoretically both in the ordered and

in the disordered phase. At temperatures below the transition temperature To the jump fre-

quency is predicted to be about four times larger than for ortho impurities in solid parahydrogen

at the same impurity concentration. The effect on the hopping of the distortion of the ordered
state by the impurities is taken into account, and the cohesive and interaction energies of the

impurities are calculated. In the disordered phase the jump frequency is about two orders of
magnitude smaller than below To, and the quantum diffusion of the para impurities is expected

to be negligible above To.

I. INTRODUCTION

The diffusive, hopping motion of orthohydrogen
impurities in solid parahydrogen has been investigat-
ed in the temperature range 1,2 ( T ( 4 K by NMR, '

thermodynamic, infrared, and microwave tech-
niques, and has been interpreted' as due to succes-
sive conversion processes of nearest neighbor (NN)
ortho-para into para-ortho pairs. These "resonant"
conversion processes leave the total rotational energy
of the molecules and the ortho-para concentration ra-
tio, c, unchanged and involve no emission or absorp-
tion of phonons. The resonant conversion rate, and
hence the jurnp frequency of an ortho excitation, is
proportional to the square of the relevant matrix ele-
ment of the magnetic interaction between the nuclear
spins in the ortho-para pair, and falls off with the in-
verse tenth power of the separation of the pair. ' The
process is therefore effective only for NN pairs, the
relative probability of a NN jump being 96'/0. Since
the hopping is not due to a thermally activated pro-
cess and persists down to the lowest temperatures,
but is nonetheless a pure random-walk process, ' it is
called quantum diffusion.

Apart from the rotational energy an ortho impurity
in solid parahydrogen has a negative energy of about
1.1 K compared to the para molecules, which arises
from the polarization of the neighboring molecules
by the electric quadrupole field of the impurity. Pairs
of NN ortho impurities in their ground state have an
additional binding energy of about 3.4 K, and the
equilibrium distribution of pairs and singles therefore
changes appreciably below about 4 K. In the spectro-
scopic experiments the change in time in the total
number of singles or pairs in the sample is measured
after imposing a sudden change in the temperature,
by monitoring the intensity of a spectral feature iden-
tifiable as a single or pair feature, respectively. The

observed overall approach to equilibrium is accurately
exponential and a reaction time constant, ~, can be
defined, which has values in the range 1 —10 h for
the temperatures and concentrations (0.2 —1.8'/0) used
in these experiments.

Theoretically one can readily calculate from first
principles the average jump frequency of an ortho ex-
citation, but the derivation of an accurate relation
between v and 7 is more difficult because of the
complexity of the kinetics of the reaction and of the
pair formation process which requires an exchange of
energy with the lattice. From a comparison of theory
and experiment one can, however, conclude that the
characteristic properties of the quantum diffusion of
orthohydrogen impurities in solid parahydrogen are
(i) that the jump frequency is reduced as a result of
the tumbling motion of the ortho rnolecules due to
the electric quadrupole-quadrupole iEQQ) interaction
between them by a factor of order 10', (ii) that the
temperature dependence of the jump frequency is
weak as long as the temperature does not fall below
the width of the librational band (about 0.1 K at
c =1/0), and (iii) that the observed stronger tempera-
ture dependence of v must be ascribed to the pair
formation or dissociation process. Property (ii) can
be expected to change if the ortho molecules become
ferromagnetically aligned at low temperatures because
of a phonon mediated interaction, as has recently
been suggested. '

In the present paper the complementary problem of
the quantum diffusion of parahydrogen impurities in
solid orthohydrogen is studied theoretically, both in
the ordered and in the disordered phase. The charac-
teristic differences in the properties of para impurities
and ortho impurities in the two concentration limits
are the following. A para impurity in ordered ortho-
hydrogen has an extra positive energy of about 11 K,
compared to the host molecules, because of the bro-
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ken EQQ bonds with its neighbors. A pair of NN

para impurities has a binding energy of about 0.9 K,
compared to 3.4 K for ortho pairs in parahydrogen in
their ground state, and at a given temperature the
equilibrium ratio of singles to pairs is quite different
in the two cases. Above the order-disorder transition
temperature To, which is 2.8 K in pure orthohydro-
gen, the jump frequency of a para impurity is two or-
ders of magnitude smaller than for ortho impurities at
comparable impurity concentrations, because of the
shorter orientational correlation time of the ortho
molecules at c =100% than at c =1%, and the quan-
tum diffusion is essentially negligible. Below To the
tumbling motion of the ortho molecules plays a minor
role and the jump frequency at vanishing impurity
concentrations is determined by the precessional mo-
tion of the nuclear spins of the ortho molecules. At
finite concentations the effective interaction energy
of the para impurities creates an energy mismatch
between the inital and final state of a hop and the
jump frequency is reduced by many orders of magni-
tude. The resulting quantum diffusion is predicted to
be about four times faster than for ortho impurities at
the same impurity concentration.

In Sec. II we formulate the mean-field theory of
the perturbation of the ordered state of solid ortho-
hydrogen by the para impurities and we discuss the
binding and interaction energies of the impurities and
their dependence on the temperature. In Sec. III we
present the calculation of the jump frequency of iso-
lated impurities at low temperatures in terms of the
nuclear-spin-correlation time and the overlap factor
arising from the distortion of the orientational ar-
rangement of the surrounding ortho molecules, and
we discuss the effect of the mismatch in energy aris-
ing at finite concentrations from the interactions
between the impurities. In Sec. IV we calculate the
reduction of the jump frequency by the tumbling mo-
tion of the ortho molecules above the transition tem-
perature. In Sec. V some remarks are made about
the approach to equilibrium, and Sec. VI contains the
main conclusions.

formed into any other one by an element of the
space group of the crystal. Each molecule has six
NN's in a plane perpendicular to its symmetry axis
(plane 0) and three in each of two planes on opposite
sides of plane 0 (planes 1 and —1), and those will be
called in-plane (ip) and out-of-plane (op) neighbors,
respectively. We choose plane 1 for all the molecules
such that the view of plane 0 from plane 1 is as
shown in Fig. 1, where the arrows are the projections
of the symmetry axes of the molecules in plane 0
onto plane 0. The view of plane 0 from plane —1 is

different, and we can therefore assign a definite
sense to each symmetry axis, which we choose in the
direction from plane 0 to plane 1 for each molecule.
Keeping this in mind, we label the sublattices and in-

troduce local coordinate frames in the following way.
Select an arbitrary molecule 0 as "central" molecule.
All the molecules with the same symmetry axis form
an sc lattice which we choose as sublattice 0. Choose
a "fixed" coordinate frame S(X, Y, Z) with origin at
the site of molecule 0 and with axes along the cubical
axes of the crystal such that the symmetry axis of
molecule 0 is in the [111]direction (and not in the
[111]direction). The symmetry axes of the four
NN's (1,2,3,4) of molecule 0 in the XY plane are
then in the [111]direction relative to S, and all the
molecules with that same symmetry axis form sublat-
tice 1. The four NN's (5,6,7,8) in the YZ plane have
their symmetry axes along [111]and belong to sub-
lattice 2, and the four NN's (9,10,11,12) in the ZX
plane are aligned along [111]and belong to sublattice
3, of Figs. 2 and 3. At each site jwe introduce a lo-
cal frame s&(x&,y&, z&,) with z& in the direction of the
oriented symmetry axis of molecule j. The x& and y,
axes need not be specified, except that all frames are
to be right handed. Finally for each pair of molecules

Jl
l2

II. MEAN-FIELD THEORY OF THE ORDERED
STATE PERTURBED BY IMPURITIES

Pure orthohydrogen in the ordered phase has the
Pa3 structure' ' consisting of four simple cubic
sublattices (0,1,2,3) on a fcc lattice, with the sym-
metry axes of the molecules aligned along the four
body diagonals of the elementary cube. Here and in
the following "the symmetry axis of a molecule"
refers to the symmetry axis of the charge distribution
of the molecule in the ground state, not to be con-
fused with the internuclear axis of the molecule. All
the molecules in the crystal occupy equivalent posi-
tions in the sense that each molecule can be trans-

FIG. 1. The six NN's of molecule 0 in plane 0 and their

symmetry axes, as seen from plane 1. The arrows all point

downwards. The symmetry axis of molecule 0 is perpendic-

ular to the plane and points upwards, cf. Fig. 3.
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FIG. 2. The 12 NN's of molecule 0, and plane 0 (even
molecules), plane 1 (molecules 1,5,9) and plane 1

(molecules 3,7, 11). The symmetry axis of molecule 0 is

perpendicular to these planes and along the t111] direction.

cg = mI p((R k)(Rp/R k)
10

(2)

Rp being the NN separation, II:(R,k) the phonon
renormalization factor, I'p = (6Q'/25Rp ), and ap = 6,
a+1= —4, a+2=1, For the various parameters we

0
adopt the most recent values, ' Ro=3.784 A,
I"0=0.6634 cm ', ((Ro) =(~4=0.899, and ((R&k) =1
for R,k & Ro, so that the renormalized NN coupling
constant is

rnolecules j and k in s&k are denoted by p&, 0.
&

and

Pk, ak, respectively, and for the 12 NN's of molecule
0 corresponding to j =0 and k-1, . . . , 12 these are
given in Table I.

For the anisotropic intermolecular interaction we
assume the EQQ interaction, averaged over the
zero-point lattice vibrations but neglecting the nonax-
iality of the pair distribution function, which is given
b 13

+2

HJI, = cjk X a Y2 ((u, ) Yg ( pIk)

where

r -=g,4r, =0.5964 cm '=0.8581 K (3)

j,k we introduce an "intermolecular" frame s,.~ with z

axis along the line from j to k.
The polar angles of' the internuclear axis of

molecule j relative to an intermolecular frame are
denoted by (g, , $&) = pI, , in the local frame at j by

au, , and in S by 0&. Primes generally indicate quanti-
ties referring to local frames, ~10'), for example be-

ing the rotational state of molecule jwith wave func-
I

tion Y10(~&). The orientation of molecule j will also
be denoted simply by j, as in p( j), whenever con-
venient. The polar angles of the symmetry axes of

The neglected anisotropic interactions are of the or-
der of a few percent of the interaction (1) and may
be neglected in the present context. For example, if
the anisotropic &an der %'aals interaction between
NN's is included, a term —, e4 must be added" to I
which then changes in value from Eq. (3) to 0.5743
cm '.

%'e first consider T 0 K. In the mean-field
theory" the rotational wave functions of a crystal of

TABLE 1. Polar angles of the symmetry axes of the NN

molecules 0 and j in Fig. 2 in the intermolecular frames.

cos(e& —ao) —( 3
) for all j.

NN type j (2)' cosp() (2)' cosp& (2) sin(0~ —oo)

+1
+1
+1

+1
+1
+1

+0
2

6
10

—1

—1

—1

+1
+1
+1

FIG. 3. Symmetry axes 0, 1,2,3 assigned to the sublattices
0, 1,2,3. The molecules 0,1,5,9 belong to the sublattices
0, 1,2,3, respectively. Cyclic permutations of 1,2,3 yield
identical structures, but noncyclic ones do not.

—0
4
8

12

3
7

11

—1

—1

—1

+1
+1
+1

—1

—1

—1

—1

—1

—1
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N orthohydrogen molecules are assumed to be pro-
ducts of the form

N
q((o) g 4, (o)( .

)
J 1

where

[++U (j) jy (J) =~ y (J)J "J

Introducing an auxiliary ortho wave function for
molecule i of the form

4);(i) = g c„Y(„(o); )

we can write Eq. l, l4) in the form

U;(j) = $ &4( &k) I Hi( l(II (k) )—
&(tf, (i) I HJI I(k (i) )

(is)

K is the (constant) rotational energy and U'o'(j) the
mean potential energy of molecule j,

(6)
k

where H~j 0 and H&k is the EQQ interaction (I).
The self-consistent solutions of Eqs. (5) and (6) are"

4(o)(i) = Y(„(~,)

which is independent of the choice of the coefficients
c„ in the definition (15). Choosing c+( =0, we get

U;(j) = U (j) + V (j)
where

U(i)=$&q (k)I&ply, (k)) . 4 (i) =4t"(i) .

and
The ground state corresponds to all pJ =0. Using the
result that for any intermolecular axis one has

&Io'12m
l
10') =

& Y(o( (op) I Ytm( o) g) I Y(o( o)J ) )

= —, Yp (pg, ag),2 (

v(J) = —&eV'(i) I &pl4&" (i) )

and Eq. (10) then becomes

[+ + U(J) + ~ (j) jy (J) = +y;(j)

(19)

(20)

In the first excited state one of the molecules is in
the state (7) with p, =+1, and this state is 2N-fold
degenerate. From Eq. (9) and the fact that trH&k

=0, one finds that the excitation energy is equal to

d. E =19r+—,
' J2r, + =21.75r (io)

The third- and higher-order shells together contribute
only about 1% to hE, and will be neglected through-
out.

In the presence of a single parahydrogen impurity
at site i, the wave function will be

+= Yoo(i) Q(1);(J)

where

one easily verifies the well-known property" that the
energy of the pair jk in the ground state is equal to—„ times the energy of classical quadrupoles aligned

along the symmetry axes of the molecules,

&
lo', Io'l H,„lIo', I o'&

=
t5 cjk Xa Y2 (pj, a~) Y2 (po, ,'a„) . (9)

These equations no longer present a self-consistency
problem, since U' and V; are known functions of
the orientation of molecule j, and we can therefore
solve Eq. (21) by' ordinary perturbation methods.

The first-order change in the energy of molecule j
in the presence of an impurity at i is

EJ"=
& y]"(J) I V, (j')

I y()"(/) )

=- &Io, io'lH„llo, lo ), (22)

and the values of this quantity for the molecules in

the first two shells around i are

If the term V~(j) is neglected, Eq. (20) reduces to
Eq. (13), and the ground-state solutions are then
given by Eq. (7) with p. =0. The perturbation of the
surrounding molecules by the para impurity is actually
very small, and V;(j) may be treated as a small per-
turbation term. One easily sees that the term U(j)
in Eq. (20) differs from U(o)(j) at most by second-
order terms, and Eq. (20) may hence be approximat-
ed by

(It +U'"(i)+ V(j)j4(;(j) =Ey;(j) (j «) . (21)

+1

(I);(j) = X a„, Y(„(s),') (12) EN = —,", r, Ekd, = —,', iver, (23)

is a solution of the equation

(It.'+ U;(j) l p;(j) - E4);(j) (j «)
and

U;(j) = $ &(I(;(k) lH&kl4I;(k))
kAi

(i3)

(14)

The second-order change in the energy of molecule j
due to the perturbation V;(j) is

E„= , l &lo, lo -IH,,lIo, I„)I, &24)
1

where hE is given by Eq. (10). The sum in Eq. (24)
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is most easily evaluated by adding and subtracting the term corresponding to p, =0 and using the invariance of
X„~lg') (1p, ~

under a change of axes. For the NN's we get in this way

E (2)
IJ

+1 I

g )(1O', 10'[H„)10',1»)' + '9
-1 18 hE {25)

Letting p, refer to the intermolecular frame sJ, we have

r ' 1/2

(10', 10'(Hp(10', 1p) =
5 QC(211;mnp) Yt~(P;, a;) Y, q(P, , a, )

INII
{26)

This quantity has a different value for the ip and op
neighbors of molecule i, and from Eqs. (25) and (26)
we get

Proceeding as for a single impurity, we find that the
first-order change in the energy of molecule j Ai, i' is

equal to the sum of two terms of the form (22),

301 I 2 196 I'
@ (tp) = Et' (op) =— E (1) E (1) + E (1)

I J
(30)

(27) and that the second-order change is given by

Assuming that the isotropic interaction between
ortho-para and para-para pairs is the same, the excess
energy, ~;, of a para impurity in solid orthohydrogen
at T=O K is

AE „+1
(31)

a, =12EN'„' +6E„"„'„+6E„'P(tp) +6E„' N(op)

3s F
742 F 497 1'

6 27 hE
(28)

Using Eqs. (3) and (10) we obtain from Eq. (28) the
value ~; =8.14 cm ' =11.7 K for the excess energy in

the mean-field approximation.
hen one goes beyond the mean-field theory, the

excited level corresponding to p, = +1 broadens into a

librational band, " "and this effect tends to decrease
the effective value of 4E in Eq. (24), Reducing hE
by as much as a factor of 2, changes the value of ~;

to 11.0 K, and the true value of e; at T =0 K can
hence be expected to lie between 11.0 and 11.7 K.
The broadening of the excited level is accompanied
by a slight lowering of the ground-state energy and
an admixing into the ground state of excited states
containing two or more librational excitations. ' This
"zero-point" effect, familiar from the theory of anti-
ferromagnetism, reduces the long-range order param-
eter, defined in Fig. 4, at T=0 K by about 2'lo. ' Mi-

yagi has also calculated the binding and interaction
energies of the parahydrogen impurities including the
zero-point effect which he finds to be important for
pairs of impurities at larger separations. However,
for our present purposes we may neglect these effects
and confine ourselves to the mean-field theory,

%hen a pair of para impurities is present at the sites
i and i ', we assume, a wave function of the form

~here

a;, (p, ) = (1p, ', 10'~ H;, ~10', 10') (32)

1.0

'o I I I I I

T/Tp

The sum in Eq. (31) is not simplified by adding the
term p, =O, and the quantities (32) must therefore be
calculated explicitly, which is most easily done by
transforming all the wave functions to the inter-
molecular frame. The quantity of greatest interest is
the effective interaction energy of the impurities,
which is equal to the total energy of the crystal minus
the energy when the two impurities are far apart.

'P = Ypp(i) Ypp(i ') g P,, (I') (29)
3

FIG. 4. Long-range order parameter s = (I —
2
J, ) as a

function of T/To according to the mean-field theory (Ref. 11).
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$ Re[a', (p)a~(p)]
Jxi,i' &

(33)

Restricting the sum over j to the four common NN's
of i and i' (j =6, 7, 9, 10 for i =O,i'=4), we find that
the last term in Eq. (33) almost cancels the second
and third terms [note the difference in sign of the
cross term relative to the direct second-order terms in

Eqs. (31) and (33), respectively]. Using Eqs. (23) and

(27), we get from Eq. (33)

a„,(a) = ——„I'+ „I'//t F. — (34)

For the mean-field value (10) of /tE this yields
&,(a) —0.87 K, and reducing AF. by a factor of 2

gives —0.85 K, so that the true value is close to
—0.86 K.

We now consider the temperature dependence of
the energies (28) and (33) in the mean-field theory.
According to James and Raich" the self-consistent
states for pure orthohydrogen at a finite temperature
are still given by l

I p, '), p, =0, +1, but these states are
now occupied with probabilities Pp=1 —p and P&- P t

= —p, where p( T) is obtained by minimizing

the free energy. The resulting long-range order
parameter s =1 ——,p is sho~n in Fig. 4 as a function

of T/Ta, where Ta is the transition temperature
which experimentally has the value Tp =2.8 K.' It is

1

seen that s is practically constant up to T =
2 Tp and

then falls rapidly to s =-, at T = Tp, where a first-

order transition occurs. " In the mean-field theory
the energies per molecule and per bond are propor-
tional to s'. As far as the first-order contributions
are concerned, the energies (28) and (33) are also
proportional to s'

~ In first approximation the excess
energy (28) of a para impurity, and the interaction en-

ergy (33) between two NN impurities, are thus con-
1

stant up to about T =
2

Tp and then fall to one-fourth

of their values as T increases to Tp. These estimates
suffice for our present purpose, and we shall not at-
tempt to calculate the temperature dependence of the
second-order terms.

This quantity has the same value for all NN pairs and
is given by

e„,(a) = F. (a) —E,(~)

pared to the interaction energy of the nuclear spins in

neighboring molecules. The probability of a resonant
conversion process, in which the para molecule con-
verts into an ortho molecule and one of the neighbor-

ing ortho molecules into a para molecule, is deter-
mined by three factors, viz. (a) the matrix element of
the relevant part of the magnetic interaction between
the nuclear spins in the two rnolecules, (b) the over-

lap factor arising from the change in position of the
impurity, and (c) the reduction factor due to the fin-

ite correlation time characterizing the precessional
motion of the nuclear spins. The calculation of these
factors is presented in Secs. III A, III B, and III C.

At finite impurity concentrations the energy of the
crystal is different before and after a jump of one of
the impurities because of the change in the total in-

teraction energy of the impurities caused by the
jump. The resulting jump frequency depends strong-

ly on the configuration of the surrounding impurities.
At an impurity concentration of 1% the average jump
frequency is reduced by this energy mismatch by

many orders of magnitude and becomes independent
of the nuclear-spin-correlation time. These effects
are discussed in Sec. III D.

A. Conversion matrix element

at =(70)' (f y I r /12R ) (36)

We use the same notation as in I (Ref. 7) except for
the replacements (~~ (54 and a Rp, and the fact
that the initial and final states are interchanged. In
the present case the initial and final rotational states
of the converting pair are

li& = 100) tl»'&2, If) = I»'&tl00&2 (37)

We neglect the perturbations in the states l10')t and
l10') t due tc, the presence of the impurity and we

take these perturbations into account only in the
overlap factors arising from the surrounding
molecules. Transforming the states (3'7) from the lo-

cal frames to the intermolecular frame, we obtain

The interaction responsible for the transition of a

pair of NN molecules 1,2 from a para-ortho to an
ortho-para state is given by

V=12@at $ d, , Yt~( cut) Y ~(cot)K)„K

(35)
where

III. CALCULATION OF THE JUMP FREQUENCY
IN THE ORDERED PHASE

We first consider a single para impurity in a crystal
of orthohydrogen at temperatures ( T & 1.4 K) which
are effectively zero as far as the orientational motion
of the molecules is concerned but infinite as com-

Ktp—= (fl Vli ) $d Kt„K2 ~

where

(38)

(39)
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When the nuclear-spin states of molecule 2 are equal-

ly populated with random phases, the quantity ap-

pearing in the calculation of the jump frequency is

8'0= —, $ I(ln), 00IKg tI00, Int& I'
n1n2

Using Eq. (39) and the expression (1.18)' for d

we find that Wo has the value

(40)

II, =-,' XId, I'= —,", ,,
I

nn

for all NN pairs. For NNN pairs the value of Eq.
(40) is a factor 25 smaller than Eq. (41) and may be
neglected.

(41)

B. Overlap factor

I4;(i) & =N& IIo'&, +a g a&(p) Iip'&,
~m+1

(42)

where a = I/hE, and a„"(p,) is defined by Eq. (32).
Using Eq. (24) we can express the normalization con-
stants N;, in terms of the second-order energies,

1/2

N,&= I +a $ Ia,&(p, )I2 =(I —aE.'. ')
pm+1 (43)

When the impurity hops from site i to a NN site i',
the orientations of the surrounding ortho molecules
change by small amounts, and we now calculate the
total overlap factor involved in such a transition.
The perturbation in the orientational states of the
ortho molecules surrounding an impurity are different
for the ip and op neighbors of the impurity, and the
question arises whether the probabilities of hopping
to the 12 NN's are the same. That this is indeed true
can be seen using the time reversal and space sym-

metries, as we now show. As is evident from Table

I, there are four different types of NN jumps which

we label in the same way as the NN's. For example,
a jump from j =0 to 1 will be called of type +1. Be-
cause of time-reversal invariance the jump probability
from j =1 to 0 which is a jump of type +0 is equal
to that from j =0 to 1. The square of the matrix ele-
ment of the nuclear magnetic interaction is the same
for these two jumps, because the corresponding
operator is Hermitian, and the total overlap factors
for jumps of the type +1 and +0 must therefore be
equal. Because the site j =0 is a center of inversion
symmetry of the crystal, the jurnp probability from

j =0 to 1 is equal to that from j =0 to 3 which is a

jump of type —1, and both the square of the matrix
element and the overlap factor must be equal for
jumps of the type +1 and —1, and similarly for
jumps of the type +0 and —0. The squares of the
matrix elements and the overlap factors are therefore
the same for all 12 NN's.

The state of molecule j perturbed by the impurity
ati is given by

and for the ip and op NN pairs we therefore get from
Eq. (27)

' -1/2
301 r'
162 AE

t -1/2

+ 196
162 AE

(44)
The total overlap factor is given by

F = II (&, (. ) I «( ) )= II N N, JA
J Wl, l J

where

,f&
= I + a' $ a ', (p) a,,(p)

+1

(45)

(46)

These quantities are appreciably different from 1 only
for the four common NN's of i and i', and labeling
these by k, we get from Eq. (45)

F =(N;,N„)'t g f„
k

(47)

when j is an ip NN of i of the type —0 or +0, respec-
tively, and

a&(1) = —a&'( —I)=+ —I (443+i ) exp(i y& ), (49)

when j is an op NN of i of the type +1 or —1,
, I , , I

respectively, and y,"—y,' '= y~' is the angle of rota-
tion around z, from z;, to z, . Taking i =0 and i ' =4,

I J
we have k =6, 7, 9, 10, cf. Fig. 2, and using Eqs. (48)
and (51) we obtain

fk = I + ck( I'/hE )

where

217 239 49 301

162 ' 162 ' 81 ' 324

(50)

(51)

and these results have also been used to obtain Eq.
(34). Using Eq. (10) we obtain F'=0.93 and reduc-
ing AE by a factor of 2 gives F'=0.77. The reduc-
tion of the jump frequency of a para impurity in or-
dered orthohydrogen due to the overlap factor is pro-
portional to F' and hence amounts to about 15%.

C. Reduction effect due to the nuclear
precessional motion

The ground rotational state of solid orthohydrogen
is nondegenerate and at low temperatures the
random-walk nature of the hopping of a para impurity
and the time proportionality of the transition proba-
bility arise from the precessional motion of the nu-
clear spins of the ortho molecules, which broadens the
ground state into a narrow nuclear-spin energy band.

For the four different types of NN pairs, the ampli-
tudes a„(p,) have the values

a&(1) = —a&'( —1)= ——I ( —+i J3) exp(i y&"), (48)
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Let a be the arrangement in which the impurity is on
site i =1, and o.

'
the one in which the impurity is on

a NN site i'=2. The Hamiltonian of the spin sys-
tems of the ortho molecules in the arrangements e
and o.

'
are given by

It is clear that in this expression we may put

1 av) = lOO, In, , In,

la'v') = lInt', 00, 1n3, . . . )
(57)

H~=
2 X Mjl„H i= I $ Mjk

jk &1 jk W2

where

(52)
We assume that the correlation function (57) is
Gaussian,

-(I/~ )2/2K,{I) =K,(0)e (5s)
I

Mjk = $ Mj~g" lj„l„, (53) which is a natural assumption for a spin system of
this kind, and we then get

is the magnetic dipole-dipole interaction between the
total nuclear spins Ij and Ik of rnolecules j and k,
and

and

W I = (2m ) ' 'h 'K, (0)Toaa aa

ro=[ —K,(0)/K, (0)] 'j'

(59)

(60)
I

Mjk = poC {I 12;pj')tY I ( 0jk)/Rjg (54) From Eqs. (56) and (57) we obtain

In terms of the eigenstates lav) and la'v') of H
and H, respectively, the total probability per unit

time for transitions between e and a' is given by

IY =2nt ' XP „ l(
a'v' Klt2lav) 'lg(g, , —g )

I

,(0) = W, = —,", &2, (6&)

and

t K— , (0) = —g( —I)"d, (1n, ool [ Ftt }l00, 1n )'
NN (62)

where

+oo

=II 2 K,(r) draa (55)
F[2 = H IK)2 2H jK[2Ha + K)2Ha (63)

where P „=3 "+', K~2 is the spin-conversion opera-
tor (38), and

K,(j) =3 n" g (avlKt2la'v')

IH It
x (a'v'le Kt2e lav) . (56)

and the curly brackets indicate an averaging over all

orientations of the spins of molecules 3,. . ., N,

[A }=3 + g (In3. . . , ,1nnlA l ln3, . . . , Inn)

(64)
Using Eq. (52) and

(65)

we get

Ir K —(0) = — g ( —I)"+ d d —[ 2
(Stt" +S&&") (In ll„l„l1m) (Im'lIn') —St2" (In ll„l 1m ) (Im'll„l ln') ]

II ' ' ' Ij

(66)
where

N ( I

Sv, " = X X(—1)~ Mf" M",~
II (J /

I

j~3 I

(67)

For i =i' we obtain from Eqs. (54) and (67),

5I o ~ C(22/ 000)
[4 (2l+I)]'I' P2I

i

where

(68)

SI =X YI (Qj) —Y( (I)t2)
j2 Rj

(69)

e values of ( in Eq. (68) are restricted to 0 and 2, and because of the cubic symmetry the lattice sum in the
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right-hand side of Eq. (69} vanishes for I 2.
Choosing the z axis along Riq, we therefore get

neighbors, the average time the impurity spends on a

given lattice site is rt (12v) '. Using Eqs. (61) and
(75) we obtain

Sf't" - [(So—1) ( —1)"& „-
5po

12mR 6 ]@V

—(
2

)'AC(112;A, v0)] (70)

vp=2. 43 x10~ s '

2(2 sr) '~'voTo 1.04 x 10-'

v=2.53F~ s '

(79)

where
'6

S,-X
R)

-14.454 (71)

Using the results

(1m(l„(ln) -2'IsC(lll;ntsm)

and

XC(121;n0n)(d, (
—( —,)' '

—,4 Wo (73)

where Ciq is the contribution from the last term in
Eq. (66). The sum in Eq. (67) for i Wi' is difficult
to evaluate and we have calculated only the contribu-
tion from the four common NN's of i -1 and i'-2
to this sum. The resulting value, Cia=1.4, contri-
butes about 5% to Eq. (74) and may hence be
neglected. Neglecting also the even smaller second
term in Eq. (74) we arrive at the final expression

ro - [16''t'(So I )/3Ro [ ' '—
,

for the relaxation time (60).
Following I, we write the transition probability (59}

in the form

, - 2 (2 sr) ' '( voro) vo, (76)

where

vo - [K,(0)/2t']' '

is the transition probability in the absence of the nu-
clear precessional motion, and 2(2sr) 'I'voro is the
reduction factor due to this motion. Including finally
the overlap factor F' calculated in Sec. III B, we ob-
tain for the probability per unit time of a jump of the
para impurity to a definite NN site the expression

we obtain

4

tsK, (0—) - [2(So—I) + ——Cts[ Wo9~R'7T p
74

(74)

where F' lies in the range 0.8—0.9. The quantities
(79) refer to the hypothetical case of a single para im-

purity in otherwise pure orthohydrogen, i.e., to
noninteracting impurities. The effect of the interac-
tion between the impurities is discussed in Sec. III D.

Thus far we have considered temperatures ( T
& —, Tp) for which the orientations of the molecu)es

may be assumed to be fixed, i.e., all the molecules to
be in the state (10'), and the transition probability

is then determined by the nuclear correlation

function K,(t), cf. Eq. (55), At higher tempera-

tures in the ordered phase ( T ~ To), we must con-
sider the total correlation function, G (r), involving

the nuclear spins and the orientations of the mole-
cules, and W is then given by Eq. (1.25) of Ref. 7,

W, =t 'Jj G, (r) dh

where

G, (r) - ( V, (0) V, (r) )

(80)

(SI)

v(T) =s(T) v(0)

where v(0) ~ v is given by Eq. (78).

(g2)

and ~is given by Eq. (35). At low temperatures,
G (r) decays from its initial value G (0) to zero

with a relaxation time ~p determined by the nuclear
magnetic interaction. At finite temperatures T ~ Tp,
the orientations of the molecules are characterized by
a long-range order parameter, s(T), shown in Fig. 4
as a function of T/To according to the mean-field
theory. The correlation function G,(r) decays from

its initial value G (0) to the value s(T) G (0) in

a time rg (( To determined by the EQQ interaction
between the molecules and then to zero in the nu-
clear relaxation time To given by Eq. (60). In the ex-
pression (80} for the jump frequency, we may neglect
the contribution from the spike around t 0 of width

~g and in the ordered state the jump frequency is
therefore equal to

p 2(2% ) '~t( voro) voF (78) D. Jump frequency at finite concentrations

This quantity will be called the jump frequency, to be
distinguished from the total jump frequency which is
equal to 12v. Neglecting the contribution of about
3% from the jumps to more distant than nearest

We first consider T 0 K. The effective interac-
tion energy between NN impurities was calculated in
Sec. II, cf. Eq. (33). At the relatively large separa-
tions realized at low impurity concentrations, we may
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a p
——(10', 10'J Hp J10', 10') =—( HI )

When the impurity i jumps to a NN site i ', the
change in the total energy is equal to

(83)

neglect the second-order contributions and the in-
teraction energy between these impurities (which will

now be called i and j) is then given by
(h /

)'= —I (0.231)c

and using Eq. (79) we get

2(2')' 'I( v/4p ) =0.73 x 10 'e ' '

(91)

(92}

ities, ' so that the jump we are considering is not the
last jump. From Eq. (90) we then obtain'

tcp = X ((H, ) —(H;, ))
. I

JWi, l

(84) At c =1% the average jump frequency (87) is then
equal to

where j runs over all the impurities common to the
configurations o. and a', and the jump frequency is
given by

+oo I cal I I

W, =f J K,(I)e dt

Ol I Tp/2
2 2

= (2')' ~f H pTpe (85)

rather than by Eq. (55). The quantity of interest is

the average jump frequency obtained by averaging
Eq. (85) over a suitable class of configurations a,
which also implies an averaging over the 12 NN sites

v= [ W, ) (86)

(~t(2)'= (~' ) (88)

At low impurity concentrations, c & 5%, the cross
terms arising when Eq. (84) is substituted into Eq.
(88) give a small contribution when averaged over e,
and we get

(fpptg)'= $ j (H, )'+ (Hp)' —2(H, ) (Hp) I
.IJfI i, l

(89)

The first two terms are equal after averaging over n,
and the last term may be estimated by neglecting the
difference in the directions of R;, and R. . In this

i ~

way we obtain, using Eq. (9),
'10

(g, ,)'=,Jx (H~)'I ' F,~X((R )
J

4', "
R;,

(90)

We are interested in the hopping frequency of single
impurities before pair formation, and we must there-
fore assume that the sites i and i' have no NN impur-

At any finite concentration the width of Eq. (85) is
very small compared to the width of the distribution,
P(cu ), of co and assuming the latter to be Gaus-aa aa
sian we obtain from Eqs. (85) and (86),

v = (24r) ' g Wp/4ptI2 = 2(2n )' (vp/4p&I2) vp, (87)

where

v =1.76 x 10~ s ' (93}

vp=4. 73 x 10

2(2~) '/'v«0 =1.02 x 10-',
v = 2(24r ) ' '( vpr0) vp = 0.48 x 10 s '

(94)

The jump frequency of para impurities in the ordered
phase is thus expected to be a factor of about 3 to 4
larger than for ortho impurities in parahydrogen at the
same impurity concentration. We remark that the
processes involved in these two cases are rather dif-
ferent. For the ortho impurities the EQQ interaction
is dynamic in the sense that in the initial and final
configurations, o. and u', the rotational level of the
crystal is spread out into an energy band. In a all the
states of the band are equally populated (except at
very low temperatures) and within the Heisenberg
uncertainty only horizontal transitions are possible.
This means that a hop occurs, for given n and a',
only when the randomly fluctuating orientations of
the ortho molecules are such that the hop will result
in no change in the total EQQ interaction energy.
This effect is described by the factor vpTg in Eq.
(94), where v g is the orientational correlation time of
the ortho impurities. On the other hand, for the para
impurities at low temperatures (T &

2 Tp), the in-1

teraction (83) between the impurities is purely static.
A given hop occurs only when, because of hops of
other impurities, the resulting configurations o. and
o.

'
have zero energy mismatch within the Heisenberg

uncertainty, and this effect is reflected in the factor
vp/4p&I2 in Eq. (87), where lr4p~I2 is the mean-square
static energy difference between u and n'.

At a finite temperature below Tp, the interaction
energy (83) is reduced by a factor s( T)', in the
mean-field theory to which we restrict ourselves here.
However, the quantity (85) can be shown in the
same approximation to be reduced by the same fac-
tor, and the jump frequency (87) is therefore expect-
ed to be roughly independent of the temperature
throughout the ordered phase. The mean-field

The corresponding values of these quantities for ortho
impurities in solid parahydrogen at an ortho con-
centration of 1%, obtained in I, but recalculated here
with the present best values of the various constants,
given above Eq. (3), are
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theory is, of course, not a very good approximation
for calculating interaction energies, and a more reli-

able calculation of the temperature dependence of the
various quantities determining the jurnp frequency
would require us to go beyond the mean-field theory.

IV. CALCULATION OF THE JUMP FREQUENCY
IN THE DISORDERED PHASE

H = —, XHgk, H = —XH)k
1 1

Jk Wl Jk A2
I

~here H&k is given by Eq. (1). The correlation func-
tion G,(t) is given by Eq. (81) with

(95)

iH rt iHV, (r) -P,e Ve P
aa a

(96)

where Vis the resonant conversion interaction (35).
At high temperatures ( T » To), we obtain from
Eqs. (81) and (96),

G,(0) =
erat X [d ('=4ef, (97)

and

Above the transition temperature Tp, the long-

range order disappears and the calculation of the ex-
pression (80) for the jump frequency is then similar

to that for ortho impurities in parahydrogen except for
the difference in the arrangement of the ortho
molecules. We give only an outline of the calculation
and we refer to I' for the details.

In the initial and final configurations a and 0.', de-

fined in Sec. III C, the Harniltonians governing the
orientational motion of the molecules are equal to
the total EQQ interaction energies between the H —1

ortho molecules,

„g„+(S„—12)r,560 1053 2 (102)

In the present problem where all the sites except
the impurity site are occupied by ortho molecules, it is
natural to assume that the correlation function (81)
is Gaussian. Denoting the resulting correlation time
by ~,

T = [—G (0)/G, (0))'A (103)

we obtain the following results in the high-
temperature limit (T » Tp),

vp=4. 73 x 10's '

2(2rr)' 'vor -1.59 x 10 ' (104)

v( ) =0 752 x 10 s ', t ( ) -31 h . (105)

The jump frequency in the absence of the EQQ in-

teraction, vp, ls of course the same as in Eq. (94),
but the reduction factor is seen to be two orders of
magnitude smaller than at 1% ortho concentration, as
was to be expected. As T approaches Tp from above,
the jump frequency can be expected to increase from
the value v(~) by perhaps as much as a factor of 2.
We have not calculated the temperature dependence
of v above Tp, but we can conclude that the quantum
diffusion of para impurities in orthohydrogen is essen-
tially negligible at all temperatures above Tp.

and

OO
' 10

X f(Rs) (3cos't)& —1)
J~3 (/,

—(54(3 cos 012 —1) = —2(5, (101)

since the sum over all j &i vanishes because of the
cubic symmetry. Hence we get from Eq. (99)

-a'G, (0) = (W, -2B,) ~', ,

where

(98) V. CALCULATION OF THE RELAXATION-TIME
CONSTANTS

2
'10

, =—",' r,'X gg(R,,)
R,J

x [1+ t94 (3cossgJ —1) 1

(99)

and B may be neglected. ' The sum over j extends

over all the ortho molecules common to the arrange-
ments a and e', which in this case implies

j 3, . . . , N. The two terms corresponding to i 1

and 2 in Eq. (99) are equal and can easily be evaluat-
ed with the result

OO
' 10

XC(Rs) 11kss4+ (Sto —12)
Jm3 RIJ

In the experiments on the quantum diffusion of
ortho impurities in parahydrogen described in Sec. I,
one measures the time evolution of the system after
a sudden change in the temperature. The main ques-
tions one would like to answer in this connection are
(i) what is the true thermodynamic equilibrium state
for given temperature and concentration, assuming
that ordinary ortho-para conversion does not take
place, (ii) what are the processes by which the system
reaches this equilibrium state, and (iii) what are the
values of the time constants characterizing these re-
laxation processes and how do they depend on the
temperature and the concentration. We will not dis-
cuss these questions in detail here but confine our-
selves to the following remarks stressing the differ-
ences between the ortho impurities and the para irn-

purities.
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—6—Ic19
18

(106)

Single ortho impurities in parahydrogen have a neg-
ative energy, ~1=—1.1 K, relative to the host mole-
cules due to the quadrupolar polarization energy.
When the interaction between the impurities is

neglected, the minimum free energy corresponds to a
random distribution of the impurities over the lattice
and no phase separation occurs. The EQQ interac-
tion between two NN impurities splits the nine-fold-
degenerate rotational level of the pair into four lev-
els. The interaction energy in the resulting ground
state is —4I = —3.4 K, but the average energy over
all the levels is zero. If a Boltzmann distribution ex-
ists over these levels, the effective interaction energy
of the pair is therefore zero at high temperatures and
approaches —4I at low temperatures. Below about 4
K the equilibrium ratio of pairs to singles therefore
increases with decreasing temperatures and at low

concentrations this ratio can be calculated by standard
methods. ""The energy levels of triangles of im-

purities with at least two sides equal to the NN

separation have also been calculated. '2' For a trian-

gle of three NN pairs the energy in the ground state
per NN bond is —2.4I and is considerably less than
for an isolated NN pair because of a reduced effect of
resonance and a frustration in the orientational align-
ment. The effective interaction of the ortho impuri-
ties is therefore strongly nonadditive and in large
clusters the binding energy at low temperatures per

19
NN bond approaches the value —

—,8
I' characteristic

of the bulk ordered phase (we ignore the small
difference in this value for the hcp and fcc struc-
tures), where the resonance has completely disap-
peared and the orientational frustration has reduced
the ground-state energy by a further factor 36 It is

19

clear that at T =0 K the true equilibrium state corre-
sponds to separated phases and that the average clus-
ter size, (n ), is infinite for all concentrations. It is
not clear whether (n ) diverges at a finite tempera-
ture for any concentration less than the critical perco-
lation concentration of about 20%, and this question
merits further investigation.

A single para impurity in ordered orthohydrogen
has a positive energy which according to the mean-

1

field theory varies from ~1 =11.4 K at T =0 K to 4 ~1

at the order-disorder transition temperature Tp and
vanishes above Tp. Even when the interaction
between the impurities is neglected, a phase separa-
tion therefore occurs at a finite temperature, T1,
which can be calculated by equating the free energies
of the random and the separated phases. For

1T (
2

Tp we may put s = 1, cf. Fig. 4, and the energy

of each broken bond is then equal to» I. Neglect-
19

ing surface effects, the difference between the free
energies per molecule of the two phases is given by

F1 F2 1 2 18 Vc + kTi c inc + ( 1 —c ) ln( 1 —c )

Putting F1 —F2=0 we obtain T1 =1.0—1.3 K for c in

the range 1 —5%. Pairs of NN para impurities have an
interaction energy (34) which varies from —0.86 K at
T =0 K to one-fourth of this value at T = Tp, and
the presence of this interaction will increase the
values of T1 at higher concentrations. Finally we re-
mark that, in contrast to the ortho impurities, the
para impurities show a very nearly additive interaction
in triples and higher-order clusters. From these re-
marks it is clear that the para impurities should show
a strong tendency to clustering below Tp. Whether a

complete phase separation will occur depends on the
mobility of larger clusters or on their rate of dissocia-
tion, but we will not investigate these questions here.

At low para concentrations the first step in the ap-
proach to equilibrium after a lowering of the tem-
perature is the formation of NN pairs of impurities.
We can estimate the relaxation time, 7-, by means of
the following simple models. " In the diffusion
model one replaces the master equation

P(R;, t ) = v X P(Rt, t ) —12v P(R;, t )
J

(107)

for the probability of finding the impurity at time t on
the lattice site R; by the diffusion equation. For a

close-packed lattice the resulting diffusion coefficient
is given by

D =2RG v (108)

This distribution falls to half its value at a radius

R1i2= (4Dt ln2)' ', and one way of arriving at an es-
timate of the reaction time constant ~ is to put

1
R 1i2

= —,d, giving

T =Ac v( T) (»0)

where 3 =32 ln2 =22.2. One can also use the
mean-square displacement, R1= (6Dt)' ', for which

P(R1) =0.22P(0). It is then reasonable to obtain ~

by putting R1=d, and this leads to Eq. (110) with

A =12. It is clear that all one can conclude on the
basis of the diffusion model is that ~ is given by Eq.
(110) where A =20+10. The average number of
steps of the impurities in the time v is n =12v~ and

using (110) with A =20 gives n =13 at c =1%. Thus
for c ( 1% the diffusion model which is based on the
assumption of a large number of steps, is reasonable.
For c ) 1% it is more appropriate to use a kinetic
model ~ First consider the random walk of one im-

purity in the cloud of fixed but randomly distributed

where Rp is the lattice constant. If we assume that
the impurities at t 0 from a close-packed superlat-
tice on the host fcc lattice, their NN separation is

equal to d =Rpc ' . After a time t the probability
distribution for each impurity around its position at
t =0 is given by

P(R, t) =(4wDt) 3 exp( —ilRi /4Dt) . (109)
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remaining impurities. . After one step the impurity

comes into contact with seven new NN sites, viz. 12
minus the original site minus the four common NN

sites of the original and final site. The probability
that a pair is formed after the first step is therefore
P& =7c. Neglecting retracing of steps in the random
walk, the probability that a pair is formed after two

steps is Pt =7c x (1 —c), and after n steps
P„=7c(1—c)""". %'hen all the impurities are

hopping, the average number of steps till pair forma-
tion is given by

I

n = XnP„/2 XP„

To lowest order in c this gives

r '=12v/n =168cv(T) (112)

Because the retracing of steps has been neglected in

this simple treatment, the expression (111) is a lower

bound for n. For c =1% we obtain from Eq. (111)
n =7, in rough agreement with the diffusion model.
If the frequency of the last step is equal to r v instead
of v, one easily sees that Eq. (112) should be re-
placed by

168cv( 7")

1+7c(r —1)
(113)

VI. CONCLUSIONS

This paper describes a theoretical investigation of
the quantum diffusion of parahydrogen impurities in

solid orthohydrogen due to resonant conversion

but we will not try to calculate the quantity r in the
present paper.

Applying these results to the quantum diffusion of
para impurities in ordered orthohydrogen at 1% im-

purity concentration, we obtain from Eq. (93), as-
suming n =10, the value ~ =0.5 x 10 s. Applying
the same estimate, n =10, to the quantum diffusion
of ortho impurities in parahydrogen at c =1%, we ob-
tain from Eq. (94) the value ~ =1,7 x 10 s =4.7 h,
in reasonable agreement with the experimental
values. This gives some support to our estimate of
the reaction time constant, v =1 h, for the establish-
ment of equilibrium in the system of para impurities
in ordered orthohydrogen. Above To we obtain in

the same way the estimate 7 -400 h and the quan-
tum diffusion in the disordered state is therefore
essentially negligible.

processes of para-ortho into ortho-para pairs. The
main results of our calculations are:

(i) Above the order-disorder transition temperature
To which is 2.8 K in pure orthohydrogen, the hop-

ping frequency of a parahydrogen impurity is propor-
tional to the correlation time characterizing the orien-
tational motion of the rotational angular momenta of
the ortho molecules. The resulting hopping frequency
is two orders of magnitude smaller than for orthohy-
drogen impurities in solid parahydrogen at an ortho
concentration of 1%. The quantum diffusion of
parahydrogen impurities in disordered orthohydrogen
is characterized by a time constant of the order of
400 h and is therefore negligible for all practical pur-

poses. Because of the weakness of the effective in-

teraction between the parahydrogen impurities, the
equilibrium distribution of these impurities over the
lattice at all temperatures T ) To is in any case a ran-
dom one.

(ii) In the ordered phase the hopping frequency of
the para impurities is determined by the difference in

the total interaction energy between the impurities
before and after a hop. The resulting reaction time
constant for the establishment of equilibrium is es-
timated to be about 1 h at 1% impurity concentration,
and to vary as c ' '.

(iii) The distortion of the orientational order of the
ortho molecules surrounding a parahydrogen impurity
contributes an overlap factor to the transition ele-
rnent determining the hopping probability, which
reduces the hopping frequency by about 15%.

(iv) The para impurities in ordered orthohydrogen
have an excess energy relative to the host molecules,
arising from the broken EQQ bonds, which varies

1

from ~~ =11.4 K at very low temperatures to 4 ~~ at

T = To, according to the mean-field theory. Even if
the attractive interaction of about 0.9 K between NN
para impurities is neglected, a phase separation there-
fore tends to occur at a temperature which we esti-
mate to be in the range 1.0—1.3 K for para concentra-
tions in the range 1 —5%.
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