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Analysis of second-harfnonic generation at metal surfaces
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We discuss the second-harmonic generation of light at metal surfaces within the hydrodynamic theory of
the electron gas; expressions for the phenomenological parameters a and b of Rudnick and Stern are
presented, and the possibility of a resonance in a at optical or near-uv frequencies is discussed. A recent
plasmon-enhanced experiment of Simon et al. is analyzed, and the use of such experiments to determine a
and b is considered; new experiments are proposed to aid in such a determination.

I' INTRODUCTION

There has been a recent renewal of interest in
the second-harmonic generation (SHG) of light at
metal surfaces, both because SHG can be greatly
enhanced by coupling with surface plasmons, '~
and because the same nonlinear source terms
that are responsible for SHG lead to the nonlinear
mixing of traveling surface plasmons and to the
second-harmonic generation of surface plasmons
and polaritons. ' These sources consist of a bulk
current density which extends about a skin depth
into the metal, and two "surface" current densi-
ties —one normal and one tangential to the sur-
face —which extends only a few Fermi wavelengths
into the metal. At optical frequencies these latter
current densities radiate essentially as a dipole
sheet at the surface. Their theoretical and ex-
perimental determination is of some interest,
since they depend on the dynamics of electrons in
the thin layer at the surface where the equilibrium
electron density drops to zero from its bulk val-
ue. Further, their magnitude is affected by the
presence of adsorbed molecules, and thus their
observation can be expected to eventually aid in
understanding the changes that occur in the elec-
tron dynamics at surfaces undergoing chemi- and

physisorption. In this paper we present a theo-
retical treatment of these surface current densi-
ties at clean metal surfaces using the hydrody-
namic theory to describe the electron dynamics.
We then analyze the results of a recent enhanced-
SHG experiment3 to determine to what extent such
experiments are sensitive to the surface current
densities, and close by suggesting a set of experi-
ments which we feel would aid in determining
these current densities. For a more general
discussion of the enhancement of nonlinear optical
phenomena in metals using attenuated total reQec-
tion (ATR} geometries, of which the experiments
discussed herein are examples, we refer to the
work of Chen and Burstein.

The nonlinear surface current densities of in-

terest have been previously investigated theoreti-
cally at a number of levels. The early work of
Jha ' and Bloembergen et al. ' was based on the
Sommerfeld free-electron model (see also Ref.
15}, which leads to a linear constitutive relation
of the form

D(r, w) =e(r, e)E(r, &u),

and a nonlinear source term of the form

P""(r,2~) =o(r, &&)E(r, (o) x H(r, &g)

+P(r, (u)E(r, ~)[V ' E(r, (o)j . (1.2)

However, the free-electron model is clearly physi-
cally unreasonable within a few Fermi wavelengths
of the surface, where in the absence of Drude
damping it in fact predicts that the linear electric
field diverges (see Ref. 9 and Sec. II of this
paper}. The limitations of the free-electron mod-
el, and the resulting ambiguities that can appear
when it is applied to discuss SHG, were pointed
out by Rudnick and Stern. ' They gave a discussion
of the physical nature of SHG at metal surfaces,
and presented phenomenological arguments to esti-
mate the size of the surface current densities, ob-
taining expressions involving phenomenological
constants a and b of order unity. In addition, they
presented an RPA calculation of the densities
which, however, neglected the breaking of inver-
sion symmetry at the surface. More general
RPA expressions for the current densities have
been presented (see, e.g. , Bower'~), but their
evaluation is difficult and has not been attempted,
and it is even more difficult to see just on what
properties of the surface they depend. Now the
hydrodynamic model of electron dynamics is cer-
tainly very crude (Griffin and Kranz"}, but has
the advantage of simplicity: It is fairly easy to
see on what parameters the results depend, even
without a detailed solution. The model has re-
cently been used to discuss the behavior of linear
fields at surfaces, '" and the conclusions obtained
were generally borne out by RPA calculations. ' 3'
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II. THE HYDRODYNAMIC THEORY OF SHG AT METAL
SURFACES

The use and limitations of the hydrodynamic
theory to give a qualitative description of the dy-
namics of electrons near a surface have been dealt
with by a number of authors'" ~~~; here we begin
by simply giving the basic equations of that theory
in our notation. The total charge and current
densities are

p(r, t)=p'(r)+ p (r, t),
j (r, t) =-en(r, t) v(r, t),

(2.1)

where the positive and negative charge densities
are given by

p'(r) =en.(r),
p (r, t)=-en(r, t),

(2.2}

and e, n, (r), and n-(r, t) are, respectively, the
charge on an electron, the positive ion number
density, and the electron number density; v(r, t)
is the electron velocity field. The densities (2. 1)
satisfy the equation of continuity,

It is in such a spirit of preliminary investigation,
and as a preamble to more sophisiticated calcula-
tions, that we employ the hydrodynamic model
here. We find that Rudnick and Stern's phenomen-
ological parameter b is predicted to be -1, inde-
pendent of frequency (as is implicit in the work of
Rudnick and Stern, ' but which is apparently not
generally well known). However, the parameter
a is found to depend on the "effective plasma fre-
quency" of the nonlinear surface current density,
and could exhibit a resonance at optical or near-
uv frequencies.

Turning then to the experiments, we analyze the
striking results of plasmon-enhanced SHG from a
silver film plated on & quartz at 1.06 pm, ' and
point out the difficulties in determining the para-
meters from the existing data for either of the
interfaces (rutile-metal and quartz-metal} present.
We suggest a simple extension of this experiment
which should make such an evaluation possible.
We then consider the determination of the parame-
ters a and b for the interface of more fundamental
interest —metal-vacuum —and suggest an en-
hanced-SHG experiment more sensitive to these
parameters than the experiments which have been
performed, and which is feasible with existing
equipment. Finally, we indicate the limitations of
this work and the directions for future work which
we feel would be fruitful. A preliminary account
of some of our results has been previously pub-
lished. ~

V j +p=0,
and Euler's equation for the electron fluid,

mn[av/8t+(v v).v]= -enE (e-n/c)v x B

(2.3)

(2.4)

where m is the electron mass and p(r, t) is the
"quantum pressure"', in the Thomas-Fermi theo-
ry,

p(r, t) = g[n(r, t)]"',
where

g = (3v')2~'a'/sm .

(2. 5)

(2. 6)

The electric and magnetic fields E and B appear-
ing in Eq. (2.4) satisfy the Maxwell equations
which, when a polarization potential P(r, t) is in-
troduced by virtue of Eq. (2.3),

j = 13, p = -'7 ' p, (2.7)

take a form familiar from dielectric theory,

7' ' E = -4m%' ' P, V ' B=0,
cV'x B —K=4', eV'x E+B=O.

(2.8)

To calculate the SHG, we now expand all fields
in the usual way, ""

n(r, t) =n, (r)+n, (r, t)+~(r, t)+ ~ ~ ~,

K(r, t)=E,(r)+E,(r, t)+ E,(r, t)+ ' ' ',
v (r, t) =v, (r, t)+v, (r, t)+

B(r, t)=B~(r, t)+B~(r, t)+ '' ' .

(2.8}

P, ( r, t) —L(r) P, (r, t) = [e~n, (r)/m] E,(r, t)

+ s,(r, t)+ s,(r, t),
(2. 12)

where the source terms St(r, t) and S~(r, t) are
given by

We find that the zeroth-order equations resulting
from Eqs. (2.4), (2. 7), and (2.8) give the usual
Thomas-Fermi equations for the equilibrium
electron density n,(r), when Eqs. (2.5) and (2. 6)
are used. The first-order equation derived from
Eqs. (2.4) and (2. 7) may be written in the form

~ ~

P~(r, t) —L(r) P~(r, t) = [e~no(r)/m] K~(r, t),
(2. 1O)

where

(5/Qm)gn-o ~3(%no)V +(5/3m)gn~o Svv, (2.11)

and the second-order equation reduces to
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S,=en, (v, V) v, —evn,

+ (e'/m)n, E, +(e*no/me) v, x 5~ (2.13)

P,(r) = (-en, /muP) E,(r) =-}tE,(r) (z (0), (2.17)

where n, is the bulk value of n, (z}. Equation (2. 17)
leads to the usual dielectric constant

S~ = (se/9m)& V(n', n, 't') . (2. 14} z = 1 + 4vy = 1 —(o~~/(o, (2. 18)

The first two terms in Eq. (2.13}are the purely
convective sources that always appear in an ex-
pansion solution of Euler's equation; the second
two terms are cross terms between matter and
electromagnetic fields specific to the Lorentz
force appearing on the right-hand side of Eq.
(2.4); the term (2.14) is the new second-order
source due to the presence of the quantum pres-
sure. Of course, the terms appearing in Eq.
(2. 13) take on different values than they would if
the quantum pressure were neglected in solving
Eq. (2.10).

We consider first the solution of Eq. (2.10)
and the first-order Maxwell equations. This has
been discussed in some detail, "'3' in connection
with the theory of multipole surface plasmons, for
the special case to which we now restrict our-
selves. A jellium model is assumed for the back-
ground positive-ion density, leading to an equilib-
rium electron density n, (r}=n, (z), where there is
a surface parallel to the z = 0 plane in the neigh-
borhood of which no(z) drops from its bulk value
to zero over a distance on the order of the Fermi
wavelength Xz. As discussed in Ref. 25, it is
possible to take advantage of the fact that deep
within the metal it is permissible to neglect
L( r) in Eq. (2.10) at optical and near-uv fre-
quencies, since it leads only to corrections of
order (Xz/X}' «1, where X is the wavelength of
light in vacuo. We place the z = 0 plane so that
from -~ & z & 0 (the vector z is taken to point
towards the vacuum}, L(r} may be neglected; this
region we refer to as the bulk. The equilibrium
electron density then drops to -0 at z =l, where
l -A~; we refer to the region 0 & z s l, where L(r)
may not be neglected, as the selvedge. We shall
see that, as in Ref. 25, our results are indepen-
dent of the exact location of the z = 0 plane, as
long as l «A. .

Writing all first-order fields as

f~(r, t) =f~( r)e '"' + c.c.
=2Re[f,(r)e '"'],

(2.1s}

where we take

f (r) f ( )ej(a x+ax) (2.16)

and k= (k„, k„, 0) is the wave vector parallel to
the surface, in the bulk we find tlat Eq. (2.10) re-
duces to

where (d~,

+,' = 4ve'n, /m, (2. 19)

is the bulk plasma frequency of the metal. In the
selvedge region, we treat Eq. (2.10) by writing

E,(z) =E„+E„(z), (2.20)

where k» is the sum of the incident field and the
linear field from currents in the bulk; over the
selvedge region K» may be taken as uniform,
since l «X. The field E„(z) is the field in the
selvedge due to currents in the selvedge. It is
given by

K„(z)= G(z —z ') P, (z ')dz ',
0

(2.21)

where G(z -z '} is the tensor Green function of
Eqs. (2.8), (2.15), and (2. 16), given, e.g., in
Sipe. ' To lowest order in 1/A we may put

G(z -z'}=-4vzzs(z -z') (2. 22}

in Eq. (2.21). To the same order in 1/a we then
find that for points in the selvedge, Eq. (2. 10)
reduces to

Pf(z) = [-e'n, (z)/m(o']Ef, ,

Lo(&g}Px~(z) = [e n~(z)/m]Ef»

where the operator L,(v} is given by

(2.23)

Lo((o) = &u,'(z) —(u*+
9

(no" '(z)
9m dz dz

+ gn', t'(z)
3m dz

&u~(z) is the "local plasma frequency, "

(u,'(z ) =4 we'n, (z )/m,

(2.24)

(2.2s)

and we have restricted ourselves to p-polarized
light and written

P,(z) =P', (z)z + P,'(z)k, (2.26}

etc., where k=k/~k~. The second of Eqs. (2.23)
and Eq. (2.24) illustrate the unphysical nature of
the assumption of a "local" theory (f =0) with a
smooth density profile n, (z), P;(z) in this instance
diverges at z such that m, (z) = ur. Although this
divergence may formally be removed by introduc-
ing a Drude collision lifetime in Eq. (2.4), the
large values of Pf(z) that still result when &o~(z)

-co are clearly unphysical, as discussed by
Eguiluz and Quinn. '



4392 J. E. SIPE, V. C. Y. So, M. FUKUI, AND G. I. STEGEMAN 21

To decouple Eqs. (2.7) and (2.23) we now again
invoke the inequality l/A. «1 to neglect the electric
field in the bulk due to currents in the selvedge.
Then the bulk fields may be found by solving the
Maxwell equations with dielectric constant

1 —(()&/(d z (0,
z(z) =

z&0,
(2. 27)

and the field in the selvedge may finally be deter-
mined from Eqs. (2.23). Since E~ is the incident
field plus the field from currents in the bulk
(rather than the field in the bulk), we have

f,(r, t) =f,(r)e '"'+ cc.
f,(r) =f, (z)e '"', (2.29)

where 0 = 2& and K= 2k, and then find that in the
bulk, where n, =e'V P, =O and-n, (z)=n» Eq.
(2. 12) reduces to

p, (r)= z, ( ) —r,r( ) r(E, (r) E,(r)],

(2.30)

Ef, =E,'(z = 0 ),
E'„=z 'E', (z =-0-) .

The approximation (2.22) and the neglect of the
field generated in the selvedge on the bulk results
in the neglect of the effects of the details of the
charge-current distribution in the selvedge on the
surface plasmon frequencies. This introduces no

serious error for l «X, as long as L,'(&o) has no

poles near frequencies of interest (Refs. 9 and 18
where, as in Ref. 25, an approximate expression
for L, was adopted). Such poles signal the pres-
ence of multipole surface plasmons, and, if they

appear, either a numerical solution' of Eqs.
(2.10) or a bulk-selvedge coupling theory ' ap-
plied to Eqs. (2.17) and (2.23) must be used
to obtain the linear fields. Except for our com-
ments in the concluding remarks, we shall neglect
the possible existence of multipole surface plas-
mons in this work. We note, however, that the
existence of the lowest multipole surface plasmon
has been both predicted in RPA calculations" and

seen experimentally" in metallic systems covered
with metal overlayers. This lowest multipole sur-
face plasmon, however, is predicted to exist in
such layered systems even within a local" re-
sponse theory. "

Returning to our problem at hand, we now con-
sider the second-order equation (2. 12). We write
the second-harmonic component of all second-or-
der fields as

where in (and only in) Eq. (2.30),

e'-n, /m0' . (2.31)

The source term in Eq. (2.30) is the usual expres-
sion for the SHG source term in a uniform electron
gas (cf., e.g., Ref. 15, and references cited there-
in). We note that it is not sufficient to keep only
the Lorentz term proportional to v, x 5, in Eq.
(2. 13); in an experiment involving two waves in
the metal, as we discuss in Sec. III, the term
proportional to (v, V) v, is nonzero. Both of these
terms are included in Eq. (2.30}. Turning to the
selvedge region, we proceed as in the final analy-
sis of the linear fields and neglect all but the low-
est-order terms in 1/X. We find that the field
P, (z) in the selvedge responsible for the genera-
tion of significant second-harmonic fields outside
the selvedge is given by

(2.32)

where

2e
@

BP'
lh pz

(2. 33)e, &Pl pVS' =—El~ +—,
m " gz gz '

and

2n-1 /3 ~ + (Pe)z
2 1Te

9m ' en 0 m
(2. 34}

A final simplification is possible because (l/z) «1.
Only the dipole moment per unit area, Q, of the
selvedge need be considered, '"

ge((f 1) P (z)e1lf Pdz
0

(2.35)

E,'(z = 0-)E;(z = 0 ),2m(o 4r

since P', (z z 0)= 0, E1~, =E1~(z = 0 ), and we have
used Eqs. (2.7) and (2. 18); the details of the linear
charge density in the selvedge do not affect Q~ in
our present model; only the total charge confined

The second-harmonic source terms in the selvedge
radiate as a dipole sheet placed outside the bulk
metal, as is clear from our development here.
All the shielding of the currents in the selvedge by
the motion of charges in the selvedge is taken into
account in Eqs. (2.32}.

The first of Eqs. (2.32) may easily be solved,
since the tangential component of the linear elec-
tric field is essentially uniform over the selvedge
[Eqs. (2.20)-(2.23)]. We find

q"= (e/2m(dz)E, ', P1(z =0 )
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to the surface is important. " This is, however,
not the case for Q', to determine that component
we would have to solve the second of Eqs. (2.23}
for P;(z) with a given no(z), and then solve the
second of Eqs. (2.32}. We do not consider this
worthwhile because of the crudeness of the hydro-
dynamic model (cf. Rudnick and Stern' ); rather,
we only wish to obtain an order-of-magnitude esti-
mate on the size of Q, and some insight into the
parameters on which Q might depend. To this
end, we define co, according to

Lo(Q)Pi(z)dz —= (a&0 —0 )Q',
0

(2.37)

(, =-, .' „,) (', ') (",') (E( = 0 )]', (2. 38)

which completes our analysis, as far as we shall
carry it, of the second-harmonic source terms
within the hydrodynamic model.

We close this section by comparing our results
with those of Rudnick and Stern, ' who estimated
Q from phenomenological arguments. They ar-
gued that the components should be given by

where the Pz(z) in Eqs. (2. 3V) is the exact solution
of Eqs. (2. 23) and (2.32). Comparing Eqs. (2.24},
(2.32}, and (2.35), we see that &u, can be inter-
preted as the "effective plasma frequency" of the
second-harmonic currents in the selvedge. If
Pz(z) existed predominantly in the region where
n, /n, «1, we would have &u, =0; if on the other
hand it existed predominantly in the region where
n,/&, = 1, we would have &o, &~, the inequality
appearing because of the effect of the pressure
term in Eq. (2.4) in increasing the plasma fre-
quency as the wavelength of the charge oscillation
is decreased. We may confidently expect that a
full solution of the hydrodynamic model would
lead to an w, in the range 0 s ~, c 2'~. Using
Eqs. (2.1V)-(2.19), (2.35), and (2.37) we finally
obtain

5= -17

Q=-2 2

(2.40)

III. SHG IN GEOMETRIES OF INTEREST

Thus we at least partly confirm the arguments of
Rudnick and Stern; if &0 a w~ and 0 «(d~, both a
and b should be of order unity. But if (d, = 0 =2(d,
Eq. (2.38) can lead to avery large ~a~. The
phenomenological arguments of Rudnick and Stern'
employed the zero-frequency response of the elec-
tron gas, and thus did not show such a resonance.
However, the resonance denominator in Eq. (2, 38)
should not be taken too seriously, since the (d, de-
fined by Eq. (2.37) may depend on 0, and the hy-
drodynamic model itself may give an oversimpli-
fied description of the electron dynamics near the
surface. Nonetheless, it is not unreasonable to
expect a resonance in Q' associated with an "ef-
fective plasma frequency" on general physical
grounds, since the part of the second-harmonic
currents responsible for Q' involves essentially
longitudinal oscillations of charge density perpen-
dicular to the surface. Q' on the other hand,
which results simply because the charge density
accumulated at the surface is driven in second
order parallel to the surface, should be free from
such a resonance. The damping of this longitudin-
al oscillation might of course be very large, or it
might occur sufficiently near ~~ so that, at optical
and near-uv frequencies where the theory devel-
oped here is valid, it could not be observed. But
we believe that this investigation indicates that
further theoretical work on the dispersion of a,
within more realistic models of the electron dy-
namics, and especially considering the effect to
adsorbed species, would be worthwhile. The ex-
perimental possibilities for determining a are
discussed in Sec. III; the effects of surface rough-
ness, which we have completely neglected in our
treatment in this section, are mentioned in Sec.
IV.

e3n Q

(2.39)

We now turn to an analysis of some experiments
involving SHG from metal surfaces. The source
terms are those discussed in Sec. II. In the bulk
we have a source polarization

where a and b are to be of order unity. We have
expressed Rudnick and Stern's results in our no-
tation (note in particular that they denote the
charge on an electron by e, while we denote it by
-e). Comparing Eqs. (2.36), (2. 38), and (2.39)
we see that the expressions of Rudnick and Stern
agree with ours if we set

(3.1)

[cf. Eq. (2.30)], while at a metal-vacuum selvedge
we have an effective current density

f„„(r)= -i(2(d)Qe'" "5(z —z',") (3.2)

[cf. Eqs. (2. 7} and (2.35)], where the interface is
at z =z„and
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Qk (+) Eg( (T))EA( (v))
2m' 4&

Q~ (v) I[E'e(z (e))]2
4m(o' 4~ )

(3.3)

where, for convenience in comparing with earlier
work, we write Q in terms of a and b; however,
we shall set 5 = -1 [Eq. (2.40)] in the following
discussions unless otherwise specified. The
signs in Eqs. (3.2}-(3.3) refer to the orientation
of the surface: If z points from metal to vacuum,
as in Sec. II, the upper sign should be used, while
if z points from vacuum to metal the lower sign is
appropriate. This guarantees, in Eq. (3.2), that
the current sheet is placed outside the "bulk
metal, " [see comment following Eq. (2.35)] and it
corrects Eq. (3.3} when the geometry for which
Eqs. (2.36), (2. 38) and (2.39) were derived is in-
verted. The field R, in Eqs. (3.1) and (3.3) is the
linear electric field, which may be approximated
using the usual macroscopic Maxwell theory with
a step discontinuity in the dielectric constant at
the surface. The fields in Eq. (3.3) are then to
be evaluated on the metal side of the interface, as
indicated by the (v). Finally, we note that since
Eq. (3.1) is a bulk term it should be evaluated up
to but not including the contribution from the dis-
continuity in the approximate f, over the step dis-
continuity in the dielectric constant. The inclu-
sion of that contribution would incorrectly treat
effects already correctly described by Eq. (3.3).

Once the sources (3.1)-(3.3) are specified, the
generated second-harmonic fields can be calcu-
lated either by a straightforward application of the
macroscopic Maxwell equations or, more easily,
by using a simple extension of the theory of trans-
fer matrices which we give in the Appendix. To
describe the propagation of these fields through
the metal, we use not the dielectric constant (2. 18)
which was derived from the simple theory of Eq.
(2.4}, but rather the observed dielectric constants
at (d and 2v. The ability to do this, which results
from our division of the response problem into
"bulk" and "selvedge' parts, is crucial; especially
in plasmon-enhanced-SHG experiments, the ob-
served SHG is very sensitive to the linear proper-
ties of the metal, as pointed out by Simon et al.,'
and as is clear from our discussion below.

Perhaps the most striking of the enhanced-SHG
experiments is that of Simon et al. ,' where light
at 1.06 pm is coupled through a rutile prism into
a metal film bounded by a quartz crystal (Kretsch-
mann geometry). SHG occurs in the quartz, bulk
metal, and at both the rutile-metal and metal-
quartz selvedges. It varies in intensity over
about four orders of magnitude, as the incident
angle is scanned over a few degrees, due to en-

I(2(g) = S.[I((u)]',

where

(3.4)

I(2(u) =2(&~4v)+x I&x- I

are the intensities of the upward-propagating in-
cident field and the downward-propagating second-
harmonic field, respectively (see Fig. 1). E,".and
E'," are the amplitudes of these fields, and n, and

N, are, respectively, the refractive indices of ru-

quartz

lYPZNPNNPZZPNPPE/ZPPd.

metal E z

rutile E, ,

FIG. 1. The model used for the rutile-metal and
metal-quartz surfaces. The shaded areas indicate the
selvedge current sheets, which are formally placed in
vacuum gaps.

hancement by passing through first- and second-
harmonic surface plasmon resonances at the
metal-quartz interface. As in other enhanced-
SHG experiments, the surfaces here are not the
simple metal-vacuum surfaces of fundamental in-
terest, but rather more complicated metal-dielec-
tric surfaces. To treat these surfaces within the
framework of the theory of Rudnick and Stern' and
Sec. II, we assume they may be described by put-
ting a vacuum gap between a metal-vacuum sel-
vedge, treated according to Sec. II, and a vacuum-
dielectric surface, treated by normal macroscopic
electrodynamics; the thickness of this vacuum gap
is then allowed to vanish. That is, the system is
treated as shown in Fig. 1, with the interfaces at
zp: 0 and d. We turn later in this section to ex-
periments directly sensitive to metal-vacuum sel-
vedges.

Calculating the SHG in terms of the parameters
of the bulk and those of the selvedge current
sheets, we find
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tile at w and 2&. The conversion factor for the
reflected SHG, @, is conveniently written in the
form

Here

(3.6)

c n~

where A is the ratio E,'"/(E,",}',

(3.6) m = (1 —r„r„e" ) ',
M = (1 —Rw~Rw~e

'
& )

(3.9)

A Aq +A~ +AD +Ag y (3.6)
are the modification factors which account for mul-
tiple reflections in the metal film at ~ and 2~.
We have set &u= ~/c,

the contributions indicated in Eq. (3.6) being those
from the quartz, the bulk metal, and the selvedges
at z =0 and d, respectively. We find

1/2

w( —(co( —k )
(3.10)

A, = -4wGwd~~{K[e*) —(e } ] —2W,e'e )
W~Qw(2w~+ W~)

T +T +Mx ~~e ~e (3.7)

and the Fresnel coefficients at ro for reflection
and transmission, r,&

and t,~, are given by

w )z) —w)E( 2 (z( zg ) 74;
1/2

l (f
gl (E] + K) 6 t W (6~ + ZU) f)

for the orientation of the quartz crystal specified
by Simon et al. ,' where d» is the nonlinear suscep-
tibility (Zernike and Midwinter" ), and e' and e'
are the ratios of the amplitudes of the components
of the incident linear field in the quartz to E"„,

for our case of p polarization. The corresponding
capital letters indicate these quantities evaluated
at 0=2' and K=2k, and the subscripts 0, 1, 2,
and 3 indicate vacuum, rutile, metal, and quartz,
respectively. From the bulk metal we find

2imc WzQ2co2

-(1+R„e*' &')[k'(1+ r„e" w')'+w'(1 —r„e" &'}']),

from the rutile-metal selvedge current sheet we find

Ao(E~, ) /2wlQ = To~(1 —R~Rog) [KW0 (1 + R~)QO+ (1 —R~)Qo]

+ T~~Rzwcw& z~MT~(1 —R~Ro&) [KWO (1+Roz)QO —(1 —Roz)QO],
(3.13)

and from the metal-quartz selvedge current sheet
we find

A (E"„}/2wiQ= T Me' w T (1 —R R )
'

x [KWO (I + Row)Q~+ (1 —Ros)Qi],

p „=(kz + u, k)/m, . (3.16)

To calculate these quantities we use the optical
constants given in Table I. The recently deter-

where Q, ~ are the dipole moments per unit area
of the current sheets at z = 0 and d, Eqs. (3.3).
The linear field in the metal used to evaluate them
is

h(z)= (pz, e' & +rz~c & pm e & )t~zmE~, , (3.15}

where

mined value of the dielectric constant of silver at
0.53 p, m that we adopt is in good agreement with
the values of Otter, ' Dujardin and Theye, "John-
son and Christy, "and Weber and McCarthy. "
However, there is serious disagreement concern-
ing the dielectric constant of silver at 1.06 p.m.
The values of Johnson and Christy" and Adams
et al." are rather different from that given in
Table I, but the latter value is chosen because the
cited investigators did more extensive experiments
in the infrared. At least part of the disagreement
is likely to be due to the variation in the optical
properties of a film with the conditions and rate
of deposition"; future investigations of SHG should
probably be preceded by experiments, such as
those of Lafair et al.,"to determine the optical
constants of the film under study.

In Fig. 2 we plot 6t, = (2wN, /cn', ) ~A, ~' and 8
= (2wN, /cn', ) ~A ~', the conversion factors that



4896 J. E. SIPE, V. C. Y. SO, M. FUKUI, AND G. I. STEGEMAN 2l

TABLE I. Optical constants.

~ (1.06 p.m) 2(u (0.53 p,m)

Rutile (Ref. 29)
refractive index

Silver (d = 550 A.)
dielectric constant

Quartz (Ref. 33)
refractive index
nonlinear susceptibility:

dye
= 0.39 & 10 (m/volt)
= 0.93 &10 (esu, cgs)

2.479

-67.03 +$2.44
(Refs. 30, 31)

1.536

2.671

-11.9+$0.33
(Ref. 32)

1.542

1P

I
I~

iI
11

-16 I (

1P !I
I
I

I
I

I

i 1

I

I

I:

l~
1P - ' &I r

I e
I
I
I

1P-

would be observed if SHG only in the quartz and

only in the bulk metal, respectively, were present;
we also plot dt, = (2@Ã,/cn', ) ~A, +A ~*. The fac-
tor @, is subject to spectacular enhancement in
the neighborhoods of the surface plasmon reso-
nance (SPR) angle and of the second-harmonic sur-
face plasmon resonance (SHSPR) angle for the
metal-quartz interface (Simon et al.'). As the
SPR is approached the linear field in the metal
near z=d increases, while that near z=0 de-
creases; this leads to the structure observed in
dt . The dip in 6I near the SHSPR has been ex
plained qualitatively by Simon et al.' It should be
noted that when those authors refer to SHG at,
e.g. , the rutile-metal interface, they apparently

41P-

CO

10-2

0 0
0 0

00
0

0

refer to both that due to the selvedge current at
z = 0 and that due to the bulk metal near z = 0.
Finally, we mention that the structure in N., at
angles just short of the SPR angle is due to changes
in the nature of fields in the quartz. For incident
angles in the rutile greater than 38.28' the incident
field is evanescent in the quartz, while for inci-
dent angles in the rutile greater than 38.46' the
second-harmonic field generated in the quartz is
evanescent.

Comparing 8 with the experimental data of
Simon et al.s (Fig. 2), we see that the plot in Fig.
2 reproduces the peak and valley positions, but
that the ratios of intensities at different angles,
and the width of the main SPR peak, do not agree
with the experimental results. We now turn to the
SHG generated at the two selvedges; in Fig. 4 we
plot 8 =(2' /cn, )~A

~

and g=(2'~/cn~)~A~~
for a=0 (and b = -1) at both selvedges. The fac-
tor S„goes through maxima at the SPR and SHSPR
much like (R„but is generally much smaller than

Sp since, except at the SPR, the linear field at
z = 0 is much larger than that at z =d. The dip in
@p near the SPR angle is due to the decrease in the

-22
1P

o o0 0
0

0 0
0 0 0 0 p

0 0

o

38' 39' 40' 41' 42' 43' 44' 45'

Angle of incidence

10 I I I I I I
3S' 39' 40' 41' 42' 43' 44 45

Angle of incidence

FIG. 2. The second-harmonic reflection coefficients
8, (8, and S~.

FIG. 3. The experimental reflected SHG of Simon et al.
(Ref. 3).
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FIG. 4. The second-harmonic reflection coefficients
Ro and Q.

38' 39' 40' 41' 42' 43' 44' 45'

Angle ef incilence

FIG. 5. Total second-harmonic reflection coefficients
for a=-2, 0, and+2.

linear field at z = 0 there, while the dip near the
SHSPR angle is similar in nature to the corre-
sponding dip in 8, . We graph curves for total
factors Sin Fig. 5, for values of a=-2, 0, and
+2. As is clear from Fig. 4, these curves are
essentially independent of the parameters of the
metal-quartz selvedge current. All of them give
a much better agreement with the experimentally
observed width of the SPR peak than does the S
factor of Fig. 3, indicating that Eqs. (3.3), with
5 = -l and

~
a

~
of order unity or smaller, predict

the correct order of magnitude of the selvedge
SHG at 1.06 um. But a close fit with the experi-
mental data is difficult to obtain, even if we do not
worry about the dips right before and after the
SPR peak, the first of which is very narrow and
both of which, resulting from destructive inter-
ference between the second-harmonic fields gen-
erated in the quartz and at the rutile-metal selv-
edge, are very sensitive to the values chosen for
the optical constants. Looking just at the ratio of
the SPR peak intensity to the plateau intensity
around 8 =42', and at the shape of the dip at the
SHSPR angle, we find that a better fit of the first
with the experimental data is achieved by an 0 ~ a
& -2, while comparing the second with the data
would lead one to adopt an a = 0. Larger values
of

~
a

~

lead to plots of 6l with either one, the other,
or both of these features in serious disagreement
with the data. However, we notethat the use of
the first of these features to compare theory with

experiment may not be advisable since the angular
width of the peak is very narrow; i.e., the last
order of magnitude of the peak height is confined
to a width of only 0.1'. Thus, the observation of
this feature is complicated by difficulties in reso-
lution and beam divergence. Further, changing
the values adopted for the optical constants by not
unreasonable amounts leads to changes in the pre-
dicted peak height of about an order of magnitude.
These problems somewhat obviate the advantage
of using the quartz signal near the SPR as a cali-
bration for the metal SHG.

To consider in more detail the dependence of
SHG on a and b, we look at the more traditional
SHG experiment'~ shown in Fig. 6; a beam is in-

metal E,

WPXX//8//EPPPPPPP/Pl/1/ll/EZPPz

vacuum
2

FIG. 6. The traditional SHG experiment.
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f= —~a — b+ —o'
k' g w, W,
(d ~3 ~ 63 2

(3.18)

2m ' 4m
(3.19)

and we here use the subscripts (2, 3) to denote
vacuum, metal. For e, =1 —~~/uP« —1, Eq.
(3.18) reduces to

f = [~(k /g')a —b+-,'], (3.20)

where the -', in both Eqs. (3.18) and (3.20) is from
the SHG in the bulk metal. The relative sizes of
the terms in Eq. (3.20) can easily be understood,
Compare, for example, the contributions from Q'
and Q': Q' is driven to a much greater amplitude
than Q' because the linear field in the metal has a
much larger k component than a z component;
however, Q' radiates much more efficiently than
Q~ because the field from Q' radiated towards the
bulk and reflected from it is essentially in phase
with the field radiated directly to -~, while the
corresponding fields from Q' add essentially
destructively. The net result is that the contribu-
tions are of the same order of magnitude, but that
from Q' varies as k compared to that from Q',
since both the z component of the linear field, and
the effectiveness with which Q' radiates, vary li-
nearly with k for &3, $, «-1. The fact that both
g' and Q~ require a z component of the linear field
[Eq. (3.3)] leads to the k in Eq. (3.17), and to the
familiar sin'8 dependence for SHG at srgall 6).

Similar arguments can be made to compare the
SHG from Q' and from the bulk metal.

In Fig. 7 we use Eqs. (3.17}and (3.18) to plot
the predicted 8's from silver at 1.06 p, m for a
= -1, 0, and +1 (all with b = -1); the proportion-
ately larger contribution of Q' at larger k is ap-
parent. Since, comparing the a= -1 and a=+1
curves, 6t(40')/8(peak) differs by about 40% of
that ratio, careful measurements of reflected
SHG in the traditional geometry of Fig. 6 (al-
though they would be at admittedly low intensities),
could be used to determine a. The advantage of
such an experiment is that its interpretation and
dependence on optical constants is rather more
straightforward than an experiment such as that
shown in Fig. 1. A number of experiments of this

cident on a vacuum-metal interface. The conver-
sion factor for SHG is here given by @.

=(2w/e)~A ~', where, using Eqs. (3.1)-(3.3), we
find

4wiQkt23
yN ~g +gf

where E
CV

O

=~r
/

I
I
Is=0&I:.. S4- I

-t
'.l

I,' /
g il

:.l
/:

/: a = —1::1

0
0' 30' 60' 90'

Angle of incidence

FIG. 7. SH reflection coefficients for the traditional
experiment, for a=-1, 0, and +1.

metal

vacuull
2

Z=O

dielectric

FIG. 8. SHG experiment to reach large values of k.

type have been performed (see, e.g. , Bloembergen
et al.~ }, but at higher frequencies than considered
here, where the theory is more complicated (see
the discussion in Sec. IV).

Because of the form of Eqs. (3.18) and (3.20),
we can expect even more dramatic dependence on
a for experiments in which incident fields can be
directed with larger wave vectors parallel to the
surface. Consider the experiment shown in Fig.
8, where we assume there is no appreciable SHG
in the glass. The conversion factor S
= (2v&~/en, ) ~A

~
is given by

A= (e' ~'t»m)'T»e' 2'MA

where m and M are given by Eqs. (3.9) and A
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FIG. 9. SH reflection coefficients for a rutile-metal
surface.

by Eq. (3.17). Look first at the limit d= 0; if the
dielectric is rutile we then obtain SHG from the
bulk metal and from the rutile-metal selvedge
present in Fig. 1. We plot the R's which result
for silver metal and an incident field at 1.06 gm
in Fig. 9. The predicted signal is both more in-
tense than that shown in Fig. V, and there is a
larger difference between the curves with different
values of a, the peaks in fact occurring at different
angles of incidence. Because of the comparative-
ly large values of 8, this experiment should be
feasible; in fact, it would be performed by a sim-
ple extension of the experiment of Simon et al. to
measure the SHG at higher incident angles, since
the results of that latter experiment are essen-
tially independent of the parameters characteriz-
ing the quartz-metal selvedge. In Fig. 10 we plot
the values of I, predicted for the geometry shown
in Fig. 1, with higher incident angles than shown
in Fig. 5. Looking at Figs. 5 and 10 from, say
40' to 85', it is clear that different values of a
lead to quite different curve shapes. Observations
of the SHG through these angles, rather than
around the SPR, would be more appropriate in an
attempt to determine the value of a for the rutile-
metal selvedge, as would observations of the SHG
from a simple rutile-metal interface. The dip in
the curve for a= -2 in Fig. 10 occurs when the
second-harmonic field from the rutile-metal
selvedge, which is rapidly growing with increasing
angle, reaches the same magnitude as the field
from the quartz and metal, and adds destructively;
it has nothing to do with plasmon enhancement
[cf. Eq. (3.20), which, however, strictly applies
to only the much simpler geometry previously
discussed]. A similar dip is predicted for the ex-
periment of Fig. 9, if a is sufficiently large in

a=2
10 a 0

~ ~

-20
10

E
'-22

10

, /

a = -2

—24
10

45' 55' 65 VS Ss'

Angle of incidence

FIG. 10. SH reflection coefficients for the experiment
of Simon et nl. (Bef. 3) at larger angles.

magnitude and negative. If a is in this range, its
determination by these experiments would be very
simple indeed.

However, the fundamental surface of interest in
the SHG from metals is the metal-vacuum surface,
rather than a metal-dielectric surface. An en-
hanced-SHG experiment particularly sensitive to
the metal-vacuum selvedge would be useful in
determining the coefficients a and b of interest.
Experiments similar to that shown in Fig. 1, but
with medium 3 being air, have been performed;
however, the plots in Figs. 2 and 4 suggest, and
calculations confirm, that even within 0.1' of the
SPR, the SHG from the rutile-metal interface is
not insignificant, and that for the particular geom-
etry of Fig. 1 the bulk metal SHG seems to domi-
nate even at the SPR. As a simple alternative we
suggest (and see Ref. 10) the experiment shown in
Fig. 8 with a gap of about d = 1 pm (Otto geome-
try). In Fig. 11 we plot predicted +.'s for a glass
with ng:&g: 1 40, and silver metal subject to an
incident field at 1.06 pm. The enhancement (cf.
Fig. 7) is associated with the SPR at the vacuum-
metal interface and with the vacuum light line,
but is complicated by the fact that the gap is on the
order of a wavelength; at larger gaps well-defined
SPR peaks are predicted at higher angles, but they
are smaller in intensity and very narrow. En-
hancement due to the SHSPR at the vacuum-metal
interface also occurs, but at a much lower in-
tensity, since at those greater values of k the
evanescent linear fields in the gap are more con-
fined to the glass-vacuum surface, and much
weaker SHG results. The predicted values of 8,
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IV. CONCLUDING REMARKS

To summarize, in this work we have discussed
the SHG from metal surfaces within the hydrody-
narnic model by dividing the metal into 'bulk' and
"selvedge" regions. We have shown that Rudnick
and Stern's phenomenological parameter b is pre-
dicted to be -1; the parameter a may show a
resonance (though perhaps either highly damped or

100

80-

l

I:I:I:
40- ', / '~''

/ I//. 'j
20-

a=1 g~ ~"
I=0
a=-1

42' 43 44' 45' 4$ 41

60-
~V

Angle of incidence

FIG. 11. SH reQection coefficients for the experiment
of Fig. 8 (see text).

shown in Fig. 11 are fairly sensitive to d, but that
distance could be determined from linear experi-
ments; the predictions for smaller, but perhaps
not experimentally reproducible gaps are also
dramatic. With respect to determining a, we note
that the curves, when normalized to their peak in-
tensities, are very similar in shape, the ratios
6t(42')/(R(peak) differing by only about "l% between
a= -1 and +1. However, the signal could be com-
pared with a reference crystal, or the experiment
could be made self-calibrating by adding a crystal
without inversion symmetry above the metal. If
the SPR angle for the vacuum-metal interface were
fairly far removed from the SPR angle for the
crystal-metal interface, the SHG at the crystal-
metal selvedge could be neglected, and the back-
ground SHG from the crystal would vary little with
incident angle and could be used to calibrate the

experiment. In any case, the intensities predicted
in Fig. 11 are much higher than in the traditional
(Fig. 5) experiment, and since the peaks are fair
ly broad and the difference between curves of dif-
ferent a fairly substantial, we feel experiments of
this sort could be of some aid in understanding
SHG at the metal-vacuum surface. The enhance-
ment factors present in more complicated ATR
experiments, which could also be used to probe
the SHG at a metal-vacuum surface, are discussed
in a general way by Chen and Burstein. "

near the bulk plasma frequency), associated with
the effective plasma frequency of the second-har-
monic surface currents. Analyzing the plasmon-
enhanced-SHG results of Simon et al.' at 1.06 gm
we showed that, taking into account the difficulty
of the experiments, the results are fairly well de-
scribed by b= -1 and ~a~ of order unity or less.
Using the fact that SHG experiments are propor-
tionately more sensitive to a at larger values of
(k/&o), we suggested an SHG experiment on a ru-
tile-metal interface, and an enhanced-SHG ex-
periment on a vacuum-metal interface, that should
aid in determining that parameter.

Throughout we have neglected surface roughness,
which can be expected to change the value of b (and
of course that of a) from the smooth surface value
(b = -1) corresponding to a surface which perfectly
reflects electrons impinging on it from the bulk.
Rudnick and Stern' have discussed the effect sur-
face roughness can be expected to have on b, and
there has been much recent work on the effect of
surface roughness on the linear properties of an
interface (Maradudin and Mills" ). Nonetheless,
a theory for the effect of surface roughness on
SHG is still lacking. We note, though, that the
experiments we have suggested to determine a
are, in fact, sensitive to the ratio a/(-b+-', ) [Eq.
(3.20)j. Thus, even if 5 is not known, some in-
formation can be gained. Ideally, of course, b

could be determined from experimental results at
low (k/~) where the contribution from Q' is negli-
gible; this would require a reference crystal, or
a self-calibrating experiment of the type discussed
at the end of Sec. ID.

Since the application of the hydrodynamic theory
indicates the possibility of a resonance in a, we
believe that a closer look at the RPA expressions
for SHG, and some actual calculations, would be
justified. As pointed out by a number of authors
(cf., e.g., Refs. I, 15-17, 21), the hydrodynamic
theory cannot be relied on to give a quantitative
description of electron behavior near surfaces.
A more satisfactory approach would be to calcu-
late a and b following the analysis of, e.g. ,
Bower"; this would begin with the solution for the
linear fields recently presented by Feibelman '
(and see Refs. 41 and 42). Only within such a
more realistic theory could a calculation of a
resonance in a be considered physically meaning-
ful; the effect of adsorbed species on a and b would
be particularly interesting. Of course, more de-
tailed calculations of even the bulk SHG would be
required for a serious experimental and theoreti-
cal investigation into the dispersion of a (and b),
since it is only in the infrared, where interband
transitions can be neglected, that the hydrody-
namic model forms a good approximation of elec-
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tron dynamics even in the bulk of metals such as
silver. ~ Another very interesting topic for future
theoretical and experimental investigation is the
effect of the presence of multipole surface plas-
mons" ~'" on the SHG at metal surface. In ad-
dition to the possibility of the nonlinear source
terms coupling the plasmon branches, where the
strength of the coupling would depend on the sur-
face charge distributions of both branches, it is
possible that the SHG from a multipole surface
plasmon would be considerably stronger than that
from the usual monopole surface plasmon, since
the charge density in the former undergoes dras-
tic variation in the selvedge region. '
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APPENDIX

We here present an extension of the theory of
transfer matrices which simplifies the solution
of the driven Maxwell equations for systems of the
geometry shown in Fig. 1, with an arbitrary num-
ber of layers.

For the source of polarization

p( r) p(z }zk (k x+N~s)

(for the problems in the text k would be replaced
by K, etc.) a particular solution of the Maxwell
equations

v (z,E)=-4wv P,
V B=O,

2)
V x B+i&oz&E = -4zi&jpg,
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V x E —i&oB= 0,
is given by

E(z)= G(z -z') P( ')dz',

where

(As)

G(z -z )=2zi~ u, 'I(zz+p, ,p, ,)e' &'*"B(z-z')+(ss+p, p, )e '~&'* *'8(z'-z)]-4', 'zz5(z -z'), (A4)

s = k x z, B(z) is the usual step function, dB(z)/dz
= 5(z}, and w, and p„are given by Eqs. (3.10)
and (2. 16}. The Green function (A4) can be de-
rived simply and directly from Eqs. (A2), without
the introduction of potentials or auxiliary fields,
following Sipe." The p-polarized solution of the
homogeneous form of Eqs. (A2), is, of course,

I

faces, towards z = +~; the field resulting from the
5 function in Eq. (A4) is not of interest. Clearly
for z cz, the total field is of the form (A5) and
(A6), but with different coefficients E„as z ~~ z,.
Combining the particular solution (A3) with an ar-
bitrary homogeneous solution, we find

e,(z;) =s, (z,)+e, (z,},

e, (z}=
e f gl]g

$+

E(z)=E,,p,,e' ~'+E, p, e ' &',

which we write in the form of a vector,

(A5}

(Ae}

where

s((zo) =
z „(z.)—
-s, ,)

(A8)

The reflection and transmission of a field (A5) at
a discontinuity in the dielectric constant is easily
handled by applying transfer matrices to the vec-
tor (AS).

Now return to Eqs. (Al) and (A2), and consider
a source P(z}=P(z,)5(z -z,). We are interested
in the p-polarized fields which are radiated, after
perhaps reflections and transmissions at inter-

s (q (z 0) = 2 1TiQP w ( p (~
' P (z 0), (A9)

Using Eq. (A7) and the appropriate transfer ma-
trices, along with the boundary condition of out-
going waves at z = +~, the radiated fields are
easily found by straightforward algebra; the total
fields radiated from the source (Al} are then found

by superposition.
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