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We have observed quantum-electromagnetic waves in pure bismuth samples. The quantum nature of these
waves follows from the following: (1) the oscillating behavior of the microwave absorption versus magnetic
field H displays A(1/H) periods related to the extremal cross-sectional areas of the Fermi surface, (2) for H
nearly orthogonal to the wave vector §, the amplitude of the oscillations diminishes and the periods are
related to the nonextremal areas. The peculiar physical aspects of this phenomenon are that the cross-
sectional areas are the largest ones in bismuth and that resonances are missing below a certain value of the

Landau quantum number.

I. INTRODUCTION

An oscillating behavior of the microwave surface
impedance, as a function of the magnetic field H,
is to be expected in each metal for which de Haas-
van Alphen or quantum ultrasound oscillations have
been observed, because the transport phenomena
are affected by the energy-level quantization in a
magnetic field. So far, however, no experimental
evidence exists of this effect, notwithstanding the
large number of electromagnetic excitations that
are possible and have been detected in metals. A
good review of the subject can be found in a paper
by Kaner and Skobov.!

In the infrared range, resonances were found in
bismuth, under the condition Zw > €, (where € is
the Fermi energy), owing to both inter? and intra-
band? transitions between Landau levels. In the
microwave range (10-100 GHz) the most important
effect is cyclotron resonance which is a classic ef-
fect (Fw <kgT <ep at helium temperature), while
the sole quantum effect observed by many authors*™
consists in a modulation of the Alfvén-wave analog
to the Shubnikov—de Haas effect for the resistivity.
Its physical origin lies in the energy dependence of
the relaxation time 7 and affects the Alfvén-wave
damping.

At any rate, no one has observed resonances due
to Landau levels crossing the Fermi level in the
collisionless-damping regime except Spong and
Kip® who measured an oscillating microwave ab-
sorption of the de Haas—van Alphen type in alum-
inum. The analysis of these authors is devoted to
finding the correlation between surface impedance
and susceptibility measurements: They point out
that the two methods are complementary. Demik-
hovskii and Protogenov9 in a recent theoretical
paper have stressed the prominence of quantum-
electromagnetic waves for metals and semimetals
with different carrier dispersion laws. They con-
clude by bringing to the attention of experimental-
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ists these, at that time unobserved, quantum-
electromagnetic excitations.

In a previous paper'’ we presented a set of mea-
surements showing an absorption thought to be of
the de Haas~van Alphen type. In this paper a com-
plete set of measurements is presented which
shows that the found microwave absorption is sim-
ilar to the quantum giant oscillations of ultrasound
absorption. That is to say, it is explicable in terms
of energy and momentum conservation when a pho-
ton is absorbed by an electron whose Landau ener-
gy level crosses the Fermi level.

This statement is based on the fact that the per-
iods A(1/H) of the oscillations are related to the
extremal cross-sectional areas of the Fermi sur-
face when H is far from orthogonality with respect
to the microwave wave vector d, while, as H be-
comes near orthogonal to , nonextremal cross
sections are measured. Moreover, these oscilla-
tions are present when the size of the samples
along d is larger than ~0.5 cm and resonances are
missing below a certain value of the Landau quan-
tum number.

In Sec. II the experimental setup is sketched; in
Sec. III the measurements are presented; in Sec.
IV the experimental details are discussed; and in
Sec. V the conclusions are presented.

II. EXPERIMENTAL SETUP

The microwave-absorption measurements were
carried out by means of a standard microwave
technique at frequencies between 22 and 24 GHz.
Variations of the sample surface impedance as a
function of the static magnetic field H were ob-
served by detecting the change in the @ factor of a
rectangular reflection cavity operating in the Hy,,
mode. The sample was positioned so as to be one
of the cavity side walls. The resonant cavity was
in contact with liquid helium at T =1.3 K. The
microwave power from a Gunn generator was fre-
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quency controlled by a Pound stabilizer. The low-
frequency signal, derived from a heterodyne de-
tector, was fed into a lock-in amplifier synchron-
ized with the static-magnetic-field modulation.
The lock-in output was recorded on a XY plotter.
The direction of H could be rotated in a horizontal
plane by so allowing the angle 6 between H and the
normal to the sample surface to vary.

Ultrasounds were sent on the samples by means
of a pulse technique, and all was arranged in order
to carry out ultrasound-absorption measurements
simultaneously with microwave ones. The ultra-
sound frequency was 70 MHz. The setup has been
described in detail in a previous paper.!! Single
crystals of pure Bi (99.9999%) of size 1X1.0%X1.,2
cm? were used. The size I was varied between
0.55 and 0.45 cm.

III. EXPERIMENTAL RESULTS

In this section we present experimental results
concerning a new type of oscillations of the micro-
wave magnetic absorption which are undoubtedly
related to the energy-level quantization induced by
a magnetic field: We are then in the presence of
quantum-electromagnetic oscillations (QEO). In
other words these are the analog, with respect to
microwaves, of the giant quantum oscillations in
ultrasound absorption.

Since it is the first time that this phenomenon has
been clearly observed, a wide set of measurements
has been carried out in order to understand its
physical origin. This is the reason why we put
much emphasis on the description of the experi-
mental results. These are summarized as follows.

(i) A typical oscillation pattern of the derivative
dR/dH of the surface impedance of the Bi sample
vs H is presented in Fig. 1. The oscillations are
periodic as a function of 1/H and the period does
not depend on the microwave frequency in our mea-
surement range (22-24 GHz). In Fig. 2 the values
(1/H) of the reciprocal of the field for which dR/
dH presents a minimum are plotted vs the reso-
nance-order number 7.

The periods A(1/H) are directly related to the
areas Sy of extremal cross sections of the Fermi
surface. To show this we have measured A(I/H)
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FIG. 1. Typical dR/dH vs H measurement for H di-
rected along the binary axis.
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FIG. 2. Absorption minima 1/H vs the order number
n of oscillations in Fig. 1.

with H lying in the binary-bisector plane for sam-
ple N.1 (Fig. 3) and in the bisector-trigonal plane
for sample N.2 (Fig. 4). In these figures the ex-
perimental points are the values

s, =2me__1
F="cn a(1/H)

(where e is the electron charge, c the light velo-
city), while the curves are the extremal sections
of the quasiellipsoidal model of the Bi Fermi sur-
face. The mass coefficients are taken from the
literature.!?

(ii) When H is parallel to the sample surface in
the trigonal-bisector plane a sharp reduction of the
QEO amplitude is observed (Fig. 5), while the
measured Sy values are smaller than the extremal
ones (Fig. 6).

The condition H parallel to the sample surface
has been obtained by means of the tilt effect in the
absorption of ultrasounds, evidenced simultaneous-
ly to the microwave-absorption measurements. It
is well known that the absorption of ultrasounds is
reduced when H becomes orthogonal to the ultra-
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FIG. 3. Cross-sectional area Sy of the Fermi surface
for H rotating in the binary-bisector plane. Full points
are experimental results, solid curves are the cross-
sectional areas given by the literature (Ref. 11).
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FIG. 4. As in Fig. 3. In this case H is rotating in the
trigonal-bisector plane.

sound wave vector § as the quasimomentum k& of
the electrons, which can absorb ultrasounds, ap-
proaches kj. In other words it is easy to show that
ky is a function of the angle 7/2 - a between H and
the ultrasound direction.

In Fig. 7 the ultrasound echo-pulse amplitude as
a function of a is reported at a fixed magnetic-field
value: the maximum corresponds to the minimum
absorption. By means of this method the alignment
of H with respect to the surface is given with an
accuracy of 0.1°-0.2°, The angle for which the ef-
fect of Fig. 5 is observed is about 12° apart from
the trigonal axis.

(iii) The QEO amplitude depends on the angle be-
tween H and the surface normal. For angles small-
er than 65°-70° the oscillation amplitude goes to
zero.

(iv) The amplitude disappears for H larger (or
for the resonance-order number n smaller) than a
certain value (Figs. 1 and 2). At the same time,
only QEO with large values of cross-sectional area
Sr are measured: e.g., in Fig. 3, for H lying in
the binary-bisector plane, QEO are related to Sy
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FIG. 5. Microwave absorption dR/dH vs H for various
orientations of the magnetic field in the trigonal-bisector
plane for H nearly orthogonal to §.
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FIG. 6. Enlargement of central part of Fig. 4. Here
the Sp values of Fig. 5 are reported.

values larger than 2x10'? ¢cm™ (full points on curve
I) while smaller areas are simultaneously present
in Bi (curves II and III). These experimental fea-
tures must particularly be underlined because they
are peculiar of QEO.

(v) The behavior of dR/dH vs H, for certain
directions of ﬁ, is very complex, due, presum-
ably, to the superimposition of oscillations of dif-
ferent carrier pockets. The measures presented
in Figs. 3 and 4 are related to oscillations whose
periods are easily found. The analysis of super-
imposed periods is more difficult than the corre-
sponding one in giant ultrasound absorption, be-
cause, in the present case, the derivative dR/dH
of the absorption signal is measured and reso-
nances are not present for all the values of the or-
der number # [see (iv)].

(vi) QEO are not present if the size I of the sam-
ple along the microwave propagation direction is
smaller than 4.5 mm. Samples with [ between 4.0
and 5.5 mm were used. For ! <4.7 mm, QEO re-
lated to electrons were not observed. For I =4.7
mm QEO related to the holes are observed. For
H nearly parallel to the sample surface Alfvén os-
cillations superimposed to the hole QEO are pre-
sent (Fig. 8), as already seen for the electrons by
Dinger and Lawson.” For I<4.5 mm only oscilla-
tions of Alfvén type are present (Fig. 9). For this
case the measured periods are related to the sam-
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FIG. 7. Echo-pulse amplitude as a function of the
angle /2 — a between the normal to the sample surface
and the magnetic field direction. The magnetic field
strength is 2.5 kG.
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FIG. 8. Hole quantum oscillations with superimposed
Alfvén oscillations when the sample size ! along the
microwave propagation direction is 4.7 mm.

ple size I and the coefficient!® fam¥ +pm}) by
A
A(5) =3 @rmoc? trums +pmp) 2,

where » and p are the carrier concentrations, m¥
and m¥ are the effective masses of the electrons
and holes, respectively 1, is the wavelength of the
microwave in vacuum, and ! is the sample size
along the wave vector . The experimental values
of fnm¥ +pm¥) are in agreement with those of
Isaacson and Williams.!?

(vii) In order to support the experimental results
described in (iv), simultaneous absorption mea-
surements of ultrasounds and microwaves by means
of the experimental setup reported in Ref. 11 with
" rotating in the binary-bisector plane have been
carried out. In Fig. 10 the behavior of the two ab-
sorptions is displayed for H along the binary axis.
As can be seen, for microwaves the oscillations
are present at higher fields (large cross-sectional
area) while for ultrasounds the resonances are
present for lower fields (small cross-sectional
area).

IV. DISCUSSION OF EXPERIMENTAL RESULTS

All of the experimental results reported in Sec.
II allow us to say that the QEO are types of oscill-
ations different from those found up to now. In
particular, in Ref. 8 the authors themselves stress
that there is no dependence of the amplitude of the
oscillations on the angle between H and the normal
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FIG. 9. Alfvén oscillations for the sample size [<4.5
mm.
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FIG. 10. Simultaneous measurements of microwave
absorption (up_ger curve) and ultrasound absorption (low-
er curve) for H along the binary axis.

to the surface, which constitutes a critical differ-
ence from our experimental results reported in
point iii). The quantum nature of the QEO is their
main feature, meaning that the resonances are as-
sociated to the quantization of the carrier energy
levels in a magnetic field (Landau quantization).
To show this, two results must be recalled:

(1) The periods A(1/H) are directly related to the
cross-sectional areas of the Fermi surface, full
points in Figs. 3 and 4. In these figures the solid
lines refer to the extremal cross-sectional areas
calculated with a quasiellipsoidal model of the
Fermi surface of bismuth. This model, as is well
known, allows one to explain most of the experi-
mental results (de Haas— van Alphen, ultrasound
giant oscillations, etc.).

(2) When H is nearly parallel to the sample sur-
face, therefore nearly orthogonal to the wave vec-
tor q of the electromagnetic wave, the QEO ampli-
tude is reduced and the cross-sectional areas are
not extremal.

In the same way as for the ultrasound quantum
oscillations, the previous effects can be explained
by means of the energy and momentum conserva-
tion laws, applied to the absorption of a photon by
an electron. As a consequence of this assumption,
when H L§, the oscillations must disappear. A
total disappearance has not been observed. This
may be due to an insufficient angular resolution,
as can be shown by the following argument.

Let us calculate the electron quasimomentum kg
along the H direction as a function of the angle
7/2 - a between H and § [here, 7/2 - & is the angle
between the magnetic- field direction and the elec-
tromagnetic wave vector; it is the same, in our
experimental arrangement, as the one defined in
point (ii) of Sec. III]; when k, becomes larger than
kf (k% is the quasimomentum at the Fermi surface)
photon absorption is forbidden. The conservation
laws in the photon absorption give
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nquk
=y, (1)

where gy =g sina, 7w is the photon energy, and m
is the electron mass. Equation (1) is valid under
the following conditions: A quadratic dispersion
law for the carriers, Q.>w (where £, =eH/m.

is the cyclotron frequency) and g4z <<ky. These con-
ditions imply that transitions between Landau lev-
els are forbidden (An =0). Since k; must be larger
than k%, one obtains

. mw
sine <S—7 .
ngky

Let us find ¢ when H is nearly parallel to the sur=
face, under the anomalous skin-effect condition.
Using the “ineffectiveness” concept, one obtains

_(ﬂww 0sT
1=\"¢g7 ) c¢o53»

where 0/1 =ne’t/ml =ne’/m), o is the static con-
ductivity, I the mean free path, and (v) is the mean
velocity of the carriers. Then

sina <mw(__zczm(v)>”3<c s~—)-1
\fi_kf; drwne’/ ° 3/ -

For Bi () =10° cm/sec, n=10" cm™, w=27
x24x10° sec™!, k% =5x10° cm™), one obtains sina
=g <107? deg. Therefore, the QEO must disappear
for H parallel to the sample surface within 10
deg. We have found a sharp reduction of both the
resonance amplitude and the cross-sectional area
in a 0.5° range as is shown in Fig. 6. Both the
planarity of the sample surface and our experimen-
tal angular resolution were poorer than 0.1°,

As a consequence of all the previous arguments
we can say that the quantum origin of the QEO is
well stated. Then the resonance minima are due to
the Landau levels crossing the Fermi level and the
order number » in Fig. 2 must be considered as the
Landau quantum number. Once stated (the nature
of the QEO), let us consider in the following the
characteristic aspects of these oscillations.

The most important feature is the lack of reso-
nances for some values of n. In fact the disappear-
ance of oscillations, pointed out in (iv), beyond a
certain value of the magnetic field, means that
resonances are not present below a Landau quan-
tum number 7y;,. Note that in the quantum effects
known up to now (de Haas-van Alphen, giant quan-
tum oscillations, etc.), the resonance amplitude
grows up continuously with increasing magnetic
field (with decreasing Landau quantum number),
because the electron density of the quantum levels
increases with the magnetic field. For each mag-
netic-field direction, where QEO are present, it
is possible to measure 7y, and Sp. These values

are reported in Fig. 11 (full points). In the same
figure the solid line represents the logarithmic fit

S
Pmin =b ln(l 520) s

with the best-fit parameters b =6.35, S, =1X10"?
cm™, The extrapolated value of Sp for #y;, =0 is
Spo=1.5%10"? cm™. QEO with cross-sectional
areas below Sg, were not measured, though, in
bismuth, Fermi-surface sections with Sp <Sg, are
present for many magnetic-field directions.

This is another peculiar aspect, because, as it is
well known, small cross-sectional areas are mcre
easily detected within the same magnetic-field
range in the de Haas-van Alphen or in giant quan-
tum oscillations. This feature is well stressed in
Fig. 10, where the small cross-sectional area Sp
=1.25%10'"? cm™ is detected only by means of giant
quantum oscillations of ultrasounds. We can sum-
marize these points in the following way: Reso-
nances are present for points (n,SF/So) inside the
dashed region of Fig. 11. The interpretation of
these effects can be found either in some peculiar-
ity of the carrier dispersion law of Bi or in the
nature of the electromagnetic waves supporting the
QEO.

A possible explanation, related to the dispersion
law, suggested by the large values of the measured
cross-sectional areas, and by the logarithmic be-
havior of the curve in Fig. 11, can be the following:
The transparence of the classically forbidden zone
between different pockets of carriers increases
with magnetic-field intensity. When the carriers
are no more localized in a well-defined pocket of
the Brillouin zone, the cross-sectional areas of
the Fermi surface become very large and the re-
lated oscillations are outside of our experimental
magnetic-field range.

Following this line of thought, a rough calculation
can be carried out assuming that in the classically

So=1110"%¢m2

1 1 1
0 15

5 1
Si/So

FIG. 11. Landau quantum number n_; as a function
of the cross-sectional area Sg (full points). n,;, is the
last level for which resonances are measured (see Fig.
2). The solid line represents a logarithmic fit. QEO
resonances are present only for the points (z,Sp/S,) in-
side the dashed region.
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forbidden region between two pockets a cylinder-
parabolic differential equation holds.!* The energy
eigenvalues are given by the relation

cot(gs)-\i0 +vz> cot(is;\zo +v2> =exp(-27|a,|),

where

E-c = Bki+(BY/B)ks | _eH

2xV =B1B, © 0 e

S; and S, are the cross-sectional areas of the two
pockets, and the B;’s are functions of the effective-
mass coefficients. When q; — «, then v, =0,
exp(-27|a,|)=0, and the usual quantization laws
are obtained:

ay =

S T S T
Sl I 22 =
20_(2n1+1)2, E)\o_(2n2+1)2,

while, for a;—~ 0 (H— =), one obtains

) eor(z2)
it ¥ =Z2) —
cot(zx2 cot(zxo =1
and the quantization is

S, +S T

2172 =

3 _(2n+1)2.

In this case oscillations related to added areas
must be found. The value Ial | is given by

o 2_43(21)1/2@
=4 \g,] eH’

where d is the linear size of the classically forbid-
den region. In the case of Bi, taken d =10% cm™,
(1/2)|a,| =(B,/By)" %(108/H). Therefore, for H<2
%X10* G (in this model and with such a rough esti-
mate), no hybridization can exist.

On the other hand, a lack of resonance below 7y,
has not been found in ultrasound absorption. The
difference between microwave and ultrasound ab-
sorption lies in the field-carrier interaction poten-
tial and in the fact that the photon energy is about
10? times bigger than the phonon one. A possible
explanation, along the line sketched above, might
perhaps be found if these different conditions were
taken into account together with the peculiarities of
electromagnetic-wave propagation in a metal.

If the nature of the electromagnetic waves sup-
porting the quantum oscillations is considered, one
meets with a problem very hard to face. A quan-
tum theory for the propagation of electromagnetic
waves in metals with a magnetic field present has
been formulated by many authors.!>*!"

Reference 15 gives a theory of the absorption as-

suming a quadratic dispersion law for the carriers:

It is found, in the limit Zw <72 ~€g, that the ab-
sorption is of the de Haas—Van Alphen type. Owing
to the lack of experimental results, the theories

reported in Refs. 16 and 17 are not specific and are
difficult to use for looking into the actual physical
situations.

The point is that together with the absorption, the
wave dispersion is also affected by the quantization
induced by the magnetic field. We have pointed out
above that the QEO are analogs of the ultrasound
giant oscillations,!® but the main difference lies in
the fact that while the ultrasounds have a very sim-
ple (w=qvs, where v, is the sound velocity) dis-
persionlaw, in the case of the microwaves w(g) may
be a very complicated function. Following the pa-
per of Kaner and Skobov'® we are able to give a
model that explains the main features of the QEO.

Let us assume that (a) the carriers obey an el-
lipsoidal dispersion law, (b) the temperature is
0°K, and (¢) wT> 1; under these hypotheses and in
the semiclassical limit Kaner and Skobov give a
theory that allows the calculation of the dispersion
law w(g) =w [or u(w) =%, where u=w/q is the
wave-phase velocity]. Their conclusions give the
dispersion law as an implicit equation:

lxi)——(-l?—)z:)/(?(u), )

r a

where
Gu) =f0 sn[(l —%2)'1 - 1],
to=(5) v +a-mre,

N is the last occupied Landau level, A is defined
by (N + AViQ =€p, v,=[2(ep — n#Q)/m]!?, v, is the
Alfvén velocity which is proportional to H, w,
~Q(v,/vp)? is proportional to H?, and y is a param-
eter depending on H and €z, which is much larger
than 1 when H <10° G.

Equation (2) is very difficult to solve, but a
graphical analysis can be given in order to develop
a qualitative model, following the lines suggested
by Fig. 1 in Ref. 19. For a given H the real values
of u(w) are the intersections (see Fig. 12) of yG(u)
with the parabolas 1+ w/w,~ («/v,)?. The curve
G(u) presents an infinite discontinuity whenu equals
v,. Let us consider the parabola with the minus
sign, which is more suitable for our purposes, and
let us direct our attention to the absorption. Under
the above-stated conditions, Landau damping does
not allow the propagation of electromagnetic waves
when

g _ o )

Iu—U" |<2m'=—27’n'

Equation (3) is the energy and momentum con-
servation law in the wave-vector d photon absorp-
tion and can be represented in Fig. 12 by the rec-
tangles centered on u =v,. Then, the waves whose
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G(u)

FIG. 12. Graphical solution of Eq. (2). Dots represent
the real solutions for #(w). Cases (a) and (b) refer to
different values of the magnetic field. In case (a), H,
< H,, resonances are possible; in case (b) no resonance
exists on increasing the magnetic-field intensity.

point solutions fall into the rectangles are damped.
To understand our model three circumstances
must be considered:

(i) the width of the rectangles grows as u goes to
zero;

(ii) w, increases as H®;

(iii) v,, which gives the intersection of the para-
bola with the # axis, increases with H.

The carrier velocity vy, of the Nth Landau level at
€ =¢€p goes to zero when H increases because the
Landau level leaves the Fermi surface. Then, the
combined effects of the spreading of the rectangle
base and of the zeroing of vy make the first point
solution fall into the first rectangle, giving place
to a resonant absorption, while the other wave
solutions continue to propagate [Fig. 12(a)). Asa
consequence the measured cross sections of the
Fermi surface are essentially the extremal ones
(p<=0) as our measurements show. As the mag-
netic field increases far beyond the values con-
sidered in drawing Fig. 12(a), w, and v, increase

and the parabola tends to flatten and to rise; in
these conditions all the intersections fall into the
rectangles and thus represent damped waves. That
is to say, no other resonances are possible as a
function of H [Fig. 12(b)].

V. CONCLUSIONS

In this paper we have reported the first observa-
tion of microwave absorption oscillations related
to the quantization of Landau levels in a magnetic
field in the collisionless-damping regime, i.e.,
when the conservation laws are fulfilled in the in-
teraction of an electron with a Bose excitation.
The main features of the effect are as follows:

(i) The periods A(1/H) are directly related to the
cross-sectional areas of the Fermi surface.

(ii) The oscillations are present only if the size
of the sample along the wave propagation direction
is larger than 0.5 cm; below this value Alfvén os-
cillations are observed.

(iii) Resonances are not seen for every crossing
of Landau levels through the Fermi level; only lev-
els corresponding to points which lie in the dashed
region of Fig. 11 can absorb.

(iv) The resonance amplitudes are maxima when
the H direction is nearly parallel to the sample
surface.

These types of oscillations have been predict-
ed!'® 17 following the giant quantum oscillations in
ultrasound absorption, and a A(I/H) period con-
nected to the cross-sectional areas has been cal-
culated. This is in agreement with the first fea-
ture listed above.

On the other hand, the ellipsoidal-nonparabolic,
(ENP) model® is able to give the measured values
of the cross sections as functions of the angle be-
tween H and the crystallographic directions. As is
well known,'®?! in order to detect deviations from
the ENP one must measure the cyclotron masses
and compare them with the cross-sectional areas.
We have attempted an explanation of the other fea-
tures by means of a first-approximation calcula-
tion, assuming a tunneling between different pock-
ets of carriers, but the results are not consistent
with the parameters for bismuth. A more suitable
model has been given which takes into account not
only the absorption, but also wave dispersion when
magnetic quantization is present.
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