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The solution to the Boltzmann equation for electrons in a metal is a distribution function which depends
on energy and wave vector. This paper solves for the energy dependence by expanding the distribution

function in sets of orthogonal functions, (a) energy polynomials, (b) Legend re polynomials in

tanh(e„/2k~T), or (c) a combination of these two choices. To study only the effects of the energy

dependence, the electrical and thermal conductivities were calculated for a class of isotropic models. For
one of these models, the electrical resistivity is 37% lower than the Bloch-Gruneisen result at a temperature
of 0.15 (in units of the Debye temperature, e~). For thermal resistivity, this method is consistent with the
result of Klemens; i.e., at very low temperature the correction to the lowest-order result is 51%. Corrections
are important at temperatures as high as 0.3 eD. These results show that the standard, i.e., simple

variational, results for the temperature dependence of transport coefficients make significant errors.
However, by the methods of this paper, accurate results can be obtained quite easily by computer, not only

for simple isotropic models, but also for realistic metals. Results for transition metals are briefly mentioned;

more complete calculations will be presented elsewhere.

I ~ INTRODUCTION

The electrical and thermal conductivities of a
metal can be obtained by solving the semiclassical
Boltzmann equation' which determines the elec-
tronic distribution function. In general, the dis-
tribution function depends on both energy and wave
vector. The wave-vector dependence has been
calculated by several groups. ' ' In this paper, I
investigate methods of calculating, the energy
dependence and the effects on conductivities.
has been known' that the energy dependence can
have a substantial effect on the thermal conduc-
tivity at low temperatures, but it was believed
that the effect' on electrical resistivity was
small. However, while calculating the transport
coefficients for Pd (Refs. 7, 8) and Nb (Ref. 8)
using realistic models, the enhancement of the
electrical resistivity was unexpectedly found to
be as large as 281. To understand this effect, I
extended a formalism suggested by Allen to a
point where calculations of the energy dependence
in the distribution function could be performed.
To isolate the effect of the energy dependence, I
calculated conductivities for completely isotropic
models, i.e., using spherical Fermi surfaces
and Debye phonons. These calculations show that
the energy dependence can be responsible for en-
hancements as large as 37% in the electrical
conductivity.

Some preliminaries are presented in the next
section, where the Boltzmann equation and
Allen's' method of solution are briefly restated.
The subject of energy dependence is addressed in
Sec. III. This dependence can be found by using

expansions of orthogonal functions, which can be
(a) polynomials' in the energy, (b) Legendre
polynomials9 "of tanh(F~/2ksT), or (c) a mixture
of these (hereafter called the "mixed basis").
The isotropic models are defined in Sec. IV, and
the conductivities are calculated for these models.
The rates of convergence of the various methods
are compared, and the "mixed basis" is shown
to be most useful for calculating thermal conduc-
tivities at all temperatures.

II. THE BOLTZMANN EQUATION

As used by Allen, ' the distribution function and
Boltzmann scattering operator can be expanded
using the basis sets y~„and $~„, given by

z(k)on(~k)/+ (4)v(~a) ~

(k) =F (k)o„(e,)( Bf/8e, ), -

Q F~(k)Fq(k)8(e —e~,) = 5~~%,(e),

(2.1a)

(2.1b)

(2.2a)

(2.2b)

Q,„,„=Z x,„(k)Q&,xg; (k ) ~ (2.3)

where f is the Fermi function and N&(&) is the
single-spin density of states and v(e) is one-third
of the rms velocity on the energy surface. The
functions X~„and $~„are biorthogonal, since the
energy functions a„and Fermi surface harmonics"
F~ are orthogonal [Eqs. (2.2a) and (2.2b)]. The
scattering operator and distribution function
written in this basis are
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4,„=Q $,„(k)4)„ (2.4) where the quantities A„, 8„, and C~ are given by

where -(5f/Be, )@, is the deviation of the distribu-
tion function from the Fermi factor. Note that
the energies are measured from the chemical
potential and that k is shorthand for [k, n], where
k is the wave vector and n is the band index.

The linearized Boltzmann equation for elec-
trons in the presence of a uniform electric field
E and a uniform temperature gradient &T can
be expressed as

Aq = Gk(T

(]zec„(z) -
&

W3
" 3f')

C~ = Q v~~(k)5(e~)/I)I )(0)v(0) .

(2.6)

(2.7)

(2.8)

eEA„+ s VTB„C~= g Q~„~.»P~,», (2.6)
3 z'n

The scattering operator due to phonons is then
given approximately by

'(, J,z'))"(()) . ) P.:(x)
4mkBT "dQ 2, X

s=+1 0 sinhx
(2.9)

where x is the dimensionless variable, x=hQ/2ksT The f.unction a (s, d, d'}E(Q} is similar to the Eliash-
berg function" o'E(Q) and is given by

a (s, d, J')E(Q) —= [2N, (0)] ' Q ~M~~, ~'5(z~)5(z~)5(Q —Q~~ )[E~(k) —. sE~(k')] [E~,(k) —sE~ (k')). . (2.10)

The quantity M",„is the electron-phonon matrix element. " The use of n'(s, d, d')E(Q)in Q~„~,» is an ap-
proximation. Both initial and final electron energies have been set equal to the Fermi energy, with cor-
rections being smaller by a factor of (ks T/zz p Finally. , in Eq. (2.9), the function I„»(x) is given for
s=+1 by

c

2(' (x)=, k f4 f(g)(1-f(s )] l(N( )+(1)] (e —()c —Ir()) +N(())6( —c'+ K())]
B

&& [o„(z)+ s&r„(z')] [c„()+zs&r, (z'»)], (2.11)

where f(z)[N(Q)] is a Fermi [Bose] factor. The
functions I„'„,(x) vanish unless n+n' is even.

An equivalent expression for I' is (see Appen-
dix A}

8I'.(x)=g„„,(x/w)+g .(-x/w)

I

two choices of energy functions given by Allen, '
(a) polynomials in z~, or (b) Legendre polynomials
in tanh(z, /2ksT}. A mixture of these functions
is useful in calculating the thermal conductivity
as shown in Sec. IV.

+ sh„„,(x/w) + sh, (- x/w),

where the functions g and h are defined by

(2.12)
III. ENERGY EXPANSIONS

(2.13}g„„,(z) =Jo„(2wksTy)o„, (2wks Ty),

h„„.(z) =Jw„(2wks Ty) o»(2wksTy + 2wksTz),

(2.14)

with the operator J being expressed in two ways
as

In) 1J=w dx cosh~(wx') - dy,
x g

1 1
J= — du

7rz ~ y+~

(2.15)

(2.16)

where 0. = tanhwy and y = cothz. In the following
section, expressions for I'„~ will be found for the

The work of Wilson'4 and Sondheimer' used ex-
pansions of the distribution function P in powers
of e,. Allen' suggested using instead an orthogo-
nal set of polynomials in z„ i.e., choice (a} of the
previous section. The polynomials of dimension-
less argument y =z~/2wksT are generated by the
following recursion formula for n ~ 2:

n &„(y)=2(2n —1)yt'„,(y}—(n —1)zt'„~(y}, (3.1)

with (ty=}1and l', (y}= 2y. The connection with
the energy polynomials is

o„(~)= (2n+ 1)'"t'„(y) . (3.2)

The values of A„and B» [see Eqs. (2.6) and (2.7)]
vanish except for n=0 and 1, respectively, A„
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p and B„=6„,. However, Al len d id not show
how to evaluate the functions I„'» [Eg. (2.11)]but
only calculated a few results. This paper not
only shows how to evaluate I„'» (on a computer)
but tabulates a large subset of its values.

Since the moments of cosh~my are related to
the Bernoulli numbers P by and

(2n)!z'& 'e&,
~~ (2q)!(2n —2q+ 1)! ' (3.4)

N„=m dycosh 7)y y "=2 1 —2' " p2„, .3

the functions g, and h, can be found from

(t+J ) /2
t

(a+'t /2 (- 1)'s!
Jyt(y+ z)J ' zion 2r+ ~

(2x)! ", , „,, (s i)!(i+j s)!(s+ 1 —2r)! (3.5)

To derive these expressions, the first form of J
[Eq. (2.15)] is the more expedient form.

In Table I, I„'„, is displayed in fractional form
for n, n' &5; calculations were done for n, n' &49,
and a listing is available on request. Note that

l„,(z) =0 and I', (0)= 5„»5,.and that they are even
functions; the highest power in z is n+n'. The

I

lowest-order result for electrical resistivity
does not include n'(-JJ')F(A) because I,O=O.
However, the lowest-order result for thermal
resistivity and higher-order results for both
resistivities include both u'(+JJ')F(Q) and
ot'(-JJ')F(Q) In Se.c. IV, where the Debye model
is discussed, an enhancement of the electrical

TABLE I. Coefficients of I~~ (7tz) for the energy polynomials. Blank entries are zero.
Entries with a *are a correction to the calculations in Ref. 9.

n n' z2 z6 zi0

0 0

0 0

2 0

2 0

2 2

2 2

4 0

4 0

4 2

4 2

4

4

1 1

1 1

3 1

3 1

3 3

3 3

5 1

5 1

5 3

5 3

5 5

5 5

5
4

15

5

4

21
4

15
T
7

T

-W5/2

205
144
205
48

1 1

5&5/4
1351
192

215
64

7 ~5/4
186
96

105
32

2485
576

805
192

~21/2

-v 21/6
49
36

49
12

~33/4

v 33/15

v 21/2

5~21/6
203
36

35
12

7~33/12

95
18
35
6

~33/4

7~33/20

~77/4 -5~77/144 7~77/72 55~77/144

—3~77/20 19~77/48
5269
3600
5269
1200

21 329
2880

2849
960

4103
900

4~08

600

539

539I
-7~77/120 19~77/48

17 57

800
17 71
800
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TABLE II. I~ (x) for the expansion usirg the Legendre polynomials of tanh(~&/2k~T). The
notation that y= coth x is used.

Ioo(x)-1 Ioo(x)-0 I2o(~)=0

r«(x) =1.5(1 -y +y/ )

rf( ) 1.5(-1+3' —3y/x)

r»(x) =+~5( 1+3' 3y/ )

Ipp (x) = 8 (11—6&y + 6&y4 + 45y/x —6&y~/x)

P&2 (x) = 8 (-9 + 54y —45y4 —3&y/x + 4 &y /x)

I3f (x) =—~21(-3+1$y —1&y —13'/x+ 15' /x)

I3((x)=—~21(3 —24y2 + 2&y + 47y/3x —25y~/x)

I)3(x)= 8 (34 —39&y + 840y —475y + 214y/x —2045y /3x + 4757 /x)

I33 (x) = 8 (-34 + 4177 —90&y + 525y —2 22'/x +725y /x —52&ys/x)

2[3(2n ~ 1)]'I'
[xn(n+ 1)] (3.6)

conductivity can arise from the higher-order
terms, which also include a'(-ZJ')F(g).

Another choice for the basis set to be used in
expanding the distribution function is the set of
Legendre polynomials of (anh(zg2ksT), choice (b)
of Sec. II. This set has the advantage of being
well known. Also, the zero-order function is a
constant which gives the lowest-order result
for the electrical conductivity. For the thermal
conductivity, the first-order term gives a result
very close to the result by Klemens, ' who calcu-
lated the thermal conductivity by solving the
Boltzmann equation exactly within a Debye model.
Kus" used tanh(y)zg2kzT), where q was used as a
variational parameter; the value of g = 1 gives the
first Legendre polynomial and was found to give
a good result for thermal conductivity at low
temperature. The results for E'„„,n, n' ~ 3 are
given in Table II. Notice that since I' .(0)= 0„~0„,
a large amount of cancellation between terms
takes place. This table is most easily con-
structed with the second form of J [Eq. (2.16)].
The value B„ is given for odd n by

with the value of A„vanishing unless n = 0 (A„
= 6„,).

The advantage of energy polynomials is that the
lowest-order solution gives good results at high
temperature'~; the tanh(6$2kzT) gives a good
representation at low temperatures. " Both of
which will be again demonstrated in the next
section. The mixture of the two functions should
give good results at both extremes. The Gram-
Schmidt orthogonalization process can be used to
form the two functions

o~ (z) =&6z
q (3.7)

IV. MODEL CALCULATIONS

To isolate the effect of the energy dependence
of the distribution function on the conductivity, I
chose to study a class of isotropic models. In
these models, the isotropy is achieved by using
a spherical Fermi surface and a Debye phonon
spectrum. The functions F~(k) become simply

02 (z)=b(v'-9)1'I2(vta~vz-6z), (3.6)

with z =z/2vkzT. The functions I „'„", can be cal-
culated as shown using Eq. (2.16). The results
are summarized in Table III.

Table III. I .(x) for the expansion usirg the mixed basis. The notation that y= cothx is
us ed.

Iff (x)= 1 + (x/7(')

I;f (x) = 3(x/~)'

I' (x)= -3(7t -9) (x/7r)

I2( (x)= -3 (x2 —9) ~ I2[1 + 3 (x/x)2 -yx]

I22(x)=1.5(x'-9) ~[x2-6+ 6(x/x) -x y +x y/x]

I22(x)=1.5(x2-9) ~[-x2+ 12+18(x/7r)~ 3x y2 —3x y/x-12x yx]
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X = 2 —o'E(Q},dA
A

(4 I)

—„n'(~xx)E(Q) .dA
(4.2}

The index x refers to the use of the Fermi-sur-
face harmonic F„which is proportional to k„or
equivalently proportional to Fyp Within these
definitions, n'(+xx)E can be calculated (see Ap-
pendix B):

spherical harmonics Y, (k). Furthermore, only
l=1 enters because of the vector nature of the
applied fields. The functions o'(s JZ') E( Q} with
J=Z' = (Im}= (I, 0) are called n'(sxx}E(Q) to con-
form with the notation of Allen. ' These functions
have a cutoff frequency A, which may be different
from the Debye cutoff, co~. If the Debye wave
vector is smaller than the Fermi surface diam-
eter q~&2k~, then the two frequencies are the
same. However, the formula for a'(st')E [see
Eq. (2.10)] has a matrix element which is non-
vanishing only when crystal momentum is con-
served. If qD& 2k~ and assuming that q~ is less
than any reciprocal lattice vector, the maximum
phonon wave vector contributing to a'(st'}E is
the Fermi-surface diameter and Ac=~ -ekF.
However, in this paper, the differences between
A~ and ~~ will now be ignored.

Following McMillan's definition" of X, the
definitions of A., are

tion are correct at both high and low temperature
extremes. At intermediate temperatures,
Rhodes' and Sondheimer' showed that corrections
to this solution were at most 10% for the value of
A. /A =2 '~'. However, for metals without a free-
electron-like band structure, the value of A. , /X
can be as large as 1. As demonstrated in Fig, 1,
at a low value of X, /~, very little reduction of
the electrical resistivity from the Bloch-Gruneisen
formula is observed. For potassium, Leavens'
has shown that the corrections due to the correct
energy dependence cannot be ignored.

For larger values of A../X, the enhancement in
the electrical conductivity is more important.
At the value of &,/X= 2 '~', the enhancement is
at most 10/~ (see Fig. 1). However, as the value
of X. /& increases to its maximum of one, the
effect is more significant. At A. /A =0.766, the
maximum enhancement of the electrical conduc-
tivity is 25 j(- which occurs at a temperature of
0.15 gD, also shown in Fig. 1. For the largest
allowable value of X./X= 1, the enhancement is
at its maximum of all the models, 37'P~ at 0.15 eD.

These results have been calculated using the
energy polynomials and the tanh(e/2ksT) expan-
sion (see Sec. III}. At most six polynomials are
needed to given conductivities to within 1%. At
temperatures near 0.1 9~, the tanh(e/2ksT) ex-
pansion converges at a slower rate, as shown in

o.'(+xx)E(Q) = n. .(Q/Q, )'9(Q, —Q),

o'(-xx)E(Q) = 2{Q/Q, )'[~ —~.(Q/Q, )']
X 9(Qc —Q),

(4.3)

(4.4)
09 (o)

where e is the Heaviside or step function. Note
that in this model X, + & = 2X and that X, has in the
past been called X„."

The three parameters are A~, X„and X . The
first sets the temperature scale; the second sets
the scale for the resistance. However, the third
parameter is, for convenience, taken to be the
ratio XJX, instead of X =2K —X.. To ensure that
a2(+xx)E is positive, the bounds of this ratio are
0 ~ X, /A. ~ 1. If the identification with free elec-
trons is taken seriously, then the ratio is

~ O.B
~ M

.~ lP

M 08
Q
&O,B

~ lp
~ M

~ 0.8
Q
Q

~ O.B

1.0

(b)

X, /X = q 'J4ky . (4 6) 0.8

The model which corresponds to one "free" elec-
tron per atom has been studied in the past by
Bloch,""Wilson, '4 Sondheimer, Rhodes, " and
Klemens'; this ratio X, /A. is then fixed at 2 4~'.

A. Electrical resistivity

By suitable expansions, Bloch" " showed that
the lowest-order solutions to the Boltzmann equa-

O.B
0.0 02 0.4 O.B

Temperature (8, )
FIG. 1. Electrical resistivity for the model systems.

The curves are the result of using six energy polyno-
mials (see Sec. III) and are normalized to the Bloch-
Griiniesen formula. The temperature is in units of e~.
Curves (a), (b), (c), and (d) correspond to values of
~ /A, =0.06, 2 3, 0.766, and 1, respectively.
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TABLE IV. Comparisons of two expansions for the electrical resistivity for the Debye
models. For each temperature, the resistivity is normalized to the 1owest-order result,
which is the Bloch-Gruneisen result. The temperature T is measured in units of e~.

Number of
energy polynomials two Legendre

polynomials

0.063
0.397
0.397
0.766
0.766
0.766
1.0
1.0
1.0

0.10
0.15
0.10
0.20
0.15
0.10
0.20
0.15
0.10

0.987
0.908
0.917
0.861
0.825
0.842
0.822
0.773
0.794

0.986
0.895
0.910
0.824
0.794
0.827
0.764
0.726
0.775

0.985
0.893
0.909
0.819
0.791
0.826
0.756
0.723
0.774

0.988
0.908
0.928
0.835
0.820
0.864
0.774
0.762
0.824

Table IV. At higher temperatures, the effect of
the energy dependence is diminished and the poly-
nomial expansion converges at a slower rate.

B. Thermal resistivity

The lowest-order result for the thermal resis-
tivity was first derived by Wilson. " Calculations
by Sondheimer' showed that the lowest-order
result was accurate at high temperature, but at
low temperature, a large number of terms in the
energy expansion of the distribution function was
needed to determine a converged result. Klem-
ens' showed that the lowest-order solution over-
estimated the exact resistivity by 50'%%u~. Further-
more, Klemens' graphed the distribution func-
tion and showed that at large energies P(e)
approaches a constant. Kus" used this result
and used a combination of an exponential and a
term containing tanh(eg2keT) to calculate the
thermal resistivity.

The mixed basis and the analytic expressions
in Sec. III make it possible to solve the Boltzmann
equation for the thermal resistivity within -2%%u&

by a (2x2) matrix inversion. At low tempera-

tures T (0.1 B~, the Wilson" formula gives a
thermal resistivity a factor of -1.51 larger than
the exact answer. ' Six terms in the energy ex-
pansion give 1.06. However, by extrapolating"
the series of approximations, obtained by increas-
ing the size of the matrix, an answer can be
estimated to better than 2% (see Appendix C).
With the Legendre-polynomial expansion, one
term gives 1.05; two terms give 1.002 +0.002.
The resistivity given by the mixture is accurate
to within 1.5%%ug. At high temperatures the lowest-
order solution of Wilson gives an accurate re-
sult, but the first term in the Legendre expan-
sion gives a resistivity 10% larger. The mixture
then is the appropriate solution at all tempera-
tures. These results are summarized in Table V.

The effect of the parameter X, /X is to extend the
importance of the energy dependence to higher
temperatures. For X, /X=0.06, the enhancement
of the conductivity over the lowest-order result
becomes unimportant at -0.2 ee. For X, /X.

=(2 ' ', 0.766, and 1) this effect becomes small
at (0.25 ee, 0.4 e~, and 0.5 ee), respectively,
as shown in Fig. 2.

TABLE V. Comparison of three expansions for the thermal resistivity of the Debye mod-
els. For each temperature, the resistivity is normalized to the result of ilson, i.e., using
only the first-order energy polynomial. The temperature T is measured in units of 8&.

Number of
energy polynomials

2 6

Terms in Legendre
expansion Mixed

basis
Cont.
fract.

All
0.063
0.397
0.766
0.766
1.0
1.0

0.01
0.10
0.10
0.20
0.10
0.20
0.10

0.812
0.830
0.808
0.879
0.780
0.836
0.761

0.697
0.721
0.706
0.808
0.687
0.742
0.673

0.695
0.725
0.710
0.807
0.692
0.762
0.680

0.662
0.696
0.684
0.800
0.668
0.744
0.657

0.669
0.705
0.688
0.799
0.668
0.735
0.654

0.660
0.696
0.681
0.799
0.658
0.734
0.646
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10

0.8

b)

@ 0.8

E 0.6—

10

08

0.6
0.0 02 0.4

Temperature (8, )

I

0.6

FIG. 2. Thermal resistivity for the model systems.
The solid curves result from using six energy polyno-
mials. The dashed curves are the results of using the
mixed basis. The curves are normalized to Wilson's
formula. The temperature is in units of e&. Curves
(a), (b), (c), and (d) correspond to values of &, /A
=0.06, 2 ~, 0.766, and 1, respectively.

V. CONCLUSIONS AND IMPLICATIONS

The energy dependence in the solution to the
Boltzmann equation gives significant contribu-
tions to the electrical and thermal conductivjties
in the temperature range below 0.5 e~. The cal-
culation of the electrical resistivity to within 1%
needs at most six polynomials in the expansion
of the distribution function. Furthermore, the
thermal resistivity can now be calculated within
2% by using a two-term expansion, the "mixed
basis. "

For transition metals, the quantities a2(st')E
can now be calculated within the rigid-muffin-tin
approximation. ""The phonon spectra and
Fermi surfaces are complicated, which destroys
any relationship between X./X and qJk&. The
simple power-law behavior of a'(+xx)E is also
no longer valid. A realistic a'(+xx)E= a', Q has
been calculated by several groups. 2"' The large
difference between a'(+xx)E and a'( xx)E at low-
Q is caused by the weighting of a'(+xx)E by (1
—cosP) (see Appendix B). This difference is
small at large A as shown by a calculation' of

the function a„',E(Q) which only has a weighting
of v„' v, , -cosset) for Pd. This function was an
order of magnitude smaller than a'(+xx)E at
frequencies larger than 0.15'~.

To summarize, the models do not have a direct
correspondence to realistic calculations for
transition metals. The simplifying assumptions
are not suitable for metals with complicated
Fermi surfaces. However, these calculations
have shown how to include the energy dependence
in the distribution function and that it is import-
ant. The energy polynomial method is suitable
for calculating the electrical resistivity. The
mixed basis is very useful for calculating thermal
conductivities.

After this work was completed, two papers
were received from Engquist and Grimvall" "
These papers addressed a similar topic, effects
of energy dependence of the distribution function
on electrical resistivity. They have used an
equivalent but slightly different method of solving
the Boltzmann equation, which they have applied
to an isotropic system. However, a different
form of a'(+xx)E(Q) was used, proportional to
0, which leads to electrical resistivities pro-
portional to T' (instead of T') at low tempera-
ture. They discovered that for their model, only
at temperatures -0.10 e~ did the energy poly-
nomial expansion for electrical resistivity con-
verge faster than the expansion in Legendre
polynomials [in tanh(e/2ksT)]. For the models
considered in this paper, this conclusion also
holds. Furthermore, near this temperature,
the largest effects are seen (see Fig. 1). They
calculated electrical resistivities for systems
with impurities, but did not calculate thermal
conductivities. I have analytically evaluated
integrals in this paper which will be useful in
further calculations in either method of solving
the Boltzmann equation.

ACKNOWLEDGMENTS

I wish to thank P. B.Allen for suggesting these
calculations and to thank him and W. H. Butler
for their useful conversations during the corn-
pletion of this paper. I also thank W. E.
Lawrence for pointing out certain papers in the
literature. This research was jointly sponsored
by the National Science Foundation under Grant
No. DMR-79-00837 and by the Division of Mater-
ial Sciences, U. S. Department of Energy under
Contract No. W-7405-eng-26 with the Union
Carbide Corporation.

APPENDIX A

In this section, one of the integrals useful in defining the operator J is derived [see Eq. (2.15)]. The
starting point is Eq. (2.11); only one of the eight parts of this expression is considered here. This ele-
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ment R„„,is defined by

R„„(A)=, , de de'f(e)[1-f(e')]5(e —e'+RQ)c„(e)o»(e'}.@AN(A)

))O

By substituting the definitions of the Fermi and Bose factors, and by recognizing that

f(~)[l f(~-+ffA)]=[N(Q)+1][f(~+&A)-f(~)1

the integral 8„& can be written as

R„„,(A) = ~ N(Q)[N(Q) + 1] de[f(e + kQ) j(E—)]c„(E)o„(z+, KQ) .SA

B w oo

(A2)

(As)

A simplification is made by evaluating the integral by parts and shifting the origin of the integral con-
taining f(e+ IA). The simplified form is

R„„.(Q)= +, , si nh~(h Q/2 kT) de — dye„(q)o„,(q+RA).
SQ Bf

B I-ao

By defining x =hQ/2keT = vz, s =&/2vkzT, and q' =q/2vkeT, the integral R„» can be written as
2 S

R„„,(Q) = . ds cosh~vs dn'c„(2vkzTq')o»(2vkzTq'+ 2vk3Tz),
sxnhx 16z S g

(A4)

(A5)

which can easily be seen to be

R„„.()))=( . ) h„gz)i)6. (A6)

By using Eqs. (2.14) and (2.15), the other seven
parts of the integral can be evaluated in a similar
manner.

where the difference between Q, and ~~ was dis-
cussed in Sec. IV. The constants {K,j can be ex-
pressed in terms of X, X, [Eqs. (4.1) and (4.2)].
Since K, = -K, and K, = 2K„Eqs. (B3) and (B4)
can be transformed into Eqs. (4.3) and (4.4).

APPENDIX B

In this section expressions for o.'F(Q) and
o)'(+xx)F(A) are found for the isotropic models
considered in this paper. These models consist
of a spherical Fermi surface (radius k~) and a
Debye spectrum defined by a Debye cutoff fre-
quency &un and wave vector qn. Defining f)) = f
—k', the functions a'F(A) and n'(axx)F(Q) can
be written as

o)2F(A)
=[N, (0}]-'g ~M", ~'

n'(+ xx)F(Q)
x 5(e, )5(~,.)5(A —Qq)

~ W

0

1
X

1+ cos Q

(Bl)

o) F(Q) =KOA e(A, —A},

o(+ xx) F( Q)=K, A'e(A, A), —

n2(-xx)F(A) = (KIQ2+K, A )e(A, —Q),

(B2)

(»)
(B4)

where (t) is the angle between k and k'. This ex-
pression can be further simplified by using 0= cQ
(c is the speed of sound) and cos)f) =1 —Q'/2k~.
The matrix element is assumed to be proportional
to Q. The simplified expressions are

o.e
0.0 0.5 1.0

FIG. 3. Convergence of the thermal conductivity at
low temperature. The thermal conductivity including n
energy polynomials is plotted as a function of 1/n . The
conductivities are normalized to Wilson's formula,
i.e. , using only one energy polynomial. The curve is in-
serted as a guide to the eye.
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APPENDIX C

At low temperatures (-0.1 en), the series ex-
pansion for the thermal conductivity converges
very slowly. A continued-f ract ion extrapolation
of the sequence of results as presented by Baker"
is a good method to speed up the convergence.
The sequence of numbers is {SJ= {1.00, 1.23, 1.33,
1.38, . . . ,) as plotted in Fig. 3 as a function of

1/n, n being the index in the sequence. The con-
tinued-fraction extrapolation of this sequence is
1.51 and is only changed by 0.5% after five terms.
This is consistent with the results of the Legendre
expansions and is slightly higher than the Klemens
result' (-1/p).

The curve determined by the continued-fraction
representation goes through the points (1/n, S„).
The value of the continued fraction evaluated at

bof(x) =
0( )1+---

+ 2 2b (x--')
1+b, (x - —,')

the coefficients are determined uniquely by the
conditions that f(1/n) =S„. As a result,

bo=s, ,

bi = 2 —2S,/S2. (C2)

Baker ' has a convenient method for calculating
these coefficients.

zero is the extrapolated value of the sequence.
For the continued fraction f which can be written
as
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