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Dynamics of nonlinear systems: The heavy damping limit
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The Srnoluchowski equation for diffusion through phase space is solved in terms of the eigen-
states of the relaxation operator equation. Formally exact expressions for single-particle aver-

ages, two-particle averages, the linear response, etc. , are found. An Einstein relation is esta-
blished between the diffusion constant and the mobility that describes a displacement current.
This formal apparatus is able to be implemented if the eigenvalues and eigenstates of the relaxa-
tion operator equation are available. The many-particle wave functions that solve the relaxation
operator equation are found by employing a variational ansatz. The low-lying excited states of
the relaxation operator problem are able to be built up from the many-particle ground state and

from the single-particle states that describe the equilibrium statistical mechanics. A number of
problems are examined to illustrate the content of the formal solution to the Smoluchowski

equation and to provide a test of the adequacy of the variational ansatz. These problems are (a)
two single-particle problems (a particle in a harmonic potential and a particle in a sinusoidal po-

tential), (b) two exactly soluble problems, i.e., problems for which the relaxation operator equa-
tion can be solved exactly (a linear chain of harmonically coupled particles and this chain with

each particle in a harmonic external potential), and (c) the $ chain and the sine-Gordon chain.
Comparison of the exact solution and the variational solution to (b) shows the variational solu-

tion to give a good description of the low-lying excited states. For the latter two problems the
linear response, diffusion constant, dynamic structure factor, etc. , are calculated. Particular at-

tention is given to the role of kinks in the dynamics of the $ chain and the sine-Gordon chain.

I. INTRODUCTION

Over the past few years there has been consider-
able interest in physical systems that have properties
which exist because of essential nonlinearities in the
fields with which they are described. " Often those
systems are mapped onto one of a small number of
nonlinear models, e.g. , the sine-Gordon chain, the qb'

chain, etc. As a consequence these models have re-
cently been the subject of intense investigation and a

great deal has been learned about their properties;
e.g. , the Newtonian dynamics of the models has been
extensively explored' ' (i.e. , the F = ma properties of
the system) as has the equilibrium statistical mechan-
ics. " However, relatively little is known about the
statistical dynamics of nonlinear systems except in a
weak coupling limit in which the statistical dynamics
is approximated by the Newtonian dynamics. """
The purpose of this paper is to describe a general
treatment of the statistical dynamics of nonlinear sys-
tems in the heavy damping limit. In this limit, the
opposite of the weak coupling limit, the Smolu-
chowski equation can be used to describe the motion
of the distribution function of the system through
configuration space.

In Sec. II the Smoluchowski equation is introduced
and solved formally in terms of the many-particle
eigenstates and eigenvalues of the relaxation opera-
tor. Formally correct expressions for the time evolu-

tion of single-particle averages and of two-particle
averages are worked out. The linear response of a

system to an external field is related to the time evo-
lution of the displacernent fluctuations; an Ein-
stein relation between the diffusion constant D and
the mobility p, that measures the displacement
response is established. Then, since displacement
current is related to the probability current, a remark-
ably simple and useful expression for D results, The
usefulness of this formal apparatus is predicated on
the belief that solutions of the relaxation operator
equation are available. In Sec. III we solve the relax-
ation operator equation, a many-particle Schrodinger
equation, for the low-lying excited states using the
variational principle and an ansatz similar to the
"Feynman phonon" ansatz. " In the circumstance in
which the equilibrium statistical mechanics is
described by a single-particle Schrodinger equation we
find that the many-particle excited states of the relax-
ation operator are built up from the many-particle
ground state and the solutions of a single-particle
Schrodinger equation. %e specialize further discus-
sion to this circumstance (although it is not neces-
sary) and exhibit a variety of useful formulas for cal-
culating matrix elements between many-particle wave
functions, etc. In Sec. IV we describe the solution to
two single-particle problems; a particle in a harmonic
potential and a particle in a sinusoidal potential.
(The relaxation operator equations for these prob-
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lems are single-particle equations that can be solved
exactly; the variational ansatz is unnecessary. ) We
show that the existence of an Einstein relation and
the probability current displacement current rela-
tionship permits one to achieve a result for D for the
latter problem that is identical to that found by Festa
and d'Agliano' ' by careful examination of the for-
mally correct expression for D. In Sec. V we exam-
ine two many-particle problems for which the relaxa-
tion operator equation can be solved exactly. These
are a conventional harmonically coupled linear chain
and a harmonically coupled linear chain with each
particle in a harmonic external potential. We solve
the relaxation operator equation exactly and we solve
it using the variational ansatz. We compare the exact
eigenvalue spectrum of the relaxation operator with
that found using the variational ansatz and we also
calculate the diffusion constant using the exact eigen-
states and eigenvalues and the variational eigenstates
and eigenvalues. The results are identical ~ This
latter calculation serves two purposes; it illustrates
the delicacy of calculations of long-time behavior and
it shows that the variational ansatz yields behavior
for the low-lying excited states that is quite satisfacto-
ry. In Sec. VI we make application of the formal ap-
paratus for solving the Smoluchowski equation to two
nonlinear systems; the $ chain and the sine-Gordon
chain. For the Q4 chain we calculate the displace-
ment response to an external field and the dynamic
structure factor. In certain limits the results are the
same as those of Imada. ' For the sine-Gordon chain
we calculate the dynamic structure factor and two re-
lated structure factors introduced by Schneider et al. "
These structure factors probe the chain for the pres-
ence of kinks (solitons), phonons, and breathers.
We also calculate the diffusion constant by appeal to
the argument in Sec. II. We do not find the peculiar
long-time behavior found by Stoll et aI. For both
the $ chain and the sine-Gordon chain we find the
kinks to play a dominant role in the au 0 dynamics.
Certain details that are used in the body of the paper
are briefly described in several Appendices.

tion space distribution function a (u) is

I

8cr(u) D X
g —circ „& 8 [ tcyc „&

, , hu; 8u;
c

where D is a diffusion constant. Equation (l) is
solved subject to the specification of the coordinates
ui uu at some initial time tp (ui uu =up),
and any constraints that exists among the u; [e.g. ,
periodicity like 8(utc —ui)]. The solution to this
equation is employed to calculate the average value
of A (ui uu) ~A (u) at time t; i.e.,

(Wc) - J/du J/dupe(u)cr Ut~uptp P(Up), (2)

i.e., by

QcJ --g(u) a
9t

~here

(4)

and
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t + U;(u)8

I i Qu;
c

c

U;(u) - —p ——p
QV ] QV
8u; 8u;

(6)

The operator S(u) in Eq. (5), the "relaxation" opera-
tor, is Hermitian. It is convenient to seek solution to
Eq. (4) in terms of the solution to the auxiliary, re-
laxation operator problem

where P(up) is the probability that the configuration
of the system at to is uo. In Eq. (2) and sometimes
elsewhere we use a notation that denotes the initial
conditions that are involved in determining o-.

To solve Eq. (l) we replace the equation for a. by
one for & defined by" '

-P v/2-
r

II. SOLUTION TO THE SMOLUCHO%SKI EQUATION $(u) qc„(u) -s„%'„(u) (7)

In this section we solve the Smoluchowski equation
(SE) and we exhibit the formal expressions for the
quantities that we are interested in calculating, e.g. ,
two-point correlation functions, linear response to an
external field, etc. %e consider a system of N classi-
cal particles having coordinates ui . u~ ~u, that
interact with one another and external fields through
the potential energy V(ui u~) V(u) and that
are acted upon by viscous forces of suitable strength
that the evolution of the system through configura-
tion space is described by the Smoluchowski equa-
tion. The Smoluchowski equation for the configura-

For this problem the ground state is so 0,
qcp(u) exp[ —

i p V(u) ], (cp„/qc„) = 8„„[here we

use cp„(u) to denote qc'„(u) ]i and the equilibrium
distribution function is cpp(U)% p(u). Upon expand-
ing cr(u) in terms of the qc„(u) in Eq. (7), i.e.,

I

cr ut~up - Xcr„(upt)q „(u) (8)

we find a„(upt) a„(up) exp( s„t), (here w—e use a
notation that shows that the amplitudes D.„depend
on the initial conditions uo, from this point onward
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we take the fiducial time tp to be zero). At t = tp=0
we have (r(u0lup0) = C)p(u) (r(u0lup0) =8(u —up)
and o(u0lup0) = X„(r„(Up0) fr„(u} or
o'„(up0) =(f)„(Up)q)p(mp). Thus, we have

See, for example, Sec. V or Ref. 18.
Linear response: Suppose we disturb the system of

particles discussed above by adding the external po-
tential

4p(u) -s„f
(r(utluo0) = X d)„(uo)lid„(u)e " . (9)

d'o(uo

Averages: Upon using Eq. (9) in Eq. (2) we find

5 V =+ X u;F(t) (is)

to V(1 N) Then, . returning to Eqs. (1) and (3)
we find to linear order in F,

(A, &-X&d.lA lq. &&d.lq.-'» *"'
. (io) 8~ 13D—g(r — X [tPpTPpF(t) 1jt 4p; ) Qu;

where (d)„IA ITfr„) —= Jtdud)„(u)A (u)'l„(u) is a

many-particle matrix element. If we set P(up) equal
to the equilibrium distribution function
q)p(up)%'p(up), then (A, ) = &(pplA I'ftp) and is in-

dependent of time.
%'e define the AB correlation function to be

(A Bol
—=f d f d A (0) (uo~u 0)B(u )P (u )

Upon expanding cr in the complete set of states gen-
erated by 8 we have

o (ur Iup0) = $ (p„(up)%'„(u) e
4p(u) -g f

, 4p(up)

+ p'D X qt„(u) X &c)„l l)ft ) F„(t)
v gs'-p t'

where

where Pp(up) =exP[ —P V(up) ] =q)p(up))1 p(up) is

the equilibrium function. Using Eq. (9) we have

&A ~o& = X &C)olA Iq' & &@ l~lq'o&e
'"'

This equation involves the calculation of quantities
typical of those we will discuss in succeeding sections.
For example we will discuss the diffusion constant
D 00 (d/dt) (u(up) From . 'Eq. (12) we see that to
learn the behavior of the AB correlation function we

need to learn both the eigenvalues and the eigenfunc-
rions of 8, Eq. (7). We also see that the long-time
behavior of the AB correlation function depends on
the qualitative nature of the eigenvalue spectrum of
S. If s„has a gap as v 0, then '

&A &o& &@olA Iq'o& &@ol~lq'o& = &&A &) (&~&&

(i3)

where ((F)) is the equilibrium average of F(u),

((F)) f ATo AF(u)/f o du = (Oo~~F~%

(i4)

(Let us pause briefly to call attention to notation; we
use ( . ) to denote averages calculated with o.

and we use (( )) to denote equilibrium aver-
ages. ) If S„ is dense as v 0 the long-time behavior
of the AB correlation function can be quite complex.

F„(t)= dt'e " F(t')

Here we have used o(utlup0) =5(u —up); the re-
striction v &0 in the second term is not really neces-
sary since (d)pl(} V/(}u;I%'p), the average force on par-
ticle t in equilibrium, is zero. The response of A (u)
to the perturbation in Eq. (15) is

(A l =f du f du, A(Ti) (jj ~uo~)ouP (uo) . ()0)

where Pp(up) is the equilibrium distribution function.
For A (u) such that (d)plA I'ftp) =0, we have

&A &
=+/3'D X &@olA Iq'. & &q'. I X 0

Iq'o&F. (t)
V 8u;

(20)

Consider the special case F(t) = FpO(t) Then, .
-g l

F„(t) =Fp(1 —e ")/s„and as t +~ we have (we
assume we need not worry about s„t as v 0)

(A, ) -+P'DFo X &dolA lq. &
—&q. l g '

leap&

.
8u;

On the other hand for the perturbation in Eq. (15) as
t +~ the system approaches a new equilibrium ap-
propriate to V(1 !V) +X, u;Fo (We deal here.
with systems for which the perturbation does not lead
to a current, e.g. , the $" system. ) Thus we expect

)

lim (A, ) —((A )) =f du exp( —P V) exp —PFp X u;
t ~+oo

I

du exp( —P V) (22)
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Linearizing the right-hand side in Fp and using

4p(u) -9'o(u) exp[ —2i3V(u)) leads to

lim (A, ) —((A))

-pFoX&qolAlq'. &&@.I Xu;Iq'o& . (23}

Comparison of Eqs. (21) and (23) leads to the identi-

ty

(u ) u, Fpt This definition is unconventional but
necessary. In the Smoluchowski equation picture a
current related to a property of the velocity would not
make sense.

The displacement current defined by Eq. (27) can
be related to the probability current associated with
the Smoluchowski equation. Upon integrating Eq.
(I) over u2 . u~ we have

8cr(ut) J u&)

s.&q'oluilq'. ) -/3D &dol
fur.

(24)
where

This identity can be proved directly from manipula-
tion of the Smoluchowski equation; it is independent
of the special conditions that led to Eqs. (21) and
(23).

Einstein relation: We take the definition of the dif-
fusion constant to be'

D lim ——((X,—Xp) ) -—lim —(X,Xp)
d i 2 . d

f-+ dt 2 + dt

(25)

where X-N ' X,. u„ the center of mass. Upon using

Eq. (12), we have

D —lim X &@olXlq'~) &@~IXIq'o&s~e
'"'

. (26)
sr

We take the definition of the mobility to be

d (X)lim-
t +oo dt Fp

where (X,) is calculated as the linear displacement
response to the external field +X,. u;Fp8(t). Using
Eq. (20) we have

(X,) /3'DFo X (@plXl+„)—
r ~v

x (@~l X I+o)(1 —e ") . (28}
8u]

Thus

~- »m p'DFpx&qplXlq. &(q.lx,' lqo&e
"'

V l

(29)

Employing the identity in Eq. (24) we can write

pa P»m X(4olXl%'„)(4„lXl%'p)s„e
V

or

(30}

the Einstein relation.
The current we have used to define the mobility in

Eq. (27) is the displacement current pFp,

J(ut) = ~ d2 dN e s (es o)8
Bui

(31)

is the probability current and U(1 N)
= V(1 N) + X, u;Fp. In steady state the
probability current is a constant, J(ui) ~ W, that
can be found by very simple means. ' We expect
the steady-state displacement current p, Fp to be
directly proportional to the steady-state probability
current. Then, from the Einstein relation in Eq.
(30},we can relate the diffusion constant to the
steady-state probability current. This relationship is
of great computational utility. The diffusion constant
can be very hard to calculate directly, "whereas, the
probability current is easily calculated directly;
W~p, ~D.

III. SOLUTION TO THE RELAXATION OPERATOR
PROBLEM

It is clear from the formal manipulation in Sec. III
that a premium is placed on solution to the relaxation
operator equation, Eq. (7). Here we describe an ap-
proximate treatment of the relaxation operator equa-
tion; we find the eigenvalues, the eigenfunctions, and
we exhibit formulas for the matrix elements that are
useful in carrying out calculations. An essential
feature of our method of solution of the 8 equation,
Eq. (7},is the use of the complete set of single-
particle states generated by the transfer integral solu-
tion to the equilibrium statistical mechanics (this
method of treating the equilibrium statistical mechan-
ics is outlined in Appendix A}.

We rewrite Eq. (7) in the form that suggests a

many particle Schrodinger equation; i.e.,
N g2 ~2X- +U, (i x) ~ (i

2m Qp, ;

-E„V„(1 N ), (32)

where U;=tt'U/2m and E„=g2s„/2mD We seek to.
solve this equation. Certainly depending upon the
details of a particular problem a wide variety of
methods may have application to solution to Eq.
(32). In this paper we are primarily concerned with
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systems in which the particles are strongly coupled so
that particle-particle interactions cannot be treated as
a perturbation. Further we are interested in
phenomena like diffusion in which the long-time
behavior of the system is examined. From Eq. (26)
we see that this means that the low-lying excited
states of Eq. (32) are important. Thus we want to
focus on methods of solving Eq. (32) that give reli-
able information on the low-lying excited states of a

strongly coupled system. Since, we are fortunate to
have the ground-state solution to Eq. (32) and all of
the n-particle correlation functions for the ground
state available from the transfer integral solution to
the equilibrium statistical mechanics, Appendix A, it
is natural to seek the low-lying excited states in the
form

qd(1 N) =C XF;(u;)qjp(1 N), (33)

where C is a constant to be adjusted to normalize 0'
and F,(u;) = F;(i) is a single-particle function that
depends upon u; and possibly upon the index i that
locates a particle along the chain. '5 This latter depen-
dence is present in principle because the particles are
not free to move in any way relative to one another
but rather are ordered along the chain. We denote
the Hamiltonian in Eq. (32) by H, H Pp=Ep Pp,

Ep =0. The procedure is to calculate the expectation
value of H using '4f„ from Eq. (33) and to vary the
result with respect to the functional form of F;(u;).
For the expectation value of H, we have
(z = (q I

jf
I
q ) l (q lq & ),

hE =Ep=
2m

xf,"'()~F (;)vF(;)d
I

i

X Jt p( &(i,j)F;(u;)Fi(ui) di dj
IdJ

(

(34)

where p(')(u;) and p( &(u;ui) are the single-particle
and pair densities for the ground state (see Appendix
A). Varying E with respect to F;(u;) leads to the
equation of motion

V;Ip ' (i l&F(&&) —d xfF"'( F&(i)ji&=(&d
2m J

(35)

This equation is simplified upon making the substitu-
tion

Let us assume that the single-particle density p"'
can be derived from a Schrodinger equation; i.e. ,

f2 Q2
h Qp(u;) = — 4&p(u;) + W(u;) ([jp(u;)

2m fur

= epyp(u;) (38)

G;(u;) =e 'Xg„(ij„(u;) (40)

where 8; is a phase that depends upon the location of
particle i along the chain. We have

$ (plhlv&g„=cog„—j( Xe i ' (&ulK0(jj) lv)g.

(41)

The right-hand side of this equation is greatly simpli-
fied upon using the expressions for p

' and p' '

given in Appendix A:

[p
' ( u) ] ' = 4&0( u)

p"'(u;u, ) = $40(u;) 4(&)u(j&.(uj)(jjp(ui)

(42)

xexp[ I jilp(e, —ep)]

where IJ = n; —nJ (n;, nJ locate particles i,j along the
chain). We have

(I I
j( (~ l")j=&x f dh di d„(i&d (l)d (jld(j 1

x exp[ I jel j3(e ' op) 1

=5„,.QexP [-IjilP(o. - ep) 1; (43)

where [p"'(i)]' ' 4&0(u;). Then, Eq. (37) becomes

f2 Q2
+ W(u;) G;(u;)

2m Qu;
i

= PpG;(u;) X Xf dj Kp(ij ) Gi(j ), (39)
J

where Ko(ij) = p' '(ij)l[p"'(i) p"'(j) ]' ',, a known
function. We can solve this equation analytically if
the transfer integral problem associated with determi-
nation of the equilibrium statistical mechanics can be
reduced to a Schrodinger equation. To head in this
direction we expand G;(u;) in terms of the complete
set of states generated by the transfer integral prob-
lem

G;(u;) = [p ' (i)]' F;(u;) (36) i.e. , the right-hand side of Eq. (41) is diagonal in v.

We have
Eq. (35) becomes

e G( )
g G(u) a'

[ &»( )]„,
2m liu' ' '

2m [p"'(u, )]'i' ()u, '
$ (plhlv)g„=[eo —xT„(e)]g„

where

(44)

(2) ( ij)
[ "'( ) "'( ) ]'" (37) ,.z -)I )p(c„-~p) sinhx„

coshx„—cosH
(45)
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x„=P(p„—pp) and we have assumed the phase 8; to
be of the form qh, = n;8. It is very common in the
treatment of transfer integral problems to work in the
limit that the transfer integral can be reduced to a
Schrodinger equation, i.e., the complete set of states
that gives the equilibrium statistical mechanics is gen-
erated from hP„- ~„P„,Eq. (38). From this point
onward we specialize our treatment to this case.
When the transfer integral equation is reduced to an
equation like Eq. (38) we refer to this reduction as
'the Schrodinger equation approximation (SEA). Us-

ing SEA, Eq. (44) becomes diagonal and we have

Finally, using the results above for many-particle
matrix elements we are able to write the AB correla-
tion function in a way which involves knowing only
the properties of the single-particle transfer integral
problem

(Ar(B, ) =g, X T„(q)Ap„B~e P ", (52)

where s,, „-2mDE„(q)/Ir'.
Below when we discuss the S(q, p(), the diffusion

constant, we will make use of many of the results
displayed here.

E„(q)=X„(q)=(e„—ep)/T„(q) (46)

These energy eigenvalues depend upon the phase fac-
tor 8 qa (a is a length that describes positions along
the chain) and the index v which specifies the single-

particle excitation level. The many-body wave func-
tion appropriate to E„(q) is

%, „(1 N)-C, „xe 'Q„(u;)Qp(u;) '

xq (1 g) (47)

From Sec. II we see that the quantities of interest
typically involve matrix elements between the many-
particle ground state and the excited states, e.g. ,
(A,B& involves ((Pp~A ~%'„&. For A (u) = X, ,
x A (u;), we have

((Pp~A (u) ~(P, „& =g oC, „NZT„(q)A „ (49)

where Cp„( t NZT„(q) ]'i' j ' and Z is the partition
function for the equilibrium problem (see Appendix
B where the normalization and other properties of
the many-particle wave functions are worked out).
The constant Cq„ in this equation is chosen such that

((P ( (1 N)~%', „(I N)) =S,S„„.(48)

IV. SINGLE-PARTICLE PROBLEMS

(g'/2m ) 4('„'—+ t Vpu'(i(„E„y„= (53)

where Vp-( , 13I)'ll—'/m,'E„= „p +(PI' l'l) /2m), and

s„-2m e„D/ti'. The eigenstates of Eq. (53) are the
harmonic oscillator states, E„-( v + —, )lip(p,

p(j'j- Vp/m so that

S„vPI, v 012, . . . (54)

The relaxation operator spectrum is discrete, sp =0,
st -/3I'D, st = 2/31'D. For the displacement-
displacement correlation function we have

Here we describe the solution to two single-particle
problems using the formalism developed in Secs. II
and III. The purpose of this section is to illustrate
with simple examples some of the manipulations that
are helpful in calculations of the type under discus-
sion.

Example 1: a single-particle in the external poten-
tial —,I u . The equilibrium statistical mechanics is

simple and does not require the use of TI methods.
Equation (7) or (32) takes the form

where

A p„Jt du $p( u) A 4(„(u) (50)

(u, up& = X (0)u(v&(v~u(0&e

-
I (0Iull & I'exp(-BTDr), (55)

is a single-particle matrix element involving the
single-particle states of the transfer integral (TI)
problem. It is the enormous simplification offered by
the reduction of many-particle matrix elements to
single-particle matrix elements, illustrated by Eq.
(49), that makes the ansatz of Eq. (33) particularly
useful. We note that matrix elements of A (u) that
involve the ground state, like the matrix element in
Eq. (49), do not require the phase factor in the
specification of the excited state; i.e., they always in-
volve Sq p. For the matrix elements of a quantity that
depends upon phase, e.g. , X, exp( —iq'an;) A (u;)
~Aq'(u) or iraq we have

((PP~A '(u) ~%'p, P&
- g Cp „NZT„(q)AP„. (51)

(u, uo) = (ks T/I') exp( —PI'Dt) (s6)

As r +~, (u, up) 0, since the excitation spec-
trum in Eq. (49) has a gap above the ground state,
si —sp-PI D.

Example 2: a single particle in the external poten-
tial —Vpcos8. Equation (7) or (32) takes the form

z" + U(8)4(„-E„q(
d~p„

2m dg~
(s7)

where the second line follows-upon using the proper-
ties of harmonic oscillator matrix elements. Using
the ground state and first excited state from Eq. (53)
leads to
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(8,8p) = X (0}8}t n ) (vn }8}0)e (60)

where n is a band index and v is a wave vector. Cer-
tainly as t +~ the n sum in Eq. (60) is dominated

by the lowest band, n =0. As v 0 sp „~v, It is

clear that a very delicate balance in the assessment of
the v dependence in Eq, (60) is involved in determi-
nation of the t +~ behavior of (u, up) and in cal-
culating the diffusion constant. Festa and d'Angliano
have carefully examined this problem and have calcu-
lated the diffusion constant. They find

—=—(2w)' Jt p(8)
(61)

where p(8) Pp(8)(ltp(8) is normed to 1 over 2w

and we have written Dp= 1/rp for the case of diffu-
sion through angle. On the other hand employing
the procedure for calculating the steady-state proba-
bility current, illustrated in the treatment of the
sine-Gordon chain, " one finds the probability
current to be

d8
p, Fp 2w lV = (2m) /3Fp/&p

p(e)
= PDFp . (62)

Thus by direct computation the relation between the
diffusion constant D, and the steady-state probability
current 8'described at the end of Sec. III is confirmed.

V. EXACTLY SOLUBLE MANY-PARTICLE
PROBLEMS

A. Linear chain

The linear chain of harmonically coupled particles
is described by

with

U(8) -(tt2/2m) [(—,
'

P Vp)'sin'8 ——,
'

P Vpcos8] (58)

and E„-(lr'/2m )s„. The quantum-mechanical prob-
lem set by Eqs. (57) and (58) is difficult. However,
at low temperature U(8) may be approximated by
the first term in Eq. (58) and Eq. (57) becomes

d4v 1 1
2

+ —( —P Vp) ( 1 —cos28) (lt„=—(it„, (59)
A.„

dg2 2 2 D

a form of the Mathieu equation. The solutions to the
Mathieu equation are in Floquet form and a band-
structure results. As T 0 the lowest band has a
width related to tunneling through the barrier,
( —,P Vo), between the potential minima at 0, rt,

2n, . . . , the eigenfunctions are tight-binding wave
functions, Ep 0 and a continuum of states occurs
above Ep.

For the displacement-displacement correlation
function involved in calculation of the diffusion con-
stant we have

From Eq. (32) the relaxation operator equation ap-
propriate to this system is

82
2

—p12+ 4 p I 2(2u; —u;+1 —u; 1)
ui

SV

D v (64)

The eigenstates to this equation are the phonon
states that are built up from the ground state

qt„(1 /(/) = }n( nN)

t ) "i(i}@ ) (65)

where Op is the well-known correlated Gaussian
ground state and at least one of the n; must be
nonzero; the eigenvalues are

sp=0 (66)

S„2PrD XSin ~no
q

(67)

where v denotes the set of occupation numbers
} n( nti }. Let us use these states to calculate
S(k;t) We ha. ve

(ot/ N

S(k, t) = —X g((e '),(e ~)p)
N, 1)

which upon using Eq. (52) becomes

(68)

S(k, t) = —g (q'o}e '}q'„)(q'„}e }qo)e

(69)

Instead of proceeding to evaluate this expression as it

stands we use the well-known operator identity" for
combining the exponentials to write

((
iku )( ikuj)

)
.

(
ik-(u, . -u) p)) k [u. , u. pj/22

(70)

Then, using standard methods we find

ikl. -iku k2 D((e '), (e ~)p) =exp ———
2 N

-c t iq(R. —R )
(1)

~1 —e q e
(1)

3q

where sq
' is the value of S for a one-phonon excita-

tion into state q; sq = 2pl 2D sin ( —'qa ) and R; = n; a

locates particle i at site n; along the chain. Interest-
ingly, we find that we need only the one-phonon
states to carry through the calculation exactly. Equa-
tions (69) and (71) may be manipulated to yield the
following result:

N

V(1 W) =X—,'r, (u, , -u, )' .
i 1

(63) S (k, t) = XS„(k,t)
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where

k2 t'r/tD

S„(k,t) =exp — W„+ J) e 'l„(x) dx
2PI

" o

with
t

1 f 1 —cosnv
I —cosv

(72)

(73)

X(u) =—Xu; .1

N, i

%e have

D»- —, lim —([X(u) —X(u)o],')
r +~ dt

= lim —[&X(u)p) —(X(u),X&u)p)] . (74)+ dt

Using the phonon states from above and the results
in Sec. III we have

(1),
d D ~ X X

~p(R Ri) I —e-
r-+ dt N3 J e ~ (i)

(As above we find that only the one-phonon states
are involved. ) The sum on i and jyields N' XG
x 5~ G, where 6 is a reciprocal-lattice vector. Thus,
since q is confined to the first Brillouin zone, then

(75)

I„ is the modified Bessel function, 8'„ is the Debye-
Waller factor for particles separated by n, n ] n;
—ni) and tD' -PI'2D. As t +op the integrand in

large parentheses approaches x ' ' and +~,
S„(k,t) -0.

Let us use the phonon states to calculate the rate
of diffusion of the center of mass

The relaxation operator eigenvalue appropriate to the
many-body wave function is, Eq. (46)

coshx~ -cosqa
s~g =pI 2D

sinhx»/x»
(78)

where x» K /2PI't. We note that as K 0, s, » ap-

proaches g~ ', the exact one-phonon relaxation opera-
tor eigenvalue, from above as the variational princi-

ple requires. To calculate the diffusion constant for
the center of mass we use Eq. (74) [see also Eq.
(25)] for D» and we use the formulas in Sec. III for
the many-particle matrix elements, e.g. ,

X & @ olu; I
q ap'&

= go, oCo,»NZT»(0) &0 I
u IK &

I

and we find

to obtain

i &0]K ) =i 5» p
= K &K (u ]0& (82)

X T»(0) &0luIK&&Klu]0&&1 —e *'"},
r-+~ dt N g

(80)

where so & =2pI 2Dx~ tanh( —,x~) and T~(0) '1

= tanh(
2
x»). This equation can be rearranged to

yield
'o x'

D» =D lim —XK' &0] u (
K & &K) u ]0 )r- dt ~ so,K

(81)
To perform the K sum we use

K&0(u(K& = —i Jt du dp(u)u —P»(u)
d

du

d DtDx= lim ——
r-+ dt N

D» -D/N (83)

or

D»=D/N (76)

In this expression for D, and that for S(kt) above, ,
we have two exact results because we are able to ex-
actly solve the Smoluchowski equation. It will be
useful to compare these exact results to those ob-
tained using the product ansatz for the many-particle
wave function. To this end let us calculate Dq using
W„and s„ from Sec. III.

The equilibrium statistical mechanics of the linear
harmonically coupled chain involves plane wave
eigenstate, p&(u) ~exp(iKu) and free-particle
eigenvalues, Pa» K /2PI't, see Appendix C. Thus,
for the many-body wave functions we have

Vox(1 . N) =Co» Xe ' Px(u;)Vp(1 N)

(77}

where Vo(1 . N) is the correlated Gaussian
ground-state wave function and C,» [NZT»(q)]' '.

This result for D is the same as that found above,
Eq. (76},using the exact eigenstates. We see that
this is in part due to the fact that D involves the

q 0 and K 0 limit of s, ~. The variational, ansatz
seems to give this limit correctly. On the other hand
the manipulations displayed above expose the delica-
cy of the limit that yields the correct large t behavior
[see in particular Eq. (82)l. It is concern for han-
dling these manipulations (and for the consequences
of an approximate s„) that leads us to prefer to get at
D from the probability current —Einstein relation
route described in Sec. II.

B. Linear chain in an external field

The linear chain of harmonically coupled particles
in an external field is described by

N

V(1 N) - X[—,'r, (u, „-u,)'+ —,'r, uP] .

(84)
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Because of the harmonic single-particle potential
—,I &u' the relaxation operator eigenvalue problem

has a gap between the ground state and the first ex-
cited state. Thus (X,Xp) decays to zero as t +~
and there is no diffusion constant, S(k, t) S(k,
+~), a nonzero value, as t +~, etc.

VI. NONLINEAR SYSTEMS

Then, using the results from Sec. III for many-body
particle matrix elements we have

(u ) =PFo $ T,(0) (Olu Iv) (vlu IO) (I —e ") . (91)

At low temperature we expect this response to be
dominated by the matrix elements to the first few ex-
cited states.

For this system S(k, t) is given by Eqs. (68), (69),
and (49);

Here we describe the results of application of the
formalism developed in Secs. II and III to two non-
linear systems: (A) the $~ chain and (B) the sine-
Gordon chain.

S(k, t) = N X T„(0)(Ole'""I v)(vie '""I0)e

(92)

A. The $4 chain

The qh system is described by the potential energy'

V(1
N N

N) = $ V4( u;) + g &

I' (2u; ~
+—u;) '

with

(ss)

V4( u;) = ——
I
A

I u; + —Bu,4

Both the statistical mechanics and the dynamics of
this sytem have been extensively studied. In the
SEA [see the remark above Eq. (46)] the statistical
mechanics is described in terms of the solutions to

1 d' —V4(u) y„=e„y„.
2P I du

(87)

is given by Eq. (20),

(u ) -O'D
N X (@pl X u

I
q'. )

st I

Using Eq. (24) this becomes

(u ) = p XX (@olu;I p.)—
N

At low temperatures the statistical mechanics is dom-
inated by the first few low-lying states from Eq. (87).
These are the tunnel-split ground state (Pp+ Qp

0 & Ep —Epy (( E&+—Ep+) and the low-lying tun-
nel-split excited states (Q„+, P„,
0 & E„E„+« E„+~,+——E„+);see Appendix C.

The displacement response of the $4 system to a
perturbing field

—$ u;FoO(t)

The ground state and first excited state, Pp—= P+ and
4tt —=p, are P+= [OR(u) +HL(u)]/v2 and
(Ole'""ll) =i (Olsinku I 1 ) =i sinkup. Thus,

S(k, t) = N sin kupT](0)e (93)

with s~ =2PI 2D(e~ pe) /T(t0) and
Tt(0) ' =tanh[ —,P(o~ —ep)]. The energy difference

1

P(~~ —e2) is related to the tunnel splitting in the
equilibrium problem which we take to give the
number of thermally activated kinks. %'e define

nK P( e1 ep) (94)

Then,

S(k, t) = N sin kup
1

tanh(
2 n~)

x exp( 2I', Dnx) [tan—h( —nx ) ]t . (95)

As T 0, n~ 0 and we have

-I'2DN
S(k, t) =2N sin'kupe ' /nx (96)

e note that S(k, t) and S(k) defined here have spa-
tial structure that depends only upon the behavior of
a single particle; the matrix elements that give the k
dependence in Eq. (92) are between single-particle
states. Certainly these single-particle states contain
information about the coupling and the correlated
motion of particles along the chain.

Consider the response of the $ system to an alter-
nating external field that couples with a different
phase to each particle, i.e.,

The behavior of $(k, t) is dominated by kinks; $(kt)
decays very slowly in time and its amplitude increases
as n~'. Results similar to these have been achieved
by Imada. The static structure factor is

S ( k) = N X T.(o) (o I
e'""Iv) ( v I

e '""Io &

x (e lu leo)(1
I ON.—Xe 'uFpe ' ', (98)
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where n; locates a particle along the chain. Then, for
the q —co Fourier component of the displacment
response, we have

&u(q, co) &
= pFo X Xe"' "' ~ &+oluilqc~& &+~lu&loco&

I.O

I.O 0.5
I

cos qa

-$ f-i rail v„e —e
„—I Cd

[Once again we have made use of Eq. (24).] Using
the matrix elements from Sec. III we have

(u (q, co), &
= PFo X T„(q) (0l u

I
n & (n I

u 10)

I 0 2

IO

~n, = IO
'

2
hg

2

' +(qo)'
2

— r

x 8 „, (100)
Sqp I M

At long times we may write this expression as

(u(q, co), & = X [A„(q, co) +iB„(q,co)], (101)
PF0~0 n

where the in-phase component of the response is

&oluln & &nlul0) T.(q»,'.
Qp

and the out-of-phase component of the response is

(0luln & &nlul0& T.(q)a .co
B„(q,co) =

2
. (103)

Qp ~qn+

~f)K = 10-3

I
0-6

IO

I
0- I

0 2

IO

Es

I.O

(o)
(b)

~ (q, ~) =n~ft/(, fi'+y') (104)

and

At low temperature A (q, co) and B(q, co) are dom-
inated by the n =1 contribution; we have (Olu l1)

FIG. 1. Linewidth as a function of qa and T. The width
of S(q, cu), fi given by Eq. (106), depends upon tempera-
ture through n~ -exp( —PEs) and wave vector qa. As
T-O, ng -0, and fi -0 for qa ~ ng'. the linewidth is a

strong function of qa as shown in the inset. For qa &) n&

the line shape is only a mild function of qa. At fixed but
small qa the linewidth is a strong function of T as shown in (b).

B&q, ~)c =n~y/(ft'+y') ~

where y -co/cop, cop —21'2D, and

cosh ng —cosqa
fi(q. n~) =

sinhnn/nlc

(10S)

(1o6)

dynamic structure factor with a similar phase depen-
dence

N N

S(qk;t) = —X Xe ' ~ ((e '),(e J)); (107)
N,. i) i

In Fig. 1 we plot fi, the halfwidth or inverse height
of A (qrd), as a function of qa. Both A and B are
very narrow as T 0 and n~ O. Of course the
response implied by Eqs. (104) and (105) is the
Lorentzian response of a damped system.

In writing Eqs. (104) and (105) we have neglected
excitation to the higher excited states. Again, at low

temperatures excitation to the third excited state Pi
involves matrix elements of order up but in this case
the energy difference is of order 1. The resulting
contribution to (u(qco), ) has almost no structure as
a function of qa, The amplitude A2(q, 0) is of order
1 compared to A i(q, o) = nI('.

Just as we defined the response to an external field
that has different phase at each site we can define a

we have

S(qk;r) -& X T.(q& (0le'""ln &&nle '""10&e

and

(1os)

We write Eq. (109) in the form

S qk'co =XS„( k; )
N

(109)

(»0)

S(qk;co) = X (Ole'""ln &(nle '""l0& T„(q)
2 2

n 6) + Spy
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Then for S~ we have

Si«q;~) =
I
(Ole'""ll

& I'(nx/~D) (fi'+~') ' . (111)

where

cosh n~ —cosqa
.f] =

sinhnx/nx

and

N N

Sss(q;r) =—$ Xe' ' '((sine, ),(sinej)p&
N, ). )

(»8)

Ett. (106). The form factor
I
(Ole'""l l) I' measures

the structure of the single-particle state at wave vec-
tor k. At low temperature I

(Ole'""ll)
I

=sin kup

For these dynamic structure factors we have

Scc(q ru) = N X (Olcoselv) (vlcosel0)

S~(qk, co) = sin'(kup) (n~/~p) (.f~' +y') '

= sin'(kup) 8, (q, &u)/~

8. The sine-Gordon chain

(»2)
and

p(~„—«)
~p fy +y

S,s(q, cu) = N $ (Olsinel v) (vlsinel0)

(119)

with
(113)

V,o(e) = —Ei cos8 (»4)

The sine-Gordon (SG) chain is described by the
potential energy

N N

v(1 N) = X v„(e,) + X-,' E,(e,„-e, )'

P(e„-ep)
X

f2 +y2
(120)

The three dynamic structure factors above have strik-
ing similarity. They differ only because of differ-
ences that occur in the matrix elements which deter-
mine the modes to which the probe couples. At low

temperatures tight-binding wave functions can be
used and we find (here n denotes the band index
and v is the wave vector)

Both the statistical mechanics and the dynamics of
this sytem have been extensively studied. In the
SEA the statistical mechanics is described in terms of
the solution to the Mathieu equation; i.e.,

and

(Ole"'I..& =5„„5„,,

(Olsineln v) =5„~5„p(kaT/Ep)' '
(121a)

(121b)

1 d2

2
—E~ COSH Q„=e„Q„

2p'E2 dH'
(115) (0lcosel n v) = 5„25„p2v2ka T/Eu (121c)

At low temperatures the statistical mechanics is dom-
inated by the states in the first few bands of Eq.
(115); the width of the first band goes to zero as
exp( —PEu) as T 0 and the spacing between bands
goes to zero as T, see Appendix C. Unlike the $
system, the response of the SG system to an external
field like that in Eq. (88) is the flow of current. This
current response has been extensively studied. tSee
Refs. 8(c) and 26.] We return to it below. Let us

begin by looking at the dynamic structure factor.
Proceeding as above, we find

S(qk;cu) = N $ (Ol e'"'I v) (vl e'"'IO)

p(e„—~p)

f2+ 2

where f„=(coshx„—cosqa ', /(sinhx„/x„), &AD = 21'2D,
and x„=p(e„—ep). Let us at the same time consider
two other probes of the behavior of the system, the
sine and cosine dynamics structure factors defined by
Schneider, Stoll, and Bishop '

N N

Scc(q;r) -—X X e' ' J ((cose;),(cose, )p) (117)

Thus

S (qk;cu) P(«k —&oo)

N mp fok+y
(122)

and

Sss(q;o)) kg T p(6~p —
happ)

, , (123)
N Ep a) p f)2o +y2

'1

Scc(q;ru) ks T P( e2eppp)

N Ep
(124)

.f2o +y

pS(q, k) sinhxk

N coshxk —cosh qa

cuoSss(q& ks T sinh(1/()
N Eu cosh(1/() —cosqa

(12S)

For the energy differences we have p(w„p —Epp)

=n/g, g =E2/Eb and

P(~ok ~oo) =2nI(, sin ( —,
' k)

where n~ is the number of thermally activated kinks
(Appendix C). The integrated amplitudes under the
S(qk;cv), Sss(q;ao), and Scc(q, ~) curves are
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and
1

~DScc(q)
g

ka2 sinh(2/()
/V E& cosh(2/g) -cosqa

These amplitudes are sho~n in Fig. 2 as a function of
qa [for simplicity we take (=10 and nx =exp
x ( —PE~) ]. Both Sss and Scc are mild functions of
qa whereas S(q,k) becomes a sensitive function of
qa as n~, the number of kinks, approaches zero.

The three probes S(q.k), Sss(q), and Scc(q)
detect three qualitatively different features of the sys-
tem; S(q,k) is sensitive to the presence of kinks,
Sss(q) is sensitive to displacement fluctuations (pho-
nons); and Scc(q) is sensitive to width fluctuations

(breathers). (Of course, in the heavy damping limit
the dynamics of all of these is seen as an ao 0
mode. ) From this observation we learn that the
breathers make themselves known in the equilibrium
statistical mechanics through renormalization of the
n =0 band width and in the n =2 band. For exam-
ple, cosH; correlations on the equilibrium chain obey

((cos8;cos8J)) = X (0lcos8lv) (vlcos8I0)

-(n.-n (p(g -g)xe (l2S)

From Eqs. (121) this reduces to

((cos8;cos8&)) =8(ksT/Ea)'exp( —2lnf —n&l/g)

(129)

I 0.0—
PE =S

Width fluctuations or cosine correlations decay over
length /qq =

2 (. Similarly the displacement fluctua-

tions or sine correlations ((sin8; sin8, )) decay over
length /ss = g. Both /CC and /ss are independent of
temperature. On the other hand the correlations in-

volved in S(qk;ao) decay over length
I =exp(+PE/), I +~ as T 0.

Now let us turn to a discussion of the diffusion
constant for the sine-Gordon chain. From above,
Sec. V we consider the diffusion of the center of
mass 8,

N

e= —X8, .
N, i

(l30)

cr 5.0
V)

We define

D = —lim —((0—00),')d
'f-O dt

0.0
I.O

I

0.95

COS qo

0.90

FIG. 2. Sine and cosine amplitudes as a function of qa.
The amplitudes of the sine and cosine scattering factors,
Eqs. (126) and (127), are shown as a function of qa for

PE& =8. Changes in temperature produce a mild change in

the amplitude of these functions. The amplitude, S(qk, 0),
Eq. (125), is of order 10 3 for k = q at PE&=8 and is not
shown. Although the scattering from kinks is not strong
enough to appear in the static structure factors, it dominates
the cu 0 dynamic structure factor.

D =k, rD, (2w)' Jt~ p, (8)
(132)

where po(8) is the single-particle density for the
equilibrium problem; see Appendix B. A substantial
amount of discussion about this formulation of a cal-
culation of the current is already in the literature, the
role of kinks as current carrying entities has been dis-
cussed, etc. We refer the reader to this literature for
details 8 26

The principal point we wish to make here is that
the probability current, displacement current, and dif-
fusion constant are well defined and exist for the
sine-Gordon chain. Thus averages like ((8—eo), )

If we proceed directly to evaluate this expression we
are led to an equation much like Eq. (81). Instead of
proceeding in this way we use the result of the dis-
cussions in Sec. II (see also remarks in Sec. IV).
The diffusion constant is related to the mobility by an
Einstein relation; the mobility can be calculated
directly in terms of the probability current for which
a very simple expression obtains. Then we have



4496 R. A. GUYER 21

have well-defined known behavior for large t. This
should be compared to the result reported by
Schneider and Stoll, "&(0—0())(') —t4 ', who do
their calculations in the weak damping limit.

VIII. CONCLUSION
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In this paper we have described an approximate
solution to the Smoluchowski equation. " Formal solu-
tion to the Smoluchowski equation and formal expres-
sions for single-particle averages, two-particle aver-
ages, the linear response, etc. , can be written using
the complete set of many-particle states generated by
the relaxation operator equation. This equation is a

many-particle Schrodinger equation. The task of
finding a practical method of solution of the relaxa-
tion operator equation, is tackled in Sec. III using a
variational ansatz. We find that the many-particle
excited states of the relaxation operator for a system
can be built up from the many-particle ground state
(which is known) using the single-particle states ap-

propriate to the description of the equilibrium statisti-
cal mechanics of the system. As a consequence the
many-particle quantities, e.g. , matrix elements, called
for in the formal expressions for averages, etc. , are
expressed in terms of single-particle quantities,
e.g. ,single-particle matrix elements, etc. Since, the
single-particle problem is well known and easily
solved for the systems of interest the variational an-
satz yields a remarkably useful solution to the
relaxation-operator equation.

We make application of the Smoluchowski equation
to two exactly soluble problems (problems for which
the relaxation-operator equation can be solved exact-
ly) and we compare an exact calculation of the diffu-
sion constant with a calculation that uses the approxi-
rnate solution to the relaxation-operator equation
found with the variational ansatz. The value of D is

the same for both calculations. We take this agree-
ment to support the position that the variational an-
satz reliably describes the low-lying excited states of
the relaxation operator. This position is given further
support when we make application of the variational
ansatz to the solution of the relaxation operator
equation for the P' chain and the sine-Gordon chain.
We find that the many particle eigenvalues of the re-
laxation operator for the @ chain agree with a result
for these quantities found by Imada (using perturba-
tion theory) for a particular circumstance.

As an illustration of the application of the varia-
tional ansatz to a nontrivial problem we examine the
behavior of the dynamic structure factors and the
linear response of the $ chain and the sine-Gordon
chain. We also argue that the diffusion constant is
well defined for the sine-Gordon chain and that there
is no reason to expect exotic long time behavior for
this system.

APPENDIX A: EQUILIBRIUM STATISTICAL
MECHANICS

and subject to the constraint 5(u)((+t —u)) (this con-
straint ties the system to itself but leaves it free to
move as a whole, e.g. , to have a diffusion constant)
is given in terms of

Z = dl dN+18 u, —u)e " " '"' . (A2)

The partition function Z is calculated exactly using
the complete set of states given by the transfer in-

tegral equation

-pV (u) —isr (o—u)2i2
du e ' e (l)„(v) = e "(i(„(u) . (A3)

We denote the corresponding left-hand function by
$„(u). Then,

Z=xe (A4)

and

F = —k&TlnZ (As)

For single-particle averages we have

«& (u;) &) = —Xe '"&vl& lv) = &ol& lo),

where

(A6)

(.l~ lu) = J~.S(.)~ (u)(„(.)
and the reduction of «A )) to &O~A ~0) occurs in the
thermodynamic limit, N +~. For a two-particle
average we have

«A (u;)B( &)u)) - X &0[3 (v) &v(B(0)

ij y 0-[n. ]p(e -e )
(A7)

where ( ni~ =
~i j) measu—res the separation of i and

Here we have assembled most of the results that
are necessary for carrying out calculations of the
equilibrium properties of a system, The equilibrium
statistical mechanics of a classical system described by

N

V(l N)=X[V(u)+ —I'(u;, —u) ], (Al)
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j on the chain. (Once again we have taken
N +~.) (See Ref. 6 or 8 for a slightly more-
general form of these averages and for remarks on
circumstances that force one to be careful in taking
the thermodynamic limit. } Of particular interest are
the single-particle density

p"'(u) = «5(u, —u))) =dp(u)yp(u)

and the two-particle density

p"'(u(uj) = ((g(u& —u)g(u, —v)))
= X4p(u) y„(u) d „(v)yp(v) e

(AS)

(A9)

and e„differs from e„ in Eq. (A2) by an unimportant
v-independent additative quantity. ' Equation (A10)
is the Schrodinger-equation approximation (SEA)
used extensively above. Although in SEA, 4315

-p',
we continued to use a notation that is faithful to the
form of the original transfer integral problem. ~

Solutions to Eq. (A10) for particular systems of in-

terest are described in Appendix C.

It is these latter two equations that are used exten-
sively in the body of the paper, e.g. , Sec. III.

The transfer integral equation, Eq. (A2) is reduced
to a Schrodinger equation in a variety of circum-
stances (see, e.g. , Ref. 8). Then, Eq. (A2) is re-
placed by

1 d2
, + Vt(u) y„(u) =i„y„(u) (A10)

2p2I 2 du2

Now, the matrix element on the right-hand side of
this equation is simply a two-particle equilibrium
average of the type described in Appendix A. Thus
we may write

I

I+,„)=C' C,„xxe 'e M„„
I

where we use Eq. (A7)

~
$&( J) $„(l)

~
-ivan (N)—p(a co)—

I C, „I'=1/NZT„(q) (Bs)

and for the ground state, Co =Z. Matrix elements
of the kind called for in Eqs. (12) and (20) involve
the many-particle ground state and an excited state.
For example,

(@pl XA (u, ) lq, „)

= CpC, „XXe ~(4plA (u, ) "
I+p) . (B6)

i J yp(uj)

Once again reduction is possible using Eq. (A7). We
have

&@ol X~ (u ) I q'„) = g, ,ocpc „NZT„(0) &0l~ I v)

The sum on ij yields 5 and we haveee

&q ~ Iq'p .) -. g g..lc,.I'NT, (q) e (B4)

Here exp( —NPpp) is the partition function Z for the
equilibrium problem, Eq. (A3), and T„(q) is defined
in Eq. (45). We have

APPENDIX B: MANY-PARTICLE WAVE FUNCTIONS
AND MATRIX ELEMENTS

Here we work out various details of the calcula-
tions of the properties of the many-particle wave
functions, etc., introduced in Sec. III. From Eq. (47)
the many-particle wave functions are

'Pr„(1 N) = Cp„xe ' " '
Vp(l N)

ip,. y„(u;)
Ao u(r)

Thus, we have
I

(q, Iq, „)=c', c,„Xxe "'"'e" "
l

I

@„(j) y„(0
I )0

@ ( .) ~ (
.
)

(S2)
where (@pl Iqp) is given by

(@ol ' ' ' I+o) -f dl dN +15(u„+i —u&)4o+o

~ ~ ~

(B7)

where (OIA lv) is a matrix element between single-
particle states. For a phased quantity like A, (u), Eq.

e
(51), we have

I

&@pl Xe 'A (u;) I%',„)
I

=8 Cpcp„NZT„(q) &0IA lv) . (Bg)

These results permit us to express the AB correlation
function in simple form

&A p(u), Bp(u)o) = X T,(q) &0I& lv)&vlBIO)e

APPENDIX C: SINGLE-PARTICLE WAVE FUNCTIONS

In the Schrodinger equation approximation, the
transfer integral equation is reduced to the solution
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of the differential equation

I 6I'

+ V, (u) y„=~„y„
2p2I 2 du

A, The linear chain

The linear-chain problem discussed in Sec. V is
described by V~ =0. Then, the single-particle wave
functions and eigenvalues are

y„(u) uexp(iKu)

and

V(U) ji

~„=K'/2P'I'p

B. The p4 chain
Up/

t,
48

The @' chain problem discussed in Sec. VI is
described by

Vi(u) = ——, I A
I
u'+ , Bu'— (C2)

This potential is characterized by a length ua2 = IA I//B

and the well depth —
4 IA I'/B; see Fig. 3(b). The

solution to Eq. (Cl) with Vi(u) given by Eq. (C2)
involves the discrete set of states of a particle in one
of two wells that is split by tunneling between the
wells. These states are near —

4 IA I'/B as T 0,
they are split by exp( —PEs) (Es is the energy of the

$ soliton') and separated by k&Tas T 0.

C. The sine-Gordon chain

V(e) ii

A

48

-Ei

&p

C82

Se2

cei

S8i

cep

The sine-Gordon chain problem discussed in Sec.
VI is described by

V, (u) = V (tti) = Ei cost)—
Thtts Eq. (Cl) becomes the Mathieu equation

1 6I'2

~l cost) 4v = &v4v
2p2E2 d82

(c3)

(C4)

The solutions to this equation are in Floquet form.
As T 0, the lowest energies are in the n =0 band
just above —E~. In this limit

e„=—Et —ng(I —cosv)

I vI ~ —,nx = exp( —PE)& (E& is the energy of the

sine-Gordon soliton); see Fig. 3(c).

FIG. 3. Eigenvalues and eigenfunctions. The three
many-particle problems studied in the text have equilibrium
statistical mechanics described in terms of the complete set
of states associated with a quantum-mechanical single-parti-
cle problem. Each single-particle problem is characterized by
a single-particle potential and generates a complete set of
eigenfunctions and eigenvalues. The relationship of the
single-particle density to the wave functions permits one to
understand that fluctuations in the average position of a par-
ticle are described by a linear combination of cep and sc 2 (or
Qp+, Qt ), whereas fluctuations in the average width of a

particle are described by a linear combination of cep and ce2
(or Qp+, Q2+). It is the observation that Sss (Scc) probes
the transitions from pep to se2 (and cep to ce2) that lead to
the identification of these states, se2 (and ce2), as giving in-
formation about phonons (breathers).
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