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Breakdown of perturbation theory for the deformation potential polaron
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By comparing variational forms of weak and strong coupling we show that the crossover point is near
aK -1, where a is the coupling constant and K is the largest allowed (dimensionless) wave vector.
Analysis of the perturbation series gives a leading term of the form K' Xb„a", which contains no indication
that when nK & 1 the ground state is better described by strong coupling. It is suggested that when aK & 1

the perturbation series approximates a metastable state of the system.

I. INTRODUCTION

In its original formulation the polaron' was
composed of an electron interacting with the longi-
tudinal optical mode of an ionic crystal. One of
the attractive features of this problem was that it
involved only one parameter, n, the coupling con-
stant. Although integrals on a wave vector should
really be taken over only one Brillouin zone, a
reasonable approximation was obtained by inte-
grating to infinity. Nothing in the theory diverged
and all results mould then be expressed as func-
tions of o.

As the ideas of this original work were applied
to a wider range of electron-phonon interac-
tions, ' 4 it became clear that in general two
parameters were needed. Besides the coupling
constant many of the results depended directly
on the cutoff wave vector K, or an approximate
wave vector fear the first Brillouin zone. This was
noted to be the case for the piezoelectric polaron
first' in weak coupling and then in the corrections
to strong coupling. ' Cutoff dependence is most
pronounced in the theory discussed here, namely
the interaction with acoustic phonons via the defor-
mation potential. ' This was probably the first
type of electron-phonon interaction to be analyzed.
It appl. ies to carriers in nonpolar semiconductors
and metals, and forms the basis of the theory of
conductivity for these systems as well as the basis
of the theory of superconductivity. In spite of all
this work very little has been done on the defor-
mation potential acoustic polaron, and much of
what has been done has been in the context of
small-polaron theory. This is due largely to the
strong cutoff dependence and closely related short-
range character of the theory. The argument is
that if the coupling is large enough for strong cou-
pling to apply, then the radius of the polaron will
be about a lattice constant, and the displacements
of the lattice in that unit cell will be very large.
Hence, it should be treated by small- rather than
large-polaron theory. This argument is quite
reasonable and is probably appropriate to many

II. WEAK AND STRONG COUPLING

A. Weak coupling

We use the Frohlich Hamiltonian'

H=&P'+ a~a~+ k + V & a ~+a, e'"'' 1

The electron's position is r and its momentum
is p= -iV„. The operators a~ and a~ destroy and
create longitudinal acoustic phonons with wave
vector k. For the deformation potential acoustic
interaction, '

&o(k) =
~k~ and

y(k) = (4rnk/'0)' '. (2)

cases. However, it is conceivable that in some
cases strong coupling and large-polaron theory
would still apply. For instance, if one estimates
the strain that would be present for a polaron in a
unit cell, it is about one, which is much too
large, and, at a radius of several lattice con-
stants, anharmonic effects in the lattice could
well arrest further collapse. Also in supercon-
ductors it is clear that perturbation theory breaks
down, and we are interested in a detailed under-
standing of this process. Lastly, we are inter-
ested in this problem as a model of a cutoff-
dependent particle-field theory.

In the next section we compare variational
versions of the weak and strong coupling theories
and find that the parameter that determines which
gives the lower energy is nK, and that at nK = 1
the energies cross. We therefore expect that the
parameter that determines the convergence of
perturbation theory shou1d be eK, not e.

In Sec. III we look at perturbation corrections
to weak coupling and find that, as far as we can
see, higher orders contribute a series in n".
Hence the perturbation theory gives the mistaken
impression that it should be a reasonable approx-
imation whenever n «1, when comparison with
strong coupling has shown that the range of use-
fulness of perturbation theory should be e «1/K
= 1/100.
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The volume is 'U and the coupling constant

Q D m /8 jrpk s ypp

where D is the deformation potential, m is the
electron band mass, p is the density of the crys-
tal, and s is the speed of sound. In the above,
ms' is the unit of energy and k/(ms) is the unit of
length.

The standard' ' weak coupling polaron theory
(which gives the same self-energy as perturbation
theory) can be obtained from the trial wave func-
tion

where

a~I 0& =0,

(4)

2(r)=gf(a e'"' —a, a '"''). (6)

The c number f, will be chosen to minimize the
energy with f, =f, =ff . The factor I/v '0 is an
electron plane wave with zero momentum, and the
factor expS(r)IO) describes a lattice distortion
centered on the instantaneous position of the elec-
tron r.

The expected value of H in this state is

E =-(T IHIT )

appear in powers of o. we would expect the series
to be useful for almost all practical values of the
parameters. In Sec. III we will examine higher
orders of perturbation theory where we will find
a series in powers of 0. , but K' is the highest
power of K appearing. However, a much simpler
and in some respects more reliable method is to
compare this variational weak coupling theory to
a variational strong coupling theory and see where
they cross. We will do this next.

B. Strong coupling

The strong coupling theory of the polaron was
done first by Pekar' and applied to the deformation
potential coupling by Toyozawa. 4 In what follows
we use a slightly modified version of Pekar's cal-
culation. The procedure has been shown to yield
the correct strong coupling limit for a variety of
polarons. "

In previous versions of the polaron theory we
found that although we had to cut off the integrals
that appear in weak coupling it was not necessary
in strong coupling because the electronic form
factor provided a cutoff. We will start by ignoring
the cutoff and show that without it the strong cou-
pling is unstable in this instance.

We use the trial wave function

I 4 = 4 (r —R)ss(~l 0&,

where

k (a) k + ~k' — 2V 0
k

Minimizing E„with respect to f, gives

f), = V(k)/[uy(k)+ —,'k'] (8)

(9)

It is easy to see that (9) is just the result of
second-order Rayleigh-Schrodinger perturbation
theory when the third term in (1) is treated as a
perturbation. We evaluate the sum in (9) imposing
a cutoff wave vector of K=—()2/a)(k/ms)=100. The
lattice constant is a. We obtain

(12)

Here the c number dk = d, = d„*. This is similar to
the weak coupling trial state (4) except that the
lattice distortion exp[S(R)]IO) is centered about
the arbitrary c number R rather than the electron
position r, and the electron is in a bound state
(t)(r -R) rather than a plane-wave state.

Again we calculate the expected value of H and
we get this time

Jf2k'2 d'r g d,' (k) —2 Q v(k)d, a, , ((2)

2, 8 16= ——oK'+ c(K =o( ln(1—+ ~K) .
jr jr jr

(10) where

The dominant term is =0tK' =100. Since our unit
of energy is ms'=10 'eV, E„=10 ' eV, which is
much less than the band gap but about equal to the
maximum phonon energy. This is quite large.

Since E„ is also the result of the lowest order of
perturbation theory one wonders what the higher
orders will look like. If they appear in powers of
oK', the series is clearly useless, but if they

p = (Pr sdk'(2-F} (j)2(r R)
4

(14)

(15)

and hence

We have chosen P real.
As with weak coupling we choose the lattice dis-

tortion that minimizes the energy, giving
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E, = $2P P d'X — P', (16)

or

E, = f—,P2$ d'& —47fe d'r P'. (17)

aK- '~
8

&ay.
8 l6K 8

However, unlike the weak coupling we must now
choose f to minimize E„subject to the constraint
that fP'd'&=1. This variation leads to the famil-
iar "nonlinear Schrodinger equation""

—p'Q —8 (18)

This equation has a closed-form solution in one
dimension which we have discussed extensive-
ly' "'"in connection with the polaron. However,
in three dimensions the lowest value of e = -~,
unless we impose a cutoff. The easiest way to
show this is to return to Eq. (17) and use a partic-
ular form for the bound state P(r -R). For the
purposes of this argument the precise form of f
used is not very important (and no matter what
form we use the result is still an upper bound),
so for simplicity we choose

2 2

y(r R) —(2/&P2)3~4e-I ~- Rl

and then (17) becomes

3 1 4 18 =(T IHI TQ= ———o.' ——.s s 2 p2 ~ p3 (20)

We see that unless a/P &3m~/8 the energy is posi-
tive and then certainly higher than E„. However,
if a/P &3&~/8 then the smaller we make p thelow-
er E, will be (i.e., P —0 and E,——~). Hence we
see that the strong coupling theory is unstable.

We can introduce a cutoff into this theory simply
by setting P = 1/K. Although this introduces a cut-
off in a slightly different way than it was put into
the weak coupling calculation, it is a considerable
simplification and gives qualitatively the same
results. In the Appendix we develop a systematic
strong coupling theory, but for the present discus-
sion we just set p =1/K which gives

E, =-', K' —(4/v ~)nK'

We must compare this with

E.= —(2/~) o K'

(21)

(22)

which is the leading term in (10).
Although E varies from crystal to crystal it does

not change much, so let us hold it fixed at E = 100
for this discussion. We will let a vary keeping in
mind that we are interested in the range of values
near a =1/100. In Fig. 1 we plot Eqs. (21) and
(22) as a function of (n K). We see that when o. K
&1, E, becomes lower than E, and it rapidly
becomes much lower.

FIG. 1. Comparison of weak and strong coupling upper
bounds. Assume that K=100 and plot the energies as
functions of nK.

It seems difficult to escape the conclusion that
someplace near n K = 1 the perturbation theory
breaks down and the correct theory is some form
of strong coupling. Therefore we would expect
higher orders of perturbation theory to proceed
in powers of (nK) We w. ill show in the next sec-
tion that this does not seem to be the case.

III. HIGHER ORDERS OF PERTURBATION THEORY

H= 2~ Cy Cy+ agag(g) k

+ Pk)a ~+aqp q, (23)

Our weak coupling result Z„given in Eq. (10) is
the lowest order of Rayleigh-Schrodinger pertur-
bation theory. This is the standard perturbation
theory where one calculates the eigenvalues and

eigenfunctions as a power series in the coupling
constant. It is, however, extremely involved to
calculate higher orders of this perturbation theory.
If instead of trying to calculate the eigenfunction
and eigenvalues we calculate the Green's function
and expand it as a power series in the coupling
constant, it is easier to generate higher-order
corrections. The formalism for the calculation
is well known from quantum electrodynamics and
from electron-phonon interaction in metals. The
present problem has some analogies to each of
these. We follow a formulation originally" set up
to deal with the optical polaron. First we rewrite
the Hamiltonian (1) in second quantized form where
it is
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where

~k q A q'
a

(24)

diagram in Fig. 2(a) which contributes to the self-
energy

The electron creation operator is C, , and we
ignore spin and holes. The rest of the notation is
the same as in Sec. II.

We define the electron Green's function at time
t by

x G„(p —k, e —&o}. (33)

G(p, t) = —t(00iTC (t)C (0)F00), (25)

where i 00) is the electron and phonon vacuum, and

T is the time ordering symbol, and C«t(t) is the
Heisenberg creltion operntor e~"'C&e ~ '. We will
make use of its Fourier transform G(p, «) defined

V' k)~"(p, e) = P«c —~(k) ——,'(p k}'+f5 (34)

The integral on ~ can be performed by closing the
contour in the lower half plane giving

G(if, t) -=—G(p, e)e "'.
2r

For n=0, G (p, «) becomes

1
G.(p, ~) =

e —gP +s5

(26)

(29)

The phonon Green's function is defined by

D(k, t) = —i(00) T[a«(t)+—a «(t)][a «(0)+ a«(0)ll00),

(28)

and its Fourier transform through

D(k, t)= Jl
—D(k, ur)e ' '.

Since i 00) is an electron vacuum and ff commutes
with the electron number operator,

1
D(kP Q7) = D (k) 0(d) =

(k) 5 (k)

Z"'(0 e) =ReZ"'(0, e), e &0 (35}

V (k} (36)

Note that if we neglect the e in (36) then Z"'(0, 0)
= E, which is the lowest order of Rayleigh-
Schrodinger perturbation theory. Moreover, we
see that if we use (36) in (32) and compare the
result with (9) then E &E(0). Since E„ is an upper
bound this means that E is better in the varia-
tional sense than E(0) in the present approxima-
tion. This sort of thing has been seen before in
the polaron problem. " With & = —o.K'« —1 the
integral in (36}becomes

As above we will concern ourselves here only with

P = 0. Also since we want &(0, e) to use in (32) and
since E(0) is always negative, we need know &(0, e)
only for values of e &0. Under these conditions

This greatly simplifies our problem in compar-
ison to both quantum electrodynamics and electron-
phonon interaction in metals. If we define the self-
energy, Z (p, e), by

ioo(kta)

-i V(k) ~ -iV(k)
i Gd (p-k, g~)

(a) (b)

1
G(p, q) =

e —«p —Z (p, «)+ t5 ' (30) r eCr/ / li/

then we see that G has a pole at e =E(p), where

E(P) = .P'+ F (p, E(P}-) (31)

(32)

which corresponds to the polaron energy. Above
we have only considered E(0) so we need only

E(0)=+ Z'(O, E(0)}.
can be expressed as a power series in the cou-

pling constant, the terms of which can be obtained
through an established set of rules for Feynman
diagrams. " The first such term comes from the

(c)

FIG. 2. Feynman diagrams for the self-energy of the
polaron. (a) Second-order correction, (b) and (c) are
the fourth-order, and (d) is one of the sixth-order
terms.
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&"'(0,c) = ——K' —4K+4(1+-,'&)In ' —
2 I », arctan(a) 2+ 2

—e+K+ zK' P(1+ ze) 1+K

1
( 2g 1)1/ 2 (37)

The leading terms -(2a/v)IP+(8/n)aK are the same as in Eq. (10) for E„. Now although this perturbation
series is different from the Rayleigh-SchrMinger series, we can analyze the higher terms to determine if
higher powers of K appear. In particular we want to know if there is a series in (aK)" which would suggest
when strong coupling obtains (i.e., aK»1).

The next terms in the series for & are given by the diagrams in Figs. 2 (b} and 2 (c) and lead to the
integrals:

" co co'
(p~ t) Q J

— V'(&)V'(&')D, (k&u}D,(k'&o')G', (p —&o, p -k)G, (e —ra —~', t) -k -k'),
kt 2ll

(38)

Z(c&(p ~) l V'(k)V'(k')Do(k~)Do(k'(a)')Go(g —(o, p —k)
kk

x G (e —(u —(u', p —k —k'}Go(g —&u', p —k'} ~ (39)

The ~ integration can be done by closing the contour in the lower half plane and we are left with

(40)

(41)

If we introduce the scale change q= k/K and q' = 0'/K we have

(, ) g V'(k)V'(k')

a a (& —I~I -k~')[~ —I~I —I~'I -4(k+(t')'l(~ —I~'I -4I") '

and a similar integral for &o'(0, c). Since we are interested only in the region c &0 there are no infrared
divergences in (40}.

We are interested here in seeing how ~"' depends on K, so we concern ourselves only with the region of
integration near the upper limit. We replace ~ —(k( ——,'k' by —,'k', but for ~ —~k~ —[k'~ --,'(k+k')'we write
—[k[ —[A"[ ——,'(k+k')' because there is a region when (k+k')'& (k(+ )It'( and our main concern in these inte-
grals will be to see if this region is large enough to change the K dependence of the result. We get the K
dependence of (40) from the integral

(4n o)' ", 0'dk 0"dk' d(cosp)(4~)(2n)
(2n }' J 0'(0+ 0'+ —,'&'+ &"+ 2&&' cosQ)&" '

(8n n)'K' "' ", " qq'(4~)(2~)
(2r)'; q

~
q ~, (q+ q')/K+ ,'(q'+ q"+—2qq'x)

' (42)

If we expand the integrand in powers of (q+ q')/K
all the coefficients are finite and independent of K
and the leading term is K' as in second-order
perturbation theory. The integral for Z"' behaves
in the same way.

Higher orders. Higher-order integrals always
lead to an expression like (42) after all the wave
vectors are scaled, i.e., K' multiplied by an inte-
gral where all wave vectors range from zero to
one and where there are factors like

1
[(q+ q')/K+ —,'(q'+ q'+ 2qq'x)] ' '

If a = 1 or 2, we can expand the integrand in powers
of (q+ q'}/K and the highest power of K that occurs
is K'. But if a & 2, higher powers of K will appear.

In noncrossing diagrams like that shown in Fig.
2(d) terms with a = 2 appear but in no diagram that
we have seen do we ever get a=3 or higher. So as

far as we can see even in higher orders of pertur-
bation theory the highest power of K that occurs is
K'. This suggests strongly that there is no se-
quence of terms in (uK)" and hence the perturba-
tion theory does not indicate the critical region
n K=1 where strong coupling should be used. This
analysis is not sufficiently detailed to include
terms like (n lnK)".

IV. DISCUSSION

It is quite clear that when n K»1 the strong cou-
pling theory gives a better approximation to the
ground state than the weak coupling does. It would
have been reassuring to see that the perturbation
series contained a series of terms like Q„(aK)"b„,
but as far as we have been able to see no such
term exists. We can see a possible resolution to
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this dilemma.
It has recently been suggested" that the system

that we are discussing here has a large radius
metastable state, and the perturbation series
might be approximating this state. The easiest
way to see that such a state exists is to return to
Eq. (20) which gives the energy in the adiabatic
approximation

3 1 4 1—Q—s 2 p2 ~ p3 (20)

as a function of the radius of the electronic state
P. In Fig. 3E, is plotted as a function of 1/P. As
we mentioned above the lowest energy is clearly
obtained for 1/p -. But we note that there is a
stable minimum at 1/p = 0 suggesting that a large
radius metastable state exists. This analysis
and an alternative are both discussed by Toyozawa
and Shinozuka. " The strange behavior of pertur-
bation theory that we have pointed out lends sup-
port to the existence of such a metastable state.

Es

FIG. 3. The strong coupling energy vs the inverse of
the radius of the electronic wave function P.

(As)

in which the volume V has been scaled

V E'V
so that

(A4)

The prime on the summations indicates that they
terminate at jkj = 1. The function V(k) is given
by Eq. (2)

P(k) = (4)in jk j/t )'~',

APPENDIX
dk k2 dQ

0
(A5)

In this Appendix we give a more systematic
treatment of strong coupling. In the variational
theory of Sec. II the electronic wave function for
the polaron was found to obey the nonlinear
Schrddinger equation given in Eq. (18). As noted
there, the polaron described by this equation has
the unphysical feature of being collapsed to a point
with infinite binding energy. This collapse is
avoided by taking into account the discrete nature
of the lattice through the introduction of a maxi-
mum phonon wave vector K. In the variational
argument it was assumed for simplicity that this
cutoff gives the electronic wave function of a radi-
us K '. A more consistent approach is to introduce
the cutoff on phonon wave vectors in the Hamilto-
nian, which was essentially the method of cutting
off the weak coupling theory. It is convenient to
make the scale change E,= f(n K) +K 'g(n K) . (A8)

We point out that the electron-phonon interaction
term in Eq. (A2) gives (in perturbation theory) a
correction to the energy of order n. Since K ' is
itself a small number (-10 ') the lattice energy
serves as a rival perturbation in the Hamiltonian.
Jn the case n»K ' the electron-phonon interaction
energy is large compared to the lattice deforma-
tion energy, and the sum of the first and third
terms in Eq. (A2) should be diagonalized with the
lattice energy then treated as a perturbation. This
case of eK»1 is the strong coupling regime and
is the concern of this Appendix. The diagonaliza-
tion of the Hamiltonian in strong coupling can be
carried out systematically along the lines of Ref.
1'l. We will not fully develop that method here
but note that it leads to a ground-state energy of
the form

k»Kk,

r K ry

under which the Hamiltonian becomes

(Al)
We construct below a self-consistent method of
determing f(nK) as a descending series in (nK)' '.

As usual, we first made the canonical trans-
formation

I

H=K —2V + — a~a„kK
ap ap —dg, (A7)

I

+ E )'(k)(a'. ~ .) '"'). . (A2)

where d~ is a real, even function of wave vector k.
In terms of the new phonon operators the Hamil-
tonian becomes

I

)(=)(* --,'v' ~ —E J~, (il g )'(ii)(,+,)e'"'
I I I

+— d' k -K a, +a, d„k -2 V.k d e'"' (A8)
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We choose d~ by minimizing the expected value of
0 in the trial state

(A9)

(Al0)

—2V'p(r) —g V(k)d~e'"' p(r) = e p(r), (A11)

where

p j d3r y2(r)elk r (A12)

where l0) is the vacuum for the new phonon oper-
ator and the electronic wave function g(r) is nor-
malized to unity. The minimization is carried out
with respect to both d„and the functional form of
P(r), and leads to the results

d, = V(k)p, /lkl

(All), and (A12) we obtain the nonlinear 8chrodjn-
ger equation

—~V'Q(r) —87luK d'r d, (r —r')p'(r')p(r)

where

= e 4 (r), (A13)

(A14)
I

n(r —r') = dkk'e'"'"
~ ~ (2m)';

If the cutoff K had not been introduced in the Ham-
iltonian, the upper limit on the k integration in
Eq. (A14) would extend to infinity. The function
b, (r —r') would then become a Dirac delta function,
and with a scale change Eq. (A13) would reduce to
Eq. (18). Because P(r) is assumed to be spheri-
cally symmetric the angular part of the r' and k
integrations can be done explicitly, and the Schro-
dinger equation reduces to

In this Appendix ~ is the expected value of H/K'
with the energy of the deformed lattice subtracted
out. We assume that P(r) is a real spherically
symmetric function. By combining Eqs. (A10),

11 d, dr' p—(r)+—U(r)p(r) =ep(r),

where the potential U(r) is given by

(A15)

(A16)

Next we make a Taylor-series expansion of the sine functions in Eq. (A16) and make a scale change

r=(4&uK) ' x, )t(x)=(4&uK) y(x(4ruK) ' ) (A1'7)

The resulting SchrMinger equation is

———,—x' —}((x)+P pa„(4xuK)" '~'x'"!!(x)= e!t(x),
2 x ck dÃ

(A18)

where

( I)n+m —1

(2n+ 1)!(2m + 1)!(2n + 2m + 3)

The polaron self-energy e is given in terms of the eigenvalue e of Eq. (A18) by

(A19)

~ (2 1) t (2 3)(4 K)m" j (A20)

In the strong coupling regime (4wuK) ' ' is a
small number, and Eqs. (A18), (A19), and (A20)
serve as a coupled set of equations by which the
polaron self-energy can be determined as an ex-
pansion in powers of (4vuK) ' '. As an illustra-
tion, the leading contribution to the potential ener-
gy in Eq. (A18) comes from n = 1 and m =0 (this
term is the only one that survives in the potential
energy of Eq. (A18) for uK-~). In this approxi-
mation we obtain

and hence

where

&', = —1/3x'

~', = 3Mi@20~,

4 K m/2

ts= ~2
(A22)

(A23)

X(x) =(O/v)' 'e "*'~'

e = e 0, 0 = 1/(15w)'~' (A21) , 15(2m+ 5)!!(15m')
(2 m+ 5) l (2m+ I)2m+"
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Q e (4xaK) ~t2
m= -2

(A24)

where the coefficients & are determined by a

The potential energy in E . (A18) is an explicit
power series in (4xnK) ' '. Ordinary perturbation
theory can be used to calculate corrections to the
zero-order eigenvalues ~ and wave function g of
Eq, (A21). Unfortunately, the coefficients a
which enter the potential energy power series also
depend implicitly on (4~nK) ' ' through the wave
function g as expressed in Eq. (A19). It is possi-
ble, although somewhat involved, to sort out all
the dependence on eK and construct an expansion

perturbative-iterative scheme involving Eqs.
(A18), (A19), and (A20). The leading term of the
expansion is given by &,= &', as defined in Eq.
(A23) and thus

4
e ———nK+ ' ~

31r
(A25)

We do not compute other terms in the expansion
here. When the overall energy scale factor of
K' in Eq. (A8) is reinserted, we obtain -(4/3m)o. K'
for the leading strong coupling polaron self-ener-
gy, which should be compared with the lead term
of Eq. (21).
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