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Effect of charge-density waves on the magnetic susceptibility
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The magnetic susceptibility of a model charge-density wave (CD%') system is discussed. It is

found that the orbital part of the susceptibility can be large and paramagnetic due to mixing of
states above and below the CDW energy gaps by the magnetic field. The paramagnetic contri-

bution is anisotropic and depends on the square of the sine of the angle between the magnetic
field H and the CDW wave vector Q. The relevance of these findings to recent measurements
of the susceptibility of niobium triselenide is discussed.

INTRODUCTION

The novel properties of niobium triselenide
(NbSe3) have been the subject of considerable inves-
tigation in recent years. To date NbSe3 is unique
among the materials known to exhibit charge-
density-wave (CDW) distortions in that it contains
two, apparently unrelated CDW's, with transition

temperatures marking their appearance at Ti =142 K
and T2=S8 K. The periodicities of the two charge-
density waves, [Qt =(0, 0.243, 0) and Q2=(0.5,
0.263, 0.5)], have been directly observed by elec-
tron" and x-ray' diffraction. Of considerable in-

terest have been the temperature and (especially)
the electric-field' ' dependences of the resistivity of
NbSe3. Electric-field-dependent effects in the ther-
mopower and the presence of periodic voltage fluc-
tuations in the noise spectrum' accompanying the
nonohmic resistivity have recently been discovered.

Interpretation of many experiments is difficult be-
cause of the lack of complete band structure informa-
tion. Owing to the complicated crystal structure, "
which has six formula units in the monoclinic unit
cell, existing band structure calculations" do not al-

low determination of the Fermi surface, even in the
undistorted state. Magneto-oscillatory transport
measurements" ' are made at temperatures well

belo~ the CDW transitions, and therefore only give
information about the Fermi surface for electrons in

the distorted lattice. Moreover, without a calculated
Fermi surface, interpretation of the measured Fer-
miology data is unclear.

One quantity of interest is the fraction of Fermi
surface destroyed by the presence of the CDW ener-

gy gaps. From analyses of the resistivity Ong" and
Ong and Monceau' concluded that the fractions of
the Fermi surface affected by the CDW's were 20'/o

at Tt and 60'lo at T2. The very small low-

temperature electronic specific heat" ( ( 5 erg/g K)
supports the conclusion that the remaining density of

states at the Fermi surface is small when both
CDW's are present. In order to elucidate further the
density of states, Kulick and Scott" measured the
static magnetic susceptibility of compressed powder
samples of NbSe3. While their analysis was compli-
cated somewhat by an uncertainty in the core di-

amagnetism, they concluded (unambiguously) that if
the changes in the susceptibility are interpreted in

terms of the removal of density of states, then the
fractions affected at the two transitions (and especial-
ly T2) are significantly smaller from those found
from the analysis of resistivity. They concluded that
there must be an additional paramagnetic contribu-
tion to the susceptibility which accompanies the
CDW's in order to resolve the discrepancy.

The purpose of this paper is to demonstrate that in

the presence of a CDW which gaps a finite part of
the Fermi surface there is an additional zero-
temperature paramagnetic contribution to the suscep-
tibility. (There are additional temperature-dependent
effects which will be the subject of later study. )
Moreover, this additional paramagnetism is depen-
dent on the square of the sine on the angle between
H and the CDW wave vector Q. It is, thus, zero
when H and Q are parallel. The anisotropy is a for-
tunate occurrence, because without band structure
and Fermi surface information it is not possible to
calculate the size of this contribution (except to
demonstrate that it can be important). By perform-
ing measurements on aligned samples, it should be
possible to measure this term and to properly deter-
rnine the density-of-states effects.

II. MODEL FERMI SURFACE

The actual Fermi surface of NbSe3 is not known
and is likely to be very complicated with possibly
several pockets of electrons and holes. In this paper
we choose to simplify the calculation by confining
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discussion to a model Fermi surface.
Consider a model system in which the electron en-

ergies in the absence of the CDW are given by

a-„=t [k, /2m~+(k» +k )/2m»]

For simplicity the effective masses for the y and z

directions have been taken as equal. We take the
wave functions in the absence of the CDW to be
plane waves. The generalization to Bloch functions is

not difficult, but is not essential to the discussion.
We now pretend that there is a CDW present so

that each electron experiences a one-electron poten-
tial

V(r) =GcosQ r (2)

G is the CDW energy gap and Q is the CDW wave
vector. For this discussion Q is chosen parallel to x
so that m„(m~) is the electron mass characterizing
dispersion parallel (transverse) to Q. The essential
feature of the energy in Eq. (1) is the finite disper-
sion transverse to Q.

The CDW potential in Eq. (2) mixes the unper-
turbed state (with wave vector) k with k + Q and

produces gaps in the one-electron energy at k
1= + t Q. Using first-order perturbation theory, it is

easy to find the wave functions and energies for
states below and above the gaps. Because this pro-
cedure is well known, we do not catalog the results
here but will call upon them when needed.

We wish to describe the case in which the Fermi
surface contacts the CDW energy gaps in a finite
area, and we take only states below the gaps to be oc-
cupied at zero temperature. With a change in vari-
ables,

FIG. 1. Cross section of model Fermi surface. With no
CDW present, the cross section is elliptical. With a CDW
present, the Fermi surface contacts the CD% energy gaps in

necks of radius Kpo. g is the CD% wave vector.

u =k»/Q, u=k, /Q

w (k, + —Q)/Q, k, (0
w = (k„—

z Q)/Q, k, )0

(3)

The number of electrons enclosed by the Fermi sur-
face is easily found to be

W= Q Jt dwd
2n, 2

t i

the energy for an electron in a state below the gaps
labeled by wave vector k is approximately

E-„=( —,'it'Q') [(u'+ u')/m»

1

3

Ka+ ( —+a )

+ [ w'+ —,
' —( w'+ a') '~']/m, } (4)

—e Ina —a —— . (7)2 1

12

where a =—m„G/t'Q' As in Fig. l, let th. e radius of
the (circular) neck, where the Fermi surface contacts
the CDW energy gaps, be ~aQ. At the gap on the

right, k = TQ and
1

E» = ( —,lr'Q') [Ka/m»+ ( 4
—a)/m, ]

From Eqs. (4) and (5) the equation for the Fermi
surface in terms of w and K —= (ut+ v')'r' is

K k +(m»/m~)[(w +a )' —a —w ] . (6)

N (ok /3na) (m»/m, )

It is easy to show for both the unperturbed and
perturbed Fermi surfaces that

d k = ( m»/gt) dE-„d $ dk„

(s)

where $ is the usual angle in cylindrical coordinates.

If the diameter of the unperturbed Fermi surface
along the x direction is 2kp, then the number Np en-
closed by the unperturbed Fermi surface is
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III. SUSCEPTIBILITY

Before turning our attention to the main subject of
discussion, for completeness we calculate the Pauli
susceptibility of the model system. Using Eqs. (8)
and (9) the Pauli susceptibilities of the unperturbed
(X~0) and perturbed (X~) Fermi surfaces are

X~o = p,
t

my k 0/vr &/I

X~ = p, g'm~g/2n'k'

(10)

where p, g is the Bohr magneton.
When the CDW is present, the Fermi surface is

described by a number of parameters: N, Eq, Kp,

Q, G. (We assume ko, m, and m~ are known for the
unperturbed case. ) Equations (5) and (7) give two
relations among these. If the Fermi surface consists

of only the one piece under discussion, then N must
be equal to Np. If there are additional pieces to the
Fermi surface, then a repopulation of the various
pieces may occur in going to the CDW state.

We now turn our attention to the orbital or di-
amagnetic susceptibility. The theory of the diamag-
netic susceptibility of metals has been studied by
many workers. It is convenient here to use the
results of Misra and Roth' who considered the case
of nearly free electrons and included the case in
which electron states near the energy gaps are occu-
pied. A convenient starting point is Eq. (6.6) of Mis-
ra and Roth modified for the present notation. ' If
coordinates are chosen such that the magnetic field is
H = Hz sintt+ Hx cost), Q =Qx, and for the present
m„= m~ is the free electron mass m, then the orbital
susceptibility is

2

1

G2 1 ky

tr'h' ' " [(Q'+2 kg)' +4n']' ' 6 [(Q'+2k g)'+4a']'r'

G2 8k''+—d'k I(E-„)
k2 k [(Q2+2/, g)2 y4 2]2 [(Q2+2/. Q)2+4~2]1/2,1+ (12)

X)= —
3 Xp
1 (13)

where X~ is the Pauli susceptibility. The case m„
& m~ does not appear to have been considered in the
literature and is not of primary interest here since it
is reasonable to assume that Eq. (13) would be modi-
fied by some suitable average of the masses.

It is straightforward to examine the other (aniso-
tropic) terms on the right-hand side of Eq. (12) by
expanding the integrand in a power series in 2mG/
ir'Q' = G/4EF In each term the . integration leads to
an additional factor of order G/4EF due to the small
number of electrons in the strongly perturbed regions
near the energy gaps (see Fig. 1). Consider, for ex-
ample, the last term in Eq. (12). The leading power
of G is obtained near the gap where g'+2k„g & n.
The integrand is of order G ', and the additional fac-
tor of G from the integration makes the leading term
of order G '. It is easy to show that all the other
terms in Eq. (12) contribute at most to order G '.
We, therefore, confine our discussion to evaluating
the last term in Eq. (11), since it will dominate for
small G, and label it X~.

f (E-„) is the Fermi occupation factor and f' —= df (E)/
dE A factor of 2 has been included to account for
the two energy gaps.

It is convenient to label the first term on the
right-hand side of Eq. (12) X]. This term is immedi-
ately evaluated as

Xp=
32@,sm m, G Q sin tt

m 't'n'

x f d k f(Ek)k [(g —2k„g) +4a ] (l4)

It is not difficult to evaluate Xq to leading order in
G to obtain

4II, am KrjNEF(m Ktt/m~+ 6 ) sin t)
Xp=—

23 m m~ G ( m Kf&/m~ + —)
(is)

where the expressions for EF and N in Eqs. (5) and

An alternative derivation of Xq is given in the Ap-
pendix. There it is shown that X~ arises from the
change in energy due to mixing by the magnetic field
of states (with the same wave-vector label) in dif-
ferent bands. Hence, X~ can be called the interband
orbital susceptibility. The origin of the positive
(paramagnetic) sign of X~ is easily seen by the follow-
ing argument. When two states are mixed in pertur-
bation theory, the state with the lower energy is

pushed still lower in energy by —5, (b, )0), while
the higher one is raised by A. If only the lower state
is occupied, the susceptibility is given by X = —8'
x ( —5)/I)H' and is positive. X~ is an example of
Van Vleck paramagnetism involving extended states.

In the Appendix the form of Xq for m„& m~ is
derived with the result
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(7) have been used.
As explained above it is not possible to estimate

convincingly the size of X2 because there is little in-

formation on the various parameters involved. How-
ever, the ratio of X2 to the Pauli susceptibility is pro-
portional to (EF/G)' so that it would not be surpris-
ing to find a large X2 for small CDW energy gaps.
An interesting feature of X2 is its dependence on m~,
which characterizes the curvature of the electron en-
ergy in a direction perpendicular to Q. Within the
context of the model Fermi surface chosen here for
calculational expediency, increasing m~ serves to
make the system more nearly one dimensional.
From Eq. (15) X2 —m„' and, thus, decreases as the
system approaches one dimensionality. As noted in
the Appendix, X2 is identically zero for a true one-
dimensional system.

An important property of X2 is its anisotropy.
From Eq. (15) X2 is seen to be zero when H is paral-
lel to Q. Thus, a measurement of the angular depen-
dence of the susceptibility of carefully aligned sam-
ples would serve to determine X2. The remaining
susceptibility would then give the desired information
about the density of states at the Fermi surface.

From the result in Eq. (15), it would appear that X2

will diverge as G 0; i.e., the susceptibility is infinite
in the limit that the CDW vanishes. The source of
this unphysical result is the tacit assumption that only
states below the CDW energy gaps are occupied, To
examine more closely the G 0 limit, consider the
case in which the Fermi surface consists of only this
one piece. Since the unperturbed model Fermi sur-
face has been taken to be an ellipse as in Fig. 1,
states above the gaps will become filled as G 0.
Filling of states above the gaps will begin when G is
sufficiently small so that the energy of states above
the gaps is less than that of the states belo~ the gaps
(at finite transverse wave vector) which become pop-
ulated in the presence of the CDW. This is an irn-

portant point which requires further study. Unfor-
tunately, the simple model chosen for this study
(although adequate for the discussion of magnetic
field effects) is not sufficient for questions related to
the energy of the CDW since the CDW state is not
energetically favorable in the first place.

Although the G 0 limit cannot be discussed in
detail, it is possible to see what will happen. The
states above the gaps which become filled as G 0
contribute to the susceptibility with opposite sign (as
is usual in perturbation theory) and cancel the most
divergent behavior of the interband susceptibility. It
is a tedious (although not a difficult) exercise to start
with the complete expression, Eq. (12), for the orbi-
tal susceptibility and to demonstrate that the aniso-
tropic part of X„b does go to zero as G 0 in the
case of an isotropic effective mass. The generaliza-
tion of Eq. (12) to anisotropic effective mass, the de-
tailed stud& of the intraband terms in the orbital sus-

ceptibility, and an investigation of finite temperature
effects is an important area for further research.

IV. CONCLUSION

It has been shown that when a CDW truncates a
finite part of the Fermi surface, there can be a large,
paramagnetic contribution X2 to the susceptibility. X2

arises due to the virtual mixing of states below and
above the CDW energy gaps by the magnetic field
and is an example of Van Vleck paramagnetism for
extended states.

An important property of this paramagnetic contri-
bution to the susceptibility is its anisotropy. It was
found that X2 varies with the square of the sine of
the angle between the magnetic field H and the CDW
wave vector Q. Thus, measurements of the anisotro-
py of the susceptibility for aligned samples can deter-
mine X2.
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APPENDIX

0( )=Z Jd'kf (k) '''d„-„(r) (A1)

in the coordinate representation, then in the Bloch
representation

'p= [fp(k)ft(k)f2(k) ] (A2)

is an (infinite) column vector. In this representation
the coordinate operator r, for example, is

r il'7 „+X (k)- (A3)

The purpose of this Appendix is to demonstrate
that the orbital contribution to the susceptibility la-
beled X2 above arises due to the change in energy
resulting from the (virtual) mixing of states above
and below the CD% energy gaps by the magnetic
field. It is convenient to use the Blochtp" (or crystal
momentum) representation. This method has been
previously used by the author in a microscopic
derivation of the equation of motion of a CDW in a
magnetic field, "and further details of its application
can be found therein.

If a general wave function 4 is
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where I is an (infinite) unit matrix and

X,(r)—= i Jd'k „-,(r)'7-, -( ) (A4)

Note that the off-diagonal matrix X connects states

with the same (reduced) wave vector k in different
bands n and n'.

The Hamiltonian in the absence of the magnetic
field is

A = —,
'

H x (r —vGt)

y=(1/2c)(H x vG) r
(A7)

v G
=—'7-„E(k)/tt is the group velocity of an electron

with energy E(k).
If H = H cosHx + H sinK, the Hamiltonian at time

t =0 (Ref. 25) is H = Ho+ H', and

H' = (e/2m„c) H sin&yp„

+ (e/2mzc) H(sin8xp, —cost)zp, )

+(e 2/m~ c) Hcsogyp, —(e/2c)(H && vG) r

(AS)

The A' term has been dropped since it does not con-
tribute to the final result.

The wave functions in the absence of the magnetic
field are those which diagonalize Ho. The CDW po-
tential G cosQ r can (for our purpose) be separated

]
into two parts, one which produces the gap at k = —,Q

and another which produces the gap at k = ——,Q.
The former can be diagonalized on the basis of k and
k —Q with the result for wave functions below and
above the energy gaps

$-k=e'"'' cosg-k —e'k '' sin(-k —= u-ke'k''

4-=e'"'' Sin(-+e'(k ~) r COS( =U etk r
k k k k

(A9)

The energies of the states above and below the gaps

H, =p„'/2m, +(pz'+p, ')/2mz+ 6 cosQ r . (AS)

As above, Q is chosen parallel to x. In the presence
of the magnetic field, the Hamiltonian is

[p +eA (r)/c] [pz+2eAy(r)/c]zH= +
2mx 2m@

+ [P + ( )/ +G Q- d, (-„) (A6)
2m'

A( r ) and Q( r ) are the vector and scalar poten-
tials which are properly chosen" in the (time-
dependent) Jones and Zener gauge"

are

E+(k) =-,' (a-„+e-„o) + —,
' [(a-„—e-„o)'+G']'",

{A10)
where e-„ is given in Eq. (I). The coefficients in Eqs.
(A9) are determined by the relation

sin 2t):-„=G/[E+( k ) —E ( k ) ] —= G/lV(k) (All)

and are independent of k~ and k, .
In the Bloch representation the effect of H' is to

perturb the basis functions u„-„( r ).' " Before con-
sidering H' of Eq. (Ag), it is instructive to consider
the effect of two typical terms, H] = C]x and
H2 = C2xp~, where C] and C2 are constants of no in-
terest other than to give overall units of energy.

The effect of H] on, say, the basis function u-k and
v-k of Eqs. (A9) is to mix them according to Eq.
(A3). The perturbed basis functions which diagonal-
ize Hp+H] to first order are easily obtained. The
perturbed function u-„ is'~» 2p 24

(u-„/i C, B/Bk„/u-„)
u-„" = uk+ vk

" ", (A12)
E (k) -E (k)

and v-k is obtained mufatis mutandis. Equation
(» .

(A12) resembles the usual perturbation theory result
except that the u„-„'s appear rather than the $„-k's
and x is replaced by i B/Bk„.

Similarly, under the action of H2,

(v-„/(i'+ B/By) B/Bk„/u-„)
=uk +fC2vk

E (k) —E+(k)
(A13)

Since the coefficients cos(-k and sin(-k in Eqs.
(A9) are independent of k~ and k„several of the
terms in H' do not contribute. Calculating the
change in energy 4E( k ) to second order in H for an
electron in a state below the gap using the perturbed
function u-k obtains(])

EE(k) = —e H tt G k g /4m m W

The expression for X2 in Eq. (14) follows by sum-
ming EE(k) over occupied states, multiplying by 2

to account for both gaps, and using the well known
relation between X and the total change in energy
/t E; i.e. , X —= —(BzhE/BH').

It is worthwhile to note that for a truly one-
dimensional conductor, AE( k) is identically equal to
zero because matrix elements such as those in Eqs.
(A12) and (A13) are zero when there is no disper-
sion perpendicular to the CDW direction. Thus, in a
one-dimensional conductor the paramagnetic X2 ac-
companying the CDW is equal to zero. This result is
in agreement with experimental measurements of the
susceptibility of tetrathiafulvalene-tetracyanoquinodi-
methane. '6
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