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Lattice relaxation at metal surfaces: An electrostatic model
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Surface relaxation in metals is investigated via an electrostatic model, using an iterative scheme allowing
for the participation of many layers in the relaxation process. Comparative studies of surface relaxation are
performed for the low-index faces of A1, Li, Na, and Cu, using three models for the electronic density: (a)
step function, (b) exponential, (c) Lang-Kohn. The results demonstrate the importance of multilayer
relaxation mechanisms, and the sensititivy of the results to the model of the surface electronic density. For
the expon'ential density profile, simple pseudopotential corrections are also included and shown to have
significant effects. The relaxation trends predicted are consistent with available results obtained by analyses
of low-energy-electron-diffraction data.

I. INTRODUCTION

Knowledge of the atomic arrangement in the sur-
face region of metals is basic for the understand-
ing of a large number of surface phenomena and
nteraction processes. This recognition has led to

major efforts in the development of experimental
and theor etical methods for the determination of sur-
face structures. ' The termination of a solid by a
surface modifies both the atomic coordination and

the conduction-electron distribution. In response,
normal surface relax' tion (deviations of distances
between atomic planes from their bulk values) and

surface reconstruction (lateral structural mod-
ifications) may occur. Surface relaxation has been
observed' for a number of fcc, bcc, and hcp low-in-
dex clean metal surfaces and is the subject of the
present investigation.

To elucidate the nature of the underlying forces
which govern the surface crystallography, it is
of interest to investigate surface structure theo-
ries of a predictive nature, which apart from their
fundamental value could provide a source of model
structures to employ in the analysis of experimen-
tal data. The first-principles determination of
ionic positions at surfaces is hindered by dif-
ficulties in carrying out a self-consistent energy
minimization for the coupled system of ions and
conduction electrons. Semiempirical methods, on
the other hand, which were developed originally
mainly for the study of bulk defect configurations
(pseudopotentia. l pairwise interactions, empirically
fitted pair potentials, and lattice statics methods)
have usually predicted outward relaxations for low-
index faces. ' These results are in contradiction
with experimental evidence indicating that contrac-
tion of the top interlayer spacing occurs in many
if not most cases.

The inadequacies of surface relaxation models

based on bulk-derived pair-potential interactions
only have been emphasized by Finnis and Heine
(FH). 8 Following the conclusion of Smoluchowski'
(made in the context of a. study of the work func-
tion) concerning the lateral smoothing of the elec-
tronic charge density at surfaces to lower the kine-
tic energy, FH presented a heuristic model of
surface relaxation in sP-bonded materials. In this
model the asymmetrical electron density at the
cleaved surface is redistributed in surface %igner-
Seitz cells with a sharp cutoff at the solid-vacuum
interface. As a result the ions at their first layer,
truncated bulk positions experience a net electro-
static force to which they react via an inward re-
laxation. The original application of the model to
the low-index faces of Al yielded results in qual-
itative agreement with experimental observations.
Subsequent investigations have emphasized the im-
portance of crystalline effects, as well as the
influence of the inhomogeneous charge density
distribution at the surface. 'o Most recently, a
model which combined ad hoc short-range empi-
rical pair interactions with forces on the first
few layers arising from a step-function &P-elec-
tron density at the surface was employed to study
the (100) face of a-Fe a.nd Cu. "

To complement the above studies we describe
here a simple electrostatic model for surface re-
laxation. The method combines the contribution
to the force on ions in surface layers due to the
delocalized valence electron distribution with that
due to the interaction with the positive ionic
charges in the planar nets. Three models for the
electronic density in the surface region are studied
and compared: (a) an abrupt terminated step den-
sity profile, (b) an exponential variational form
(Smith), and (c) a self-consistent distribution de-
rived from the jellium model (Lang-xohn). '3 For
the exponential density profile, pseudopotential
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corrections are also incorporated in a simple way.
Under the influence of the forces acting on them,
ions in an arbitrary number of surface planes are
allowed to relax from their bulk positions, and the
coupled set of equations governing the planar dis-
placements are solved by a fast-converging iter-
ative technique. The method is material depen-
dent, in contrast to the original FH method. It is
easy to apply and yields correct trends when com-
pared with experimentally determined relaxation
values for several materials. Following the de-
rivation of the basic relations given in Sec. II, re-
sults obtained by the method are discussed in Sec.

Using the identity

d2+ ~ gK ~ (R-R ')
f r —r'/ 2vr K

where K and R denote the projections of the vec-
tors k and r onto the plane parallel to the Sur-
face plane, Eq. (1) can be written as

~vga
(r) ~f2rf egK'R

K

x d'~'P„r' e'~' 8~K'R'; z ~~z' .

II. EVALUATION OF THE SURFACE ELECTROSTATIC
FORCES

In this section we derive expressions for the
electrostatic interactions between ions in surface
planes. For the sake of brevity we discuss first
the case of a step-terminating electron density
which is then generalized to the other density pro-
files considered. The arrangement of ions in the
bulk terminated lattice is shown in Fig. 1(a): For
simplicity, we consider only surfaces character-
ized by a single interlayer spacing d before re-
laxation. Ionic layers located at —nd are embed-
ded in slabs of thickness d and of uniform nega-
tive charge density -(Ze/Ad), where Z is the
valency of the material and A. is the area of the
unit cell of the surface net. The system after re-
laxation occurs is shown in Fig. 1(b).

The force on an ion in layer m due to the charge
in a different layer n is evaluated by using a layer
summation method. "' The quantity of interest
is the electrostatic potential at point r due to the
charge in slab n:

*=d/2

Owing to the translational periodicity in the 2D
net, the second integral in Eq. (3) can be written
as

I= g 5(K- G) dsx'p„(r') e'~ e-'G'~' (4)
uc

where G is a reciprocal vector of the 2D net, and

the integral remaining is over a neutral unit cell
in slab n.

We now allow the ions in layer n to relax from
their bulk position to a new location z' = -[nd
+A(n)J Nex.twe ne. ed to specify the layer-shift
vectors defining the origins for the unit cells in
the various layers, For the fcc (100) and (110)
faces and the bcc (100) face, the layer shift vec-
tors are

(0, 0), n even
R„=

(a,/g, a,/2), n odd,

where a„a2 are the magnitudes of the sides of the
2D unit cell; other cases are treated in Appen-
dices A and B. Expressing the reciprocal lattice
vector as G = pb& + vb2 (p, , v integers), and intro-
ducing the function Po(n) defined as

0 E ~ ~ ~

-d/2

-a(0)

-d-n(1)

P6(n)
I, n even

I(-1)"'", n odd,
(6)

-3/ad we obtain

4m
I

(Ze) Q 6(K G)P (~) e+G[nd+ 6(n)]

{b)

FIG. 1. Schematic picture of the layer arrangement in
the terminated bulk crystal prior to (a) and after e)) re-
laxation. The bulk spacing is denoted by d and the dis-
placement of ions in layer n from their bulk position by
~6 ).

where the —and + signs correspond to the obser-
vation point r located above or below slab n, re-
spectively. Thegrime on the sum in Eq. (7) in-
dicates that the G=O term is excluded as a result
of charge neutrality. Combining Eq. (7) with (3)
yields for the z component of the electrostatic
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field at r[E,(r) =-8$„(r)/8z],

I

(r) g (Ze)Q e ("pe &&1 P'qn) e+&'&p((&+4 &n'(3 (6)

Taking z =-[md+ &(m)], and noting that e' '

=Po (m) for an ion in layer m, we find that the
force on ions in layer m due to the charge in layer
n is, in units of 2«(Ze) /A,

I I

F „=sgn(n —m) g Po(m)Po(n) exp[-G~ (n —m)d+b, (n) —h(m) ~], men.
G

The interaction of the ions in slab m with the negative charge in the same slab is obtained by using the
Poisson equation, which yields for the z component of the force in the same units as above,

F = 2A (m)/d .

Let us assume that relaxation from bulk positions occurs up to layer L, i.e. , for n & L, 4(n) =0, and

sum the contributions to the force on ions in layer m from these deep layers. The result is
CO I (po

p* ~ &g lmd+b (e) l p + -Gdn

n=l +i G n=L +f

For two-layer repeat sequences in the 2D layer shift vectors as in Eq. (5), F is given by

' Po(L+1)e +Po(L+2)e "p*&m~e-a&&r, - &s-~&»
m -2Cd p

G

The simultaneous set of equations for static equilibrium is

Q = g F „(rp, , b „)+ F (b, ) for m = 0, 1, . . . , L .
n=0

(10)

The solution of the above set
=b, ,-(n)+5,.(n), where i is the
sion of the forces in Eq. (13)

L

g a», 5,.(l') = b „ l = 0, 1,
l'=0

~ ~ ~ ) L (14)

of equations is achieved by a simple iterative method in which we set &,,&(n)

iteration number. The procesure is started with &&(n) =0 for all n Expan. -
to first order in 5,.(n) yields the following set of equations:

a„.= —g P~(l)P-(1')6 exp[-G
~

(l'- l)d+&;(1') —b,. (l) ~], l el',
G

a« = g g Po(l)Po(n)G exp[-G
~
(n —l)d + A,.(n) —4, (l) ~]

nas l G

+ Q o — 2'„—— Po(l)GexP[-G[(L —l)d —&,(1)]]+2/d,

(15a)

(15b)

b, = —g sgn(n —l) g Po(l)Po(n) exp[-G
l
(n —l)d+4&(n) —&,. (l) I]

ff/X G

Pg(l) ex [-G i(L —l)d —b,.(l) i] —2b, (l)/d. (15c)

e B(z-d /2)
p, ( )=p, (1p— -, p d (16a)

The values of 5, (l) in each iteration are obtained
from Eq. (14) by simple matrix inversion. Typi-
cally the solution converges after 3-5 iterations.

Exponential density profile

Having derived the basic relations for the step-
terminating electronic distribution, we turn now

to a generalization of the theory to include more
realistic descriptions of the surface electron den-
sity prof ile. First we employ an exponential form.

p, (z) = —,'n, e-'&'-'"', z & d (16b)

(16)

where no= —Ze/Ad and t3 is a variational param-
eter. I et us consider first the electronic field
at a point z in the first layer. Integration of the
Poisson equation yields

E.(p)=4p I p, (p')pp'+p. (p — ),

where Ep(z —~) —4anod/2. Using Eqs. (16a) and

(16b), we obtain
~8(z-d /2)"

E,(z) =4n'n(( z—
2P



LATTICE RELAXATIOÃ AT METAL SURFACES: AÃ. . .

Setting z = —&(0), we find that the force on the
first layer of ions due to the negative charge in
the outermost region is, in units of 2&(Z&) /A,

=2 e-()(5 (0&44 /21

F00 = —~(0) +00 2P

In the language of our iterative algorithm (b,„,
=(4),. + 5,.),

e-8[6] (0) +d /23't

8-at~; (O) d/2~
+—1- *

5 (0).d 2
(2o)

Thus to b0 in Eq. (15c) we need to add the factor
—(Pd) ' exp[- P[&,. (0) + d/2g and to a00 in Eq. (15b)
the factor -d exp[ p[&—, (0) +. d/2]}.

Next we consider the change in the force acting
on ions in the second slab. Since we require a di-
vision of the materia, l into neutral regions we need
to adjust the location of the boundary between the
outermost and the next region from its original
position at -d/2 to -d/2+ s. The shift in the
boundary is determined by the condition E(s —d/2)
=-47)'n0d/2, or using Eq. (18),

2P~ ~s(~-d) (21)

The electric field in the second layer is given by

s.(z) =4s f s( )d zz. ( z +).z
-d/2+s .

(22)

Thus to b, in Eq. (15c) we need to add
-(pd) 'exp[-p[6, (1)+ Sd/2p and to a» in Eq. (15b)
that term multiplied by P.

Lang-Kohn density profile

The importance of self-consistency in the ca,l-
culation of a number of surface properties such as
surface energies, work functions, adsorption, and
geometrical structure has been investigated and
demonstrated. Since the exponential density does
not include some features characteristic of the
electronic density at surfaces, such as Friedel
oscillations, we employ next the self-consistent
surface electronic density calculated by Lang and
Kohn" (LK) for auniform positive background model.
These charge densities have been tabulated for vari-
ous r, values in Table I of Ref. 13 and will be denoted
by nLK. Using our previous notation, the z component

Substituting Eq. (16a) in Eq. (23) and using Eq.
(22), then setting z=-[d+&(I)] for the second
layer and employing our iterative scheme, we ob-
tain

-8(b
g (f )+3d /2 J

Eii ——A,.(1) + 5,.(1) + ——5,.(1)

of the electric field on ions in the first layer of the
solid ean be written as

E,[-~,(0) —5, (0)]=Z.[-~,. (O)]+ 4vn, J-Z, (0)]5,. (O)

-h.;(0)
= —4w n,„(z)dz

oZe d
A.d

—4m n,„[-a,. (0)]5,.(0), (24)

f(l r' —r
I ) = 8(r o

—
I r ' —rI )

where r, and a, are the pseudopotential radius and
well-depth parameter, respectively, and 8 is the
Heaviside step function [8(x) = 1, x& 0 and 8(x)
=0, x& 0]. For a0- ~, the simplified Heine-Abar-
enkov pseudopotential becomes an Ashcroft pseu-
dopotential. "

If the pseudopotential cores do not overlap, then
the only change in the potential acting on an ion
is that due to the difference of its own pseudopo-
tential core from the Coulomb interaction,

ay„fr=-[nd+a(n)]a+ R]]

dYp r r —r

ro
= —2n dz p, (z —[nd+n, (n)]J

-rO

( ].
xl (r -4')-r +Izl).

0

For a constant charge density p, across the pseudo-
potential core, the integral in Eq. (26) yields a
constant potential,

6p„fr = -[nd+6(n)] z+ R) = 2wp0r0[1- —', (r0/a0)], (27)

from which the force Eoo follows. Accordingly
the term —2(4, , (0)/d in Eq. (15c) for b, is replaced
by (2/d) J „~4~'~n~„(z)dz+1, and in Eq. (15b) fora00
the term 2/d is replaced by (2/d)n „[-a,. (0)). To
include effects on ions in the second layer the
corresponding replacements in b, and a» are made
with the terms evaluated at z = -[d+ a,. (1)]. Notice
also that due to a difference in the choice of ori-
gin for the location of the first layer of ions at the
surface, the LK coordinates are shifted by +d/2
to agree with our convention.

Pseudopotential corrections

To incorporate pseudopotential corrections with-
in the framework of our model, we use a sim-
plified Heine-Abarenkov pseudopotential"" for the
electron-ion interaction. The difference from the
Coulomb interaction used in Eq. (1) and subse-
quently is given by the function
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and no change occurs in the forces exerted on the
ion. However, when the planes of ions relax in
regions of nonuniform electronic charge density,
the pseudopotential corrections do modify the for-
ces acting on the ions, as we illustrate for the

exponential density profile.
We consider first the case, where nd+ b, (n) + d/2

&r „and the exponential density to use in Eq. (26)
is that given in Eq. (16a). Carrying through the
integration in Eq. (26), we obtain

hh„[r=-[sd+h(n)]a+ R]=2rs, (r'[1 —-', (r /a)] —,e s""s s "en{[1—(r /a)] the()ar+ , sinh()r —()I0

e-]][nd+ /)[n) + d/2] (COthPr 1)
1

FVI 0 (30)

Note that this is the change relative to the results
obtained for the exponential density profile with a
Coulomb electron-ion interaction. The changes
with respect to the step-function density profile
results given in Eqs. (15a)—(15c) are

5a„=P55,

1
e
- 8[n d+ D(n) + d / 2l

I [1 —(, /, ) ] „thp,0 0 0

sinhl)r, )
1

e
—8[n d + 6(n)+d/ 2] cothPr' (31)

g joo0

If the pseudopotential core for an ion in the first
layer intersects the plane at d/2, i.e. , 6(0)+ d/2

'Y0, the pseudopotential corre ctions are ' obtained
by using both (16a) and (16b) for p, in the approp-
riate ranges in the integral in Eq. (26). For this
case, we will simply give expressions for the
changes relative to the step function density re-
sults in Eqs. (15a)-(15c):

6a), = — 1 —(r,/a, ) — e-8"o sinh]p[a (0) + d/2]]

1—1+ [a(0) + d/2] (32a)
a0

1 1
6b = — 1 —(r /a ) — e 8"0

x coth g[a(0) + d/2]]
1

+p( . -I&(0)+d/21)
a0

1
1 — — y0+& o +d 2

2a0 (32b)

The. change. in the force on an ion in plane n is
/h. F„„=d(h p„/db, (n), which in units of 2v(Ze)'/A is

— e-'L +'{"'+"" 1 —r a cothPr
1

nn pd 0 0 0

1.
+ sinhnr, —1),a()

which for the Ashcroft pseudopotential (ao- ~) re-
duces to

III. RESULTS

We have applied the methods described in the
previous section to investigate relaxation at the
low-index faces of several fcc and bcc materials.
A summary of characteristic parameters for the
(001), (110), and (111)faces of fcc and bcc crys-
tals is given in Appendix B.

Several studies of electrostatic contributions to
surface relaxation have been reported previous-

contribution of electrostatic forces arising from
the smoothed sp-election charge density is im-
portant, and cannot be neglected with respect to
short-range forces and broken bonds which gen-
erally, by themselves, predict outward relaxa-
tions. No systematic investigation has yet been
made, however, of the effects of physically reason-
able variations within an electrostatic model. We
will show that three such variations produce quan-
titatively significant effects: (1) multilayer re-
laxation, (2) charge density profiles, and (3)
pseudopotential corrections.

Table I illustrates the importance of multilayer
relaxation mechanisms for exponential charge
density profiles at Al and Na surfaces with no
pseudopotential corrections. Similar results are
obtained with the step function and Lang-Kohn den-
sities. The effect of allowing more than one or
two layers to relax is significant for those sur-
faces which undergo large relaxations, which in
Table I are the fcc (110) and the bcc (100) faces
(these are the least densely packed faces). In-
spection of the layer-by-layer displacements for
these surfaces reveals that allowing more layers
to relax does not merely give nonzero values for
the displacements of the deeper planes, but also
modifies the displacements of previously con-
sidered layers. For these faces, 3-6 layers par-
ticipate in the relaxation as compared to 1—3
layers for the other faces. A tendency of the dis-
placements to alternate in sign is noted, although
for Na(111), for example, all layers relax out-
ward. In general, after the first one or two lay-
ers, the magnitude of the relaxation decreases
exponentially as one goes into the solid from the
surface. In Table I and elsewhere, we use values
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TABLE I. Helaxation of the spacing between the first and second layers, &&2= l&(1) —&(2)]/d,
in% (—denotes a contraction and + an expansion), and layer by layer displacements for the
low-index faces of Al and Na using the exponential electron density, with values for the vari-
ational parameters P of 1.24 and 1.27 (a.u. ) ~, respectively, from Hef. 12. The integer l. de-
notes the number of planes allowed to relax. The numbers' in the fourth column are the values
obtained for &(n)/a, where n=0, 1, ' is the layer index.

Surface &(n)/a

Al(100)

Al(110)

Al(111)

Na(100)

Na(110)

Na(111)

1
10
1
2
5

10
1

10
1
2
5

10
1

10
1
2

10

-1.1
-1.2
-8.7

-18.2
21.2
21Q 3
+0.6
+0.6
-6.3
-9.5
-9.9
-9.9
-0.6
-0.7
+3.7
+3.6
+3.6

-0.0054
-0.0054,
-0.0309
-0.0397,
-0.0435,
-0.0436,
+0.0036
+0.0036,
-0.0317
-0.0349,
-0.0353,
-0.0353,
-0.0043
-0.0043,
+0.0108
+0.0108,
+0.0108,

0.0008, -0.0001

0.0248
0.0316, -0.0148, 0.0080, -0.0035
0.0318, -0.0151, 0.0086, -0.0045

0.000 01

0.0127
0.0139, -0.0044, 0.0015, -0.0004
0.0139, -0.0044, 0.0015, -0.0005

0.0003

0.0003
0.0003, 0.0001

for P taken from Smith. " We have repeated all
exponential density calculations using P values
given in the more recent work of Ma and Sahni, "
and found qualitatively similar results.

The possibility that a number of layers may
participate in the relaxation is potentially signi-
ficant for LEED model calculations of scattered
electron intensity versus incident energy (IV)
profiles. In most LEED analyses of clean metal
surfaces, only the top layer of ions has been al-
lowed to relax in attempting to fit the experimen-
tal data. In a recent study of Cu(110) LEED in-
tensity spectra, it was found that the structural
model which fit the data best is an -1%~ contraction
of the first-second layer spacing, accompanied
by perhaps a slight contraction or expansion be-
tween the second and third layers. " Similarly,
for the He(1010) surface, about a 17% contraction
of the first-second layer distance and a modest
expansion between the second and third layers ap-
pear to give the best agreement with experiment. "
In light of these recent studies and our results it
is suggested that multilayer relaxation models be
considered more routinely in LEED analyses and
in the interpretation of ion scattering and channel-
ing experiments.

Table II illustrates the dependence of the relaxa-
tion upon the model used for the electron charge
density. The step-function density yields contrac-
tions for all of the faces studied. The exponential
density profile produces smaller contractions
than the step-function density for the (001) and

(110) faces, and predicts expansion of the first-
second layer distance for the (111)faces of all
three materials. With the Lang-Kohn densities,
the calculated relaxations are generally of the
same sign as the exponential density results, but
in some cases are significantly different in size.
The charge density dependence of the relaxation
appears to be stronger for the higher x, -value
materials. This can be rationalized by consider-
ing the Lang-Kohn charge densities for Al, Li,

Surface
Step Exponential

~23 ~i~ » 3

Lang-Kohn
&~3

Al(100)
Al(100)
Al(111)

Li(100)
Li(110)
Li(111)

-2.4
-26.3

0.0
-10.9
-0.9
-0.9

0.3 -1.2 0.2 —2.0
15.8 -21.3 13.3 -23.9
00 +06 00 +03
4.0 -8.7 3.3 -16.3
0.1 -0.3 0.0 -2.0
0.0 +6.7 0.3 +9.0

0.4
14.4
0.0

-0.4
-3.1

Na(100)
Na(110)
Na(111)

-10.9
-0.9
-0.9

4.0 -9.9 3.7 -20.3 9.4
0.1 -0.7 0.0 -2.6 -0.6
00 +36 01 +40 -41

TABLE II. Relaxation of the first-second and second-
third layer spacings 4&2 and 4)3 +mn = [D(m) —6(n)l /4,
for the low-index faces of Al, Li, and Na using three
models for the charge density: (a) step-terminating,
(b) exponential, and (c) Lang-Kohn. Values for 6&2 and

~&3 are given in percent. For the exponential density
profile results, the parameter P was taken to be 1.24,
1.24, and 1.27 (a.u. ) ~ for Al, Li, and Na, respectively.
Ten layers were allowed to relax for all results listed.
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1.0 k

and Na, which are shown in Fig. 2; the I i density
was obtained via a six-point, two-dimensional in-
terpolation of the charge densities given in Table
I of Ref. 13. As seen in the figur e, the Fr iede1
oscillations at the surfaceof Al (r, =2.0}are much
smaller than for the higher r, materials. In an elec-
trostatic force model, such diff erences in negative
charge accumulations can have a significant effect
on the results. As noted by Alldredge and Klein-
man (AK), "this may account for the apparent
success of the calculation by FH' for Al, where a
step-function density was assumed.

The effect of pseudopotential corrections is
shown in Table III. Both Ashcroft (empty core)""
and simplif ied Heine-Abarenkov pseudopotentials"
have been employed in conjunction with the expon-
ential density prof iles. The pseudopotential cor-
rections lead to substantial changes in the relaxa-
tions calculated, and generally tend to favor ex-
pansion, or equivalently, to r educe contraction.
Plausible variations in the pseudopotential param-
eters produce modest bui in some cases non-neg-
ligible changes. Unrealistically large expansions
are predicted for the bcc (ill) faces, ; these are
the only cases treated for which the Ashcroft pseu-
dopotential cores for atoms in the first layer ex-
tend well beyond the plane at —,'4.

In Table IV, we compare our results for Al, Li,
and Na with available previous studies, "' '"' ' in-

eluding LEED analyses. For the step-function
density there are substantial differences between
the one-layer relaxation results and those obtained
with the original FH model, ' which considered only
the interaction of a surface ion with the smoothed
electron density in its own surface Wigner-Seitz
cell. Further changes are evident when more
layers are allowed to relax. Using a one-layer
relaxation model, AK' have emphasized the im-
portance of crystalline effects in their study of
the Li(100) surface. They conclude that the Lang-
Kohn density yields an electrostatic force on the
first layer of about one fourth of the total crystal-
line result. Table IV shows again that multilayer
relaxation mechanisms, electron density varia-
tions and pseudopotential corrections all can pro-
duce large changes comparable in magnitude to
other crystalline effects. Our electrostatic model
is sufficiently simple that we do not want to belabor

TABLE III ~ The effect of pseudopotential correction on
relaxation of the first-second layer spacing 4&& for the
low-index faces of Al, Li, and Na. Values for &&2 are
given as a percentage of the bulk interlayer spacing d.
The first column in the top half of the table, labeled
None, gives the results obtained with the exponential
charge density profile and no pseudopotential correc-
tions. The next four columns, labeled Al, A2, HA1 and
HA2, list values obtained using the exponential density
and two Ashcroft and two simplified Heine-Abarenkov
pseudopotentials The pseudopotential radii and well-
depth parameters for the four models are given (in
atomic units) in the lower half of the table. Values
used for P were 1.24, 1.24, and 1.27 (a.u. ) for Al,
Li and Na, respectively, and ten layers were allowed
to relax in the calculations.

Surface None A2 HA1 HA2

0.5

Al{100)
Al(110)
Al(111)

-1 2 +0 2 +0 2 +0 1 +0 5
-21.3 -14.5 -14.7 -15.2 -13.1
+0.6 +1.4 +1.4 +1.3 +1.5

I.i(100)
Li(110)
Li(111)

Na(100)
Na(110)
Na(111)

-8.7
-0.3
+6 ~ 7

-9.9
-0.7
+3.6

+0.1
+1.4

+41.0
-5.5
+0.1

+29.8

-6.2
+0.2

+ 18.7
-6.2

0.0
+26.7

-4.6
+0.4

+23.5
-6.0
-0.1

+21.7

-3.8
+0.6

+ 24.8

3%7

+0.5
+26.1

-1.0 "0.5 0 0.5
Z(2i&/k

fp Vp

Li
ap fp ap

FIG. 2. Lang-Kohn charge densities derived for a uni-
form jellium model {after Ref. 15), for ~,=2.0, 3.25,
and 4.0, solid, dashed, and dotted curves, respectively.
The coordinate z is in units of the Fermi wavelength,
and the densities eLK in units of the bulk density
np= ze/Ad. To agree with our convention that the first
ion layer is located at z = 0, the coordinates in this figure
are to be shifted by (+ d/2), where d is the layer spacing
in the unrelaxed lattice.

A1 1.131
A2 1.12
HA1 2.0
HA2 2.0

1.82
1.99

1.678
1.06
2.8
2.8

1.758
1.66

2.32 3.4
2.38 3.4

~ Reference 21.
"Table XV of Ref. 17.
c Table 8-3 of Ref. 16; Z/az —-(40+A&+A~)/3.

Table 8-3 of Ref. 16; Z/ap ——(Ap +A.g)/2.

2.87
3.11
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TABI,E IV. Comparison of results obtained for the relaxation of the first-second layer distance 4&2 for Al, Li, and
Na surfaces. Values for 4&2 are given as percentages of the bulk interlayer spacing d. The columns labeled FH, AK,
and TF give values for ~&2 taken from Refs. 8, 10, and 22, respectively. For the present calculations, the columns
labeled a, b, b', and c indicate that the following charge densities were used: (a) step function, (b) exponential, P as in
Table II, (b') exponential, p as in Table II, with Ashcroft pseudopotential corrections (A2 in, Table II), and (c) Lang-
Kohn. The LEED results in the last column are taken from a recent compilation in Table 2 of Ref 1.

FH AK
1 layer

b'

P resent calculation
10 layers
b b' LEED

Al(1oo)
Al(110)
Al(111)
Li(100)
Na(110)

-4.6
-16.0
-1.6

-10.4' -20.0

+2.0
0.0

~ ~ ~

-2.1
-11.4

0.0
-7.0

1 01
-8.7
+0.6
-5.5

-0.8 -0.6

+0.2
-5.0
+1.4
-3.8

0.0

-1.6
-10.2
+0.4
-9.0
-3.1

-2.4
-26.3

0.0
-10.9
-0.9

-1.2
2103

+0.6
-8.7
-0.7

+0.2
-14.7
+1.4
-6.2

0.0

-2.0
-23.9
+0.3

-16.3
-2.6

0
] 5

+2.5

FH model value given in Ref. 10 (AK).

TABLE V. Relaxation of the first-second and second-
third layer spacings &&2 and 4&3, in percent of the bulk
interlayer spacing d, for the low-index faces of Cu. Re-
sults are given for five model calculations, as indicated
in the first column: step-function density, exponential
density profile with two values for p (in a.u.), exponen-
tial density profile with the same two values for P and
pseudopotential corrections for an Ashcroft pseudopo-
tential with r& ——0.81 a.u. (cf. Table XV of Ref. 17). Ten
layers were allowed to relax in all of the calculations.
The last row of the table gives LEED analysis results
from Refs. 1, 19, and 24.

Model
(1oo) (»o) (111)

+12 +23 12 23 12 23

Step
Exponential, p = 1.23
Exponential, P = 0.87
Ashcroft, P = 1.23
Ashcroft, p =0.87
LEED

-2.4 0.3
-0.7 0.1
+2.2 0.0
+0.3 0.0
+3.7 0.0
~0

-26.3
-19.3
-10.2
-14.9

4 9
-10.0

15.8 0.0 0.0
12.4 +0.9 0.0
9.0 + 2.8 0.1

10.3 +1.5 0.0
6.9 +3.7 0.1

+2.5 -4.0

comparisons with experimentally derived numbers,
but we do want to point out that the ten-layer re-
laxation results are in good qualitative agreement
with LEED analysis, particularly for the expon-
ential density with pseudopotential corrections.

Table V presents some results for the low-index
faces of Cu. Ma et a). ' have investigated the
Cu(100) surface using a combination of empirical
pair potentials and electrostatic forces for a step-
function electron density, and predicted a 0.5&0

expansion of the first-second layer spacing. Our
calculations give small contractions or expansions
for the (100) face depending on the model and the
parameter values employed. LEED analysis for

Cu(100) indicates that very little relaxation oc-
curs." For the (110) face, our results show a
sizable contraction in the first-second layer dis-
tance. This can be brought into agreement with
the most recent LEED analysis" by varying the
exponential charge density parameter P (row 3 in
Table V), but the O'Po expansion of the second-third
layer spacing that is then calculated is much larg-
er than the ~2.5~0 determined from the LEED
data.

On the whole, we observe that our simple elec-
trostatic model results give relaxation trends for
the low-index faces of fcc and bcc sp-bonded met-
als that are qualitatively consistent with those
obtained via analyses of diffraction data. We have
demonstrated the importance of multilayer relaxa-
tion mechanisms, charge density variations, and

pseudopotential corrections. Particularly in view
of these effects, several ways to improve the mod-
el are suggested. One would be to employ crystal-
line electronic charge densities with variations
parallel as well as perpendicular to the surface,
which would provide added sensitivity to the crys-
tal face of the material under study. ' " A
second, more difficult, but clearly important re-
finement would be to use self-consistent charge
densities which are recalculated in each iteration
in the adiabatic approximation. Another avenue of
improvement would be to augment the model with
short-range interactions. " As seen from Eq. (14),
the coefficients a» can be regarded as static in-
terplanar force .constants that can be related to
appropriate linear combinations of interatomic
force constants. "" From empirical fits of the
latter to the phonon dispersion curves, an estimate
of the additional short-range interactions mjght be
obtained. %e are working at present to incorporate
these modif ications.
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APPENDIX A

The derivation of the electrostatic forces pre-
sented in Sec. II for the fcc (100) and (110) faces
and the bcc (100) face is extended in this Appendix
to the (111) faces of these cubic structures. Fol-
lowing the steps leading to E(I. (9), we obtain for
the forces on ions in the mth layer due to those
in the nth layer an identical expression, but with

PG(n) defined as (see Appendix B)

Po (n) = exp[2)(i(p. + v) mod(n, 3)/3],

where the mod(a, b) function is defined as

mod(a, b) =a —[a/b]b,

(A1)

and [x] is the largest integer which does not ex-
ceed x. For the expression for F corresponding
to Eq. (12), we obtain

e -Gd
E =Q, a~ (1+X+X )PG(L+ 1)

G

xP +
(~ ) G((I,-m) d --d (m)]

g Vl (A2)

X= exp[-Gd+ (2)(i/3)(p. + v)].

APPENDIX B

In this Appendix we compile crystallographical
relationships for the low-index faces of cubic
structures. The following notations are used:

a„a, are the primitive real-mesh translation
vectors.

b„b, are the primitive reciprocal-mesh vectors;
a, - b,. = 2~6,, .

6 = p, b, + pb, is the reciprocal-mesh vector.
A, & are real and reciprocal unit mesh areas.
d is the interlayer spacing in the unrelaxed real

lattice.
n, is the repeat sequence for planes, i.e. , plane

n+n, has the same origin as plane n (in 2D).
PG(n) = exp-iG R„ is the phase function for plane

n. The indexing of planes is n = 0, 1, . . . , with
n = 0 being the top-most surface plane.

Table VI lists the above for the various fcc and
bcc faces.
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