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Effect of the substrate potential on incommensurate epitaxies at finite temperatures
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Incommensurate epitaxial systems at T = 0 were first studied by Frank and Van der Merwe. Here we

investigate these systems at finite temperatures. We suggest that thermal fluctuations can reduce the effect
of the substrate potential sufficiently that at some finite temperature the. modulation of the epitaxy due to
the substrate is qualitatively changed from the behavior near T = 0.

I. INTRODUCTION

The effect of a periodic potential on an incom-
mensurate epitaxy has received a great deal of
attention lately in a number of different contexts:
in the study of physisorption of monolayer rare
gases on graphite, ' in surface reconstruction, ' in
superionic conductors, ' in the layered chalco-
genides, and in the ' one-dimensional" organome-
tallic compounds. ' These studies basically focus
on a model first studied by Frank and Van der
Merwe' in the context of epitaxial growth, which
is described by the Hamiltonian

H=H +K
(l)

H = — (x,. —x, ,z
—a) + ~ (x& —x~, ~ )2 2

t, 6„ i, 6y

2 7' $+X~ cos

Here x, denotes the x coordinate of an epitaxial
atom at site i and 6„&„is a nearest-neighbor vec-
tor in the x(y) direction. a, the "natural" epitaxial
atomic spacing, is in general different from the
substrate atomic spacing b. 4 is a kind of elastic
coefficient of the epitaxial atoms, while X mea-
sures the interaction strength between the epitaxy
and the substrate. In general, the epitaxial Harn-
iltonian should also contain cross terms involving
both the x and the y coordinates of the epitaxial
atoms, but in this simple model the y coordinate
is assumed decoupled from the x coordinate, and

H„need not be independently investigated.
The ground-state configuration of H has been

discussed by Frank and Van der Merwe. ' For a
not too different from b, the epitaxy remains
commensurate with the substrate; the equili-
brium lattice spacing of the epitaxy is still b.
When the difference of a and b exceeds a certain
value, the epitaxy becomes incommensurate with
the lattice and misfit dislocations are formed con-

tinuou sly.
For some applications where large thermal

fluctuations are present (for which two-dimen-
sional systems are notorious), the finite-tem-
perature situation has to be investigated sep-
arately. The commensurate-incommensurate
transition (CIT) at nonzero temperatures has
recently been considered by Pokrovskii and
Talapov' and by Bak, Mukamel, Villain, and
Wentowska' theoretically and by Chinn and Fain, '
Stephens, Heiney, Birgeneau, and Horn, ' and
Vora, Sinha, and Crawford" experimentally. The
CIT, however, is not the focus of the present
paper. We are concerned with the properties of
the incommensurate system only. We suggest that
there can be at least two different incommensurate
regions: (l) a low-temperature phase where the
substrate potential is strong enough to produce
significant misfit modulations, and (2) a high-
temperature phase where thermal fluctuations
reduce the effect of the substrate potential so much
that the modulation of the epitaxy is qualitatively
changed. We predict that there is an infinite re-
sponse for the epitaxy at a wave vector near 2x/
a —2v/b in the low-temperature region, whereas
in the high-temperature region this response is
finite.

These results are based on perturbation cal-
culations from both the low- and the high-tem-
perature sides. These will be reported in Sec.
II and III. The implications of our results are
discussed in Sec. IV.

II. THE LOW-TEMPERATURE REGION

We assume a is sufficiently different from b

that the incommensurate phase is stable at T =0.
In this case, one can expand the atomic coordinates
x, in a Fourier series, as first discussed by Ying'
and more recently by McMillan, Shiba, " and
Theodorou and Rice." Close to the CIT, many
Fourier components have to be kept, and the ori-
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ginal treatment of Frank and Van der Merwe in
terms of misfit dislocation is simpler. Far away
from the CIT, however, the misfit dislocations
overlap and a description in terms of a Fourier
series is a more appropriate choice. We shall
assume that the system is sufficiently far from the
CIT so that we need keep only the first term of the
Fourier series. In the earlier studies, '" this
turned out to be a good approximation over a wide
range of parameters. Under these approximations
the calculation of Ying can be easily generalized to
nonzero temperatures.

A simple physical picture of the zero-tempera-
ture situation is the following. In order to take
advantage of the substrate, the epitaxy will ex-
hibit a periodic modulation and the average inter-
atomic spacing will achieve some value c in be-
tween b and a. At low temperatures we expect
the atoms to undergo small vibrations about their
modulated equilibrium positions. Thus we write

x, =i,c+bx, +t sin[2w(z, c+bx, )/b],

where c is the average spacing of the incom-
mensurate epitaxy, 6x, is the deviation from this
equilibrium spacing, and t is a parameter deter-
mined from the equilibrium condition. Note the
appearance of 6x, inside the sine function. This
occurs because the incommensurate phase can slide

I

freely over the substrate' and in general (bx) =™.
Thus 6x,- itself is not a small expansion para-
meter; the proper small parameter is actually
bx, —bx,„(or bx, —5x, , ), the difference in
positions of nearest-neighbor atoms.

There are many ways by which the low-tem-
perature calculation can be carried out. In order
to connect with later work on dynamics, we chose
to study here the static limit of the appropriate
Langevin equation. Differentiating Eq. (1), we
thus write

8, xz -glP x,. + zi,. + biz,. + X sin(2wx, ./b) . (3)

Here g is a thermal white noise whose second
moment is given by ( z)(t) z)(t')} =2I'5,

, 5(t —i')
with I the kinetic coefficient. &p, , is a small
external driving field introduced to facilitate the
calculation of linear-response coefficients, and
~' is the usual discrete double-difference symbol.
The method of calculation given below is very
similar to Ying's T =0 work. We reproduced it
here only to point out what approximations are
valid at finite temperatures.

Our main focus will be the structure factor
SW

——K(exp[iq (r —r')]). First let us develop some
preliminaries. Based on our physical argument
given above, we substitute a trial solution of the
form of Eq. (2) in Eq. (3) and get

s, x,. =0 4' 5x(1z+t cos[(2w/b)(ci, + bx, )])+z);+&p, , +(t sin'(wc/b)+ XJ,(t)}sin[(2w/b)(ci, + 5x, )]

+ X2J,(2wt) cos[(2w/b)(ci, + bx, )] sin[(2w/b)(ci, + bx, )]+ (4)

We have used the fact that

n' sin[(2w/b)(ci, + 5x, )]—= 4 (zbx)(2w/b) cos[(2w/b)(ci, + bx, )]+sin'(wc/b) sin[(2w/b)(ci, + bx,.}]+0((&'6x,.)') (5)

cos(x siny) =J,(x)+g J~(x) cos2sy,
g=l

(6)

This is essentially the same as Ying's' result
[see his equations (5)-(8}]. From the rest of Eq.
(5) we get

& &'bx, {1+t cos[(2w/b)(ci, + bx,.)]}+zl,. + &iz, =0. (8)

sin(x siny) = 2 g J„.,(x) sin(2s + 1)y .
s=o

Equation (6) is just a mathematical expansion in
terms of the Bessel function J, (not to be con-
fused with the elastic constant g). Note that it is
in Eq. (5} that the smallness of the parameter
~'5x, is used. In physical problems of interest,
&/8, and hence f/J, is a small number. " Hence
the last term of Eq. (4) is indeed smaller than the
rest of the terms. It is kept only to provide the
reader an idea of the perturbation scheme in-
volved. For time-independent phenomena ~p', = o
and the coefficient in the curly bracket in Eq. (4}
must be equal to zero,

t8 sin'(wc/b) + ~,(&) = o .

From this, 5x,- can be determined in terms of q
and niz. The solution of (8) is basically one of
determining the phonon dispersion of the incom-
mensurate phase and has been discussed recently
by many authors. "'" It was found that one could
expand 5x,. as a Fourier series:

bxz ——g bx, exp(zq r, ) . (8)

5x, = (zl, + n iz, )/(4 zw, ),
a, =2 —cosq, a —cosq, a+0(t) .

(1O)

For q far away from 2w(c —b)/b tzhe phonon
dispersion is only weakly modified by the "in-
commensurate" term t cos[(2w/b)(cix+5x, )] sothat
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For q equal to (2v(c —b)/b', 0)=q„a gap 6 ts
created in the phonon spectrum so that

A point needs to be emphasized. First of all
because of the presence of the term t, sin[(2v/
b)(i~)] in Eq. (4) the epitaxy exhibits an additional

I

"pseudo-Bragg" peak at a wave vector q, =2v(c
b-)/b' .Indeed, we can evaluate the structure

factor S, as follows:

q. = I ew('i(. (, —~e)]),
lyj

(i2)

where the angular brackets denote a thermal av-
erage. Using Eq. (2), we can write

S, (l, j) -=exp[iq„(x, -x&)]=exp{iq,[c(t, j,)+b—x, —bx, ]}exp(iq t{sin[2v(l„c+bx, )/b] —sin[2v(jc+bx&)b]}).

(12)

Using an expansion analogous to equation (6), we get

S, (I,j) = exgiq, [c(I, -j,) + bx, —bx~])+(Jo(tq, ) +2', (tq, ) sin[2v(l, c+ bx, )lb] + ' ' '}

+{J,(tq, ) —2i J, (tq„) sin[2v(j, c+bx, )/b]+ }. (14}

For q close to q, only the second terms in the curly
brackets are important, and we have, on sub-
stituting back into Eq. (12),

S, —= 4 J', (tq, )J,'(tq„}

xQ exp[i(q-q, ) ~ r„]
x exp[-(q, —2v/b)'((bx„. )}].

The dominant contribution to ((bx„.)'} for r„ large
comes from the small q part of the phonon spec-
trum. Using Eq. (10), ((6x'(~)) can be evaluated and

we have

converges at a high enough temperature whereas
at low temperature it diverges term by term.
Motivated by this analogy, we have carried out a
perturbation calculation of X for the case b ca.
We have carried out this calculation explicitly to
terms of the order of X4 and have placed some
bounds for the general nth order term. The first
nonvanishing term is of the order of X' and is
perhaps the most illustrative of the general be-
havior. The details of the calculation are very
similar to our calculation on the roughening tran-
sition. " We tried to solve Eq. (3) perturbatively
in X. Defining a self-energy Z by

(bx', q)
= (b'/2 )v'cy T ln

i r, q i,
where y =](//+0(t}. Thus

S,

where

P = -2+y(q, 2v/b)'T(b-'/2vc)'. (16)

where X is the response coefficient defined by

X,.=«x,.&/ &j, .
we found in the static limit

z(q, q) e'f d'R(e'q' —l) eede*q„.

(16)

Thus, as mentioned above, S = for yT ~2. We
will see in a moment that this peak does dis-
appear at a high enough temperature even though
the above perturbation calculation is no longer
valid.

III. THE HIGH-TEMPERATURE PHASE

Even in the commensurate case of b =a for which
the effect of the substrate is most important, the
substrate potential becomes unimportant at a finite
temperature. Indeed, for b =a, on making the
substitution x,. =i a+h, , the Hamiltonian (1) be-
comes the same as that studied in the roughening
transition. " In that case, by doing a pertur-
bation series in X, it was found that the series

Thus, if one examines the response near q„one
finds that Z(q„0) is divergent for low tempera-
tures, consistent with our calculation in the pre-
vious section where a pseudo-Bragg peak occurs
at q =q, . Indeed, at T =0, Eq. (19) is just a delta
function at q =q, . For T larger than T, =2/y,
however, the above expression for Z is finite.
Thus there is no Bragg peak at these tempera-
tures. Note that for the roughening transition,
the term cosq,„x is replaced by one and the cor-
responding expression for 'Z is finite for T larger
than T, =4/y. That the perturbation series con-
verges for T & T, rather than T, in the incom-
mensurate case seems to be true to all orders of
perturbation theory. The details of our calculation
for the X' term are reported in the Appendix,
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where we found that it is finite for T & T,.
Actually, this problem is very similar to a prob-

lem concerning the localization of electrons in one
dimension. " That problem can be mapped into a
two-dimensional Coulomb gas in a random electric
field in the x direction. An upper bound for the
density autocorrelation function has been esti-
mated, and it was shown that the perturbation
series converges for T &T', =3/y independent of
X in the present language. The present problem
can be mapped into a two-dimensional Coulomb
gas with a constant imaginary electric field in the
x direction, ""and the arguments of Chui and
Bray can be carried over directly, thus sub-
stantiating the claim that T, 4 T,. The above tran-
sition temperature is estimated in the limit of
small &. We expect T, to depend in general on X,
just like the two-dimensional Coulomb gas. To
summarize, by doing perturbation calculations in
terms of X, we found that the response function
diverges at q, below T,. Above T„however, it
is finite.

IV. CONCLUSION

In this paper we propose that in the incommen-
surate phase in the limit of small X for a high
enough temperature (T&T,), the substrate po-
tential becomes suppressed. For T less than T„
the structure factor S, at q =q, =(2v(c —b)/b', 0)
is infinite for T & T, but finite for T &T,. The tem-
perature T, is just half that of the roughening-
transition temperature T,. That something may
be happening at the temperature T, is consistent
with a recent work of Luther, Timonen, and

Pokrovsky, " but our physical picture is quite
different. Luther et al. mapped the present prob-
lem into a fermion problem with the Fermi sur-
face shifted, and extracted their results from that
picture. Chui and Bray" have also mapped the
present problem into one with an additional elec-
tron-electron interaction. That problem is not
inconsistent with that with a shifted Fermi sur-
face, but there are differences. Chui and Bray
have associated the Bragg peak mentioned above
with the occurrence of the 4k~ correlation function
in the one-dimensional electron-gas problem
(which could be interpreted as due to a shifted
Fermi surface).

It is tempting to speculate what the phase dia-
gram of our model will be. This is illustrated
in Fig. 1. At T=O there is a CIT occurring at
point C. For the commensurate case (b =a) there
is a "floating solid transition"~' analogous to
roughening transition occurring at a finite temp-
erature &. The two incommensurate regions that
we discussed here are separated by the line BD.

'C

(b-0) —+

FIG. 1. Possible schematic phase diagram.

If the substrate potential is suppressed then the
lattice constants may change discontinuously
from the commensurate to the incommensurate
phase. Thus it is possible that AB is a first-
order phase-transition boundary. EF is the two-
dimensional melting transition boundary dis-
cussed recently by Halperin and Nelson. ' The
position of EF depends on the density of disloca-
tions whereas that of BD depends on A. , so a
priori we do not know the relative position be-
tween these two. We have assumed that EF
occurs above BD so that the effect of dislocations
is simply to renormalize 4." If EF occurs be-
low BD, then the situation becomes more compli-
cated and a more careful analysis is necessary.

In real physical systems it may not be possible
to reach A because of the formation of two or
more layers. Also the interepitaxial atomic po-
tential is quite anharmonic. Such effects have
not been taken into account here. Indeed we think
that they can account for some of the inconsis-
tencies between theory and experiment in the CIT.
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In this appendix the calculation of the fourth-
order term is carried out. As we mentioned, the
present problem can be mapped into that of a
two-dimensional Coulomb gas in an imaginary
electric field. From that we know that the quan-
tity of interest is proportional to f exp(iq, ' R)
f,(R)d'R, where I,(R) is given by

Xexp[iq„(x, +x, -x, —x,)]. (Ai)

Choosing particle 1 to be the origin and expanding
the exponentials in terms of Bessel functions, we
get
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' y3y, 1y2-y3l iy2-y41
I
R —R'

I

" can be expanded in terms of the Gegen-
bauer polynomials C„"as

I
r —r'

I
"=g r~& "r(C„"(cos(8—8')}. (A2)

Xg 2 3 4e~ $ m~8) ~

(A2)

We now evaluate Io using spherical coordinates.
The radial part of the integral can be split up
into different regions as

QB, ' ' ' I.(n, ~n, )[I„t(2/ )w' ']',
pg pg g1 2 3

ei, e2, 63-W

where, for example,

(A4)

+ + +
j. dy, cos qy„y2 I 4 cos q,y, —w 4 cos q,y4-m 4

R&"2+3&r4,
Pl/ 62 Pg

-Pi~2+1/ 2 P4tf j~3+1/ 2 ~2 2 53+1/ 2
Xy3 X 2 y4 y2 (A5)

The terms with "-"can be obtained by replacing the corresponding cos by sin. Since we are only inter-
ested in whether the integral diverges, the dominant contribution to the integral comes only when Ir, I

is
large. In (A4) and (A5} we have used the asymptotic expansion of the Bessel functions, viz. ,

Z (x)- (2/wx)'~' cos(x ——,'mw —,'w) . (A6)

I, in Eq. (A4} comes from the angular integration. The following series representation of the Gegenbauer
polynomials have been used:

O yC„(cos8)=g E cos(r —2m)8,
mno m (A7}

I'(& + m) I'(a +r —m )
m! (n —m} ![Z'(n)]'

I, is given by

n, E y/2

I, = 2 j+&,. —
2y j.

E
P2

n, y/2 n,E r ' j~2'~~'~4 5(m,
I r, —2p, + r3 —2ps

I
)

P3

(A&)

x [5(m, —Ir, —2p, —r, +2piI )'(ms —In, —2p, +r, —2

+5(m Ir 2p +r 2p I)5(m, I2p, r, +r, —2p, I)+5(m~ —Ir~ —2p~ —r, + p, I)]

x[5(m, —Ir. -2p. -r.+2p I)'(m3
I

r, +2p, +r, —2p21)

+ 5 (m —
I
r —2p + r, —2p, I )5 (m, —

I r, —2p, + r, —2p, I )] ~ (A9)

The delta function comes from the integration over all the cos& factors.
On explicitly taking care of the delta functions, I, can be simplified a.s

I, = ~ C„-"i '(1)C"„2(1)C"„'(1)[1+g2(-)"2'"&][1+e~(-)"&'"'][1+t, (-)"i'"2]. (A10)
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Putting (A10) back into (A4) we get

F. y„y„y, q, 2 p ' ' 'C-"/'
& Q" /' 1 C" /' 1,

1
(A11)

where, for example,

R&r 2&r 3~4

&& cos[qr, ——,'m ——,'(n, +n, )n] cos[qr, ——,
' v ——,'(n, +n, )w]

g ~-n1+n2+1/2~-y+n1+n3+1/2~-n2-l -n3+1/2
3 4 2 (A 12)

The subscript of F indicates the different region
of integration as is illustrated in equation (A4).
Because of the cos factors in (A12), the integrals
F,. converge as R -~ whenever the integrand is a
decreasing function of R. If the cos factors are
absent, the phase-space factors II, dr, have also
to be counted in order to look for a divergence.
This corresponds exactly to the difference between
T2 and T1 that we encountered in the second- orde r
calculation.

One might wonder whether, because of the in-
finite summation in (All), that even though F,is.
well defined, Ip can "still" be divergent. To
clarify this point we assume x, to be very large
and use the asymptotic expansions for the I' func-
tions to obtain

lim y(o. , x) = I'(o) -x"-'e-'.
gQ

(A16)

On substituting (A16) and (A15) into (A12) we get,
as far as the n dependence is concerned,

F,(n„n„n, ) o- I'(-n, +n, ——,)1"(-y+n, +n, ——,)

x r (-n, —y n, ———,
'

) .

In the limit in which all three n,.'s are large, say,
n, = n,N, n2 = n2N, n3 = a3N, where N -~, we found
that

y'-' cospy dy = —,'[(ip)-'y(p, , ipx) + (ip)-'y(p, , -ipx)],

(A15)
with a similar expression for the sin and

and

C" (1)-n'," '
n1

Z = F (n, n, n )n-»-~n»-~n»-~.
17 2y 3

(A13)

(A14)

N-2r-3 cc N
0i1y $2~ 23 0i

'The integrals F,. can be estimated using the in-
complete gamma. function and its asymptotic ex-
pansion, viz. ,

Since the different choices of Q.„a„n3will provide
a phase-space factor proportional only to N', the
resulting series for I, is still convergent, how-

ever, thus justifying our claim.
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