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A self-consistent cluster theory for elementary excitations in systems with diagonal, off-diagonal, and
environmental disorder is presented. The theory is developed in augmented space where the configurational

average over the disorder is replaced by a ground-state matrix element in a translationally invariant system.
The analyticity of the resulting approximate Green's function is proved. Numerical results for the self-

consistent single-site and pair approximations are presented for the vibrational and electronic properties of
disordered linear chains with diagonal, off-diagonal, and environmental disorder.

I. INTRODUCTION

A substitutional defect at site i in a crystal
generally produces three types of changes in the
system Hamiltonian. These are diagonal changes
V,.„off-diagonal changes V,.&

(where j is some
neighboring site), and environmental changes V»
in the vicinity of the defect. In the electronic
tight-binding model the diagonal perturbations
correspond to changes in the energy level at the
defect site, the off-diagonal part to changes in
the interatomic hopping to and from the defect
site, and the environmental part to energy level
and hopping changes in the vicinity of the defect
due to such effects as charge transfer and lattice
relaxation. In the case of phonons and spin waves,
all three types of perturbations or disorder are
coupled by the general translational or rotational
symmetry of the system.

In recent years there have been many attempts
to develop adequate approximations for the pro-
perties of disordered systems. ' The first suc-
cessful, self-consistent approximation was the
coherent potential approximation (C PA) developed
for the electronic problem by Soven and for the
phonon case by Taylor in 1967. The CPA is a
self-consistent, single-site approximation for
alloys with diagonal disorder. In the tight-bind-
ing electronic model with diagonal and off-diagonal
disorder (but without environmental disorder) a
successful single-site generalization was produced
by Blackman et al. These approximations are
translationally invariant and give analytic (or,
more properly, Herglotz) Green's functions for
all degrees of the disorder. Over the next several

years, there were many attempts to generalize
these self-consistent methods so as to include
off-diagonal and environmental disorder (as re-
quired by disordered force constants in the phonon
problem and disordered exchange in the spin-wave
problem) and to allow multisite or cluster scat-
tering. Only in certain very special cases, such
as the separable' or the additive ' limits of off-
diagonal and environmental disorder, was there
any success. The more general approximations
produced Green's functions which failed to retain
the Herglotz nature, the translational invariance
of the averaged system, or were not fully self-
consistent, and were thus unsuitable for calcula-
ting spectral density functions or such transport
properties as the location and existence of mo-
bility edges.

Very recently, Mills and Ratanavararaksa, "
using diagrammatic methods, have developed an
extension of the CPA which, although restricted to
the diagonal disorder problem, does provide a
successful self-consistent multisite scattering
theory. This approximation was rederived using
the operator methods of the augmented-space
formalism ' (ASF) by Diehl and Leath~5 (for
binary alloys), and generalized to rnulticomponent
systems by Mills and Ratanavararaksa. " Further-
more, Mills's proof of analyticity is based upon
this augmented-space representation. In develop-
ing their traveling cluster approximation, Mills
and Ratanavararaksa' introduced a diagram sym-
metry rule which gives a sufficient condition for
constructing a self-energy with a negative-definite
imaginary part. Mills's symmetry rule and the
augmented-space techniques of Mookerjee" and
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Kaplan and Gray' ' were then combined by Diehl
and Leath to describe a perturbation theory for
phonons with disordered force constants. The
particular self-consistent approximation illus-
trated by Diehl and Leath is analytic and trans-
lationally invariant, but neglects a significant
part of the off-diagonal disorder, resulting in an
approximation which is similar in structure to
the additive limit CPA. In a further application
of this theory by Diehl et al., ' an extension of the
t-matrix approximation (ATA) (Refs. 18, 19}to
the case of force constant disorder was con-
structed. All significant off-diagonal terms are
included in this approximation but in a non-self-
consistent form.

In the present work, we use a similar approach
based on the augmented-space formalism' ' and
the approximation of Mills and Ratanavararaksa"
to develop a fully self-consistent cluster theory
for elementary excitations (electrons, phonons,
magnons, excitons, etc.} in general disordered
systems. This approach is sufficiently powerful
that it produces analytic translationally invariant
approximations at all concentrations for diagonal,
off-diagonal, and environmental disorder in-
cluding such possible future applications as
charge transfer and lattice relaxation. This
theory, which is developed in terms of an operator
formalism rather than a diagrammatic expansion,
is a true generalization of the work of Mills and
Ratanavararaksa" to the general disorder problem.
However, it falls short of a complete theory in
that short-range order is not yet included. The
theory is illustrated here by a calculation of the
self-consistent single-site and pair approxima-
tions for electronic and vibrational spectra in
systems with diagonal, off-diagonal, and environ-
mental disorder.

In Sec. II we introduce the formalism, employ-
ing the augmented-space representation for ran-
dom systems. As an aid to understanding the self-
consistent approximation, a diagrammatic repre-
sentation of the terms in the perturbation expan-
sion is included. In Sec. III, the systematic self-
consistent cluster approximations are described
(with the proof of the analyticity of these approxi-
mations presented in Appendix A). In Secs. IV
and V numerical results are presented for the
single-site and nearest-neighbor pair approxima-
tions for electrons and phonons in one-dimensional
systems. Concluding remarks are presented in
Sec. VI.

(2.1)

where, for the electronic problem, the one-elec-
tron Green's function for a particular configura-
tion is

and for the phonon system, the displacement-dis-
placement Green's function is

C'„(fs,},u)) = ()t)„f [co'M((s,})—4((s,})]'
f

)t) ) .
Here, ~)t„) is a basis for the Hilbert space 4 and
the integration over p(s,)ds, constitutes averaging
over all possible configurations of the disordered
system.

The Hamiltonian H in Eq. (2.2) and the mass M
and force constant 4 matrices in Eq. (23) are
explicit functions of the variables (s,},and can be
decomposed into a nonrandorn part &0 and terms
which depend on the occupation of 1, 2, . . . , etc.
sites; i.e.,

(2.3)

H((s,})=H +gg V'(s)5(s„s)
i s

be used throughout the remainder of the paper.
The reader is referred to Ref. 13 for a more de-
tailed description.

All types of excitations in disordered systems
may be discussed by the same theoretical
methods. In this section, we have chosen for
simplicity to present our discussion in the nota. -
tion of the electronic problem, occasionally indi-
cating the appropriate equations for the phonon
problem. To obtain the appropriate notation for
other excitations, the reader is referred to Sec.
II of Ref. 1.

We assume that the lattice sites are randomly
occupied by atoms of type A, 8, C, etc. The ran-
dom variable s, is defined to take on the value A,
8, or C, etc., corresponding to the occupation of
site I. (For systems with continuous disorder,
s, takes on a continuous range of values. ) We
assume that the fs,}are independent random
variables with probability distribution p(s,). [The
more general case of dependent variables" (short-
range order) is not treated. ]

We wish to calculate the configuration-averaged
values of physical quantities and the related
Green's functions. In particular, we shall cal-
culate the configuration-averaged one-particle
Green's function

II. FORMALISM

In this section, we briefly sketch the construc-
tion of augmented space and define the notation to

+ V'~s, s 5s„sos»s +. . . ,
$Sj s, s'

(2.4)
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5(s„An Ills);=5(s„A)II Is&

(2.5)

where 5(s„A)=1 if Is), = IA), and zero other-
wise. The augmented space 0 is the product of
9 with the "real*' space, 4, 0=4'(39, and the
substitution of the projection operators defined
in (2.5) for the Kronecker functions in Eq. (2.4)
defines the augmented-space Hamiltonian H on
the space ~. Thus the augmented space is span-
ned by the vectors

II Is)& li;s„s„.. . ,s„.. . &,

where {Itt,.&) span 4'.
The augmented-space one-electron and one-

phonon Green's functions are G(E) =(EI-H) ' and
G(~) = (M&u' —4) ', respectively. In this notation,
the Green's function for a particular configura-
tion of site occupations {s,) in the solid corres-
ponds to the matrix element

G„({s,j) =(n;sf s2i IGlm sf s2, . . .). (2.&)

In order to calculate configuration averages, we
must choose the appropriate representation. In
each 8, we let

I
0), =—g I:P(s}1

I s&, , (2.7)

so that each species occurs with its appropriate
probability. In 0 we define the vector

where s denotes the type of atom, Z, is over all
atom types, and 5(s„s) is the Kronecker delta
function. In the augmented-space formalism, the
random variables {s,}are replaced by operators
{S,) acting on a Hilbert space 9 (the "disorder"
space). Functions of the random variables are
replaced by functions of the corresponding opera-
tors, and thus the Kronecker functions 5(s„s)
become spectral projection operators 5(S„sI).
For a binary A-B alloy, S, will have only two
eigenvalues corresponding to the two possibilities
of the occupation of site l. The space 6 can be
conveniently written as a direct product, 9
= g, O„where there is a Hilbert space 8, for
each variable s, . A basis for 9 is given by vec-
tors of the form g, Is)„where Is), belongs to
O„and can be IA)„IB)„.. . , etc. Thus, for a
binary alloy, each 8, is two dimensional. Note
that each basis vector g, I

s), corresponds to a
particular configuration of the solid. The spec-
tral projection operators 5(S„st) act on e and
are given by

(2.8}

We designate
I
0), as the unexcited state in 8,

and If & as the ground state of the disorder space
6. The configuration average of the Green's
function (or any other quantity) becomes the
ground-state matrix element

G„(E)= (nf
I
G(E)

I
mf ) . (2.9)

For a binary A-B alloy, with a concentration
c„=p(A) of A atoms and cs =p(B) =1-c„ofB
atoms, there are only two basis vectors for 8„

G(E) = tG„'(E) —~(E)l-', (2.11)

where G„(E)= (E-H) ' or (M&u' - 4 ) ', for the
electron or phonon problem, respectively. Here,
H, M, and 4 denote the configuration-averaged
operators. In order to simplify the notation in
what follows, we will consider a binary A-B alloy.
The extension to ternary and other multicompon-
ent systems is straightforward. '

Any operator A in augmented space can be rep-
resented in the block form

A= A A'
(2.12)

where A=PAP, A' =PA(1-P), A'~ =(1-P)AP,
and A=(1-P)A(1-P), with P being the projection
operator onto all the ground-state vectors

(2.18)

From (2.9) we see that A is the configuration
average of the physical quantity A. In this block
form, we can easily take the matrix inverse of
K= EI-H and calculate the upper left block G of
G. With the use of (2.11), we obtain

Z =K'EK'~, (2.14)

I0&, =W IA&, +CRIB&„ (2.10a)

Il), =~cs IA), —~cg IB), ; (2.10b)

the vector
I
1), is orthogonal to

I
0), and is called

the excited state at site l (for multicomponent
systems, there will be more than one excited
state). In the standard notation for augmented
space, ' ''

I
lf „~&specifies the vector in 0

where the sites m, n, . . . ,p are in the excited
state

I
1), and all other sites are in the state IO)

(sites in the state
I

1& have also been referred to
as sites with pseudofermions""'"'"). To fur-
ther simplify notation, the vector

I
tf „~&will

be written
I lf,&, where o = {m,n, . . . ,p)wil I sp ecify

which sites are in the excited state.
The self-energy Z is defined by the usual rela-

tion
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where

E=K = t(G„) I- V]

and where

V=KI-K ~

(2.16)

(2.16a)

(2.16b)

For the electron and phonon problems we have

V=H-HI

If the i and j indices are suppressed, then matrix
operations over real-space indices are under-
stood. If o is the null set (i.e., the ground state),
then it will be omitted. This occurs, for exam-
ple, with the E' operator

(2.16a)

(2.16b)

In this notation the equations for the self-energy
[Eqs. (2.14) and (2.15)] are

a, a'
K lay aa'Kata' (2.19)

V = (MI —M) &u —(4I—4), (2.16c)

respectively. (Note that by KI we mean (if, jKI~jfz&
=K,~5", where o and o' are not the null set. )

In the remainder of the paper we use the simpli-
fied notation

(2.17)

FIG. 1. Diagrammatic expansion of the self-energy
for a linear chain with nearest-neighbor interactions.
The solid circles represent sites with excitations
(pseudofermions) and the open circles above and below
represent the nearest neighbors where K' and V have
nonzero matrix elements.

matrices V. The horizontal lines are excitation
lines with which one associates a matrix propaga-
tor G„. Since we are considering a Hamiltonian
which includes the terms shown in Eq. (2.4), II is
quadratic in 5, and either one or two excitation
lines may be created (or annihilated) by K' (or
K't), and the matrix V which gives the scattering
by the excitations may either leave them at the
same sites or move them to neighboring sites or
even create or destroy one of the excitations as
long as one or two excitations enter and leave
each V vertex line. A self-consistent approxima-
tion is constructed by operator techniques and
diagrammatically illustrated in Sec. III. Mills's
diagram symmetry rule, which ensures that
ImZ &0, is reviewed briefly in Appendix B.

~aa G 5aa + Vaa ~ a
~ (2.20)

III. SELF-CONSISTENT CLUSTER APPROXIMATIONS
In the following section, we use operator techni-

ques to generate a self-consistent approximation
for the configuration-averaged one-particle
Green's function. As an aid to the reader in
visualizing the scattering terms included, we also
introduce a diagram description of the problem by
iterating Eqs. (2.19) and (2.20) to produce the per-
turbation expansion of G about the virtual crystal
G„ in powers of V and K'. The terms in this ex-
pansion can be represented by diagrams such as
those in Fig. l. (The particular diagrams pre-
sented are for a linear chain with nearest-neigh-
bor hopping. ) In these graphs the solid circles
represent the sites of the excitations (or psuedo-
fermions). The first vertical vertex line on the
left represents K' and the open circles corres-
pond to the two sites neighboring the excitation
site where K' has nonzero matrix elements.
Similarly, the last vertical vertex line on the
right of each diagram represents E't, and the
intermediate vertices represent the perturbation

In this section we develop an approximate
method for evaluating the self-energy, taking into
account the scattering by clusters of excitations.
We proceed by dividing augmented space into two
subspaces, ' one subspace S~ is treated exactly,
while the orthogonal complement is only approxi-
mated. The subspace S~ is spanned by the vec-
tors

~
if,), where i ranges over all sites, o c T,

and T is the collection or family of excitation
states which define the particular approximation.
For example, in the single-site approximation,
T is the set of states which have an excitation
(or pseudofermion) on just one site. In the near-
est-neighbor pair approximation, T is the set of
states with no more than two nearest-neighbor
sites having excitations, and in more general
cluster approximations, T defines those clusters
on which excitations are allowed (or those clus-
ters of sites whose scattering is to be calculated).

The particular cluster approximation desired
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is derived by treating the scattering by the excita-
tions within ST exactly. In particular, we restrict
the intermediate excitation states in Eqs. (2.19)
and (2.20) to those in Sr. We thus obtain

a, a'6T
~&ay aa'E. If a' (3.1}

~a G gaa+ Qaa ~ a
~

a"6T
(3.2)

+aa Ga gaa + Qaa +a a (3.3}

where

(3.4)

Here, Z' is the conditional self-energy which con-
tains all those self-energy contributions to Ga

which are not included explicitly in Eq. (3.3), and
which can be approximated in terms of the con-
tributions from S» thai is,

These equations define the non-self-consistent
cluster approximations for the self-energy. For
example, if T is the set of all single sites, i.e.,
T= {a~o ={i}},and only diagonal disorder is pre-
sent, we obtain the ATA (Refs. 18,19) (non-self-
consistent single-site approximation). If we
choose the more general Hamiltonian with off-
diagonal and environmental disorder, we obtain
the generalization of the ATA previously called the
traveling pseudofermion approximation. " Simi-
larly, the ATA is easily extended to pairs or
clusters by enlarging Sr. From Eq. (3.1) we see
that the self-energy Z is a sum of terms of the
form XYX, where ImY&0, as can be seen from
Eq. (3.2). Thus, ImZ (0. The averaged Green's
function G is therefore Herglotz.

A major difference between this and previous
approximations is that for extended scattering (by
clusters or single excitations with off-diagonal
and/or environmental disorder) the matrix V has
matrix elements which directly or indirectly
shift the excitations from site to site giving rise to
"traveling pseudofermions"' or, more generally,
traveling cluster approximations. This feature
allows the self-energy to have nonzero off-diagonal
elements extending across the sample and thus
contributes importantly to such quantities as the
two-particle vertex corrections, in a way the CPA
can not.

In order to produce an analytic self-consistent
approximation, we replace I'„ in Eq. (3.2) by a
self-consistent propagator G' which approximates
the contribution from augmented space outside
Sr. We rewrite Eq. (3,2} as, for o,a'c T,

o Ua& T, asUafE T

0!y 0!I~ fR (3.5)

T ={a
~

a = a, (i), a,(i ), . . . , &x„(i), Vi }, (3.6}

where o (i) is a particular cluster of sites at
which there are excitations, defined relative to
site i. Any other translationally equivalent clus-
ter of sites can be generated by changing the in-
dex i. For example, in the nearest-neighbor pair
approximation for a linear chain we choose a~(i)
={i}and a, (i) ={i,i+ 1}.

In order to understand the approximations made
in Eqs. (3.3)-(3.5) it is useful to consider the
diagrammatic representation for simple examples.
The single-site approximation is obtained by set-
ting T= {a~a= ot(i) ={i}}and is represented in
Fig. 2. The upper line of diagrams represents
the contributions from Eq. (3.3) which do not have
self-energy insertions. These are equivalent to
the single-site non-self-consistent approximation
of Eq. (3.2). The lower line includes the self-
energy insertions which are generated by the self-
consistent propagator G' of Eq. (3.4). In order
to prevent multiple occupancy (overcounting), the
excitations in the self-energy insertion are con-

with e, ~'(= T. The restriction that both e Uo and
i2'Uo are not contained in T ensures that n and
a' do not duplicate the scattering from sites cr

accounted for explicitly in Eq. (3.3). The self-
consistent set of equations (2.11), (3.1), (3.3), (3.4),
and (3.5) define our self-consistent cluster theory
for an approximate, configuration-averaged
Green's function. It is shown in Appendix A that
these equations have a unique solution which
yields a Herglotz Green's function. A key to the
analyticity is the symmetry of Eq. (3.5) with res-
pect to a and a' (see Eq. A6). If the Hamiltonian
contains only diagonal disorder these equations
reduce to those of Mills and Ratanavararaksa. "

At this point, we indicate the necessity of using
the augmented-space approach in solving this
disorder problem. For the special case of diag-
onal disorder the simple form of the Hamiltonian
allowed Mills and Ratanavararaksa" to express
the self-consistency requirements in terms of
restricted sums in real space [Eq. (5,2) of Ref.
11]. For the more general disorder problem
treated here, this approach does not work. In-
stead, it is essential to impose self-consistency
by means of restrictions in the full augmented
space, as has been done in Eq. (3.5),

Since we are calculating the configuration-
averaged Green's function, it is essential that
the set {o}of sites and clusters contained in T
be translationally invariant. This translational
invariance is incorporated by writing Z', for the
q-cluster approximation, in the form
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I

o

0

+

FIG. 2. Diagrammatic expansion of the self-energy in
the self-consistent, single-site approximation where
those diagrams which contain just one excitation are
included (upper line) plus those that are included by
the self-consistency gower line).

E, = E, +

o n o
0

+ I I +

FIG. 3. Diagrammatic expansion of the self-energy
in the self-consistent pair approximation where those
diagrams which contain no more than two excitations at
a time are included plus those that are included by the
self-consistency.

strained not to be at the same sites as those of the
line into which they are inserted. When the in-
serted excitation happens to be on the nearest-
neighbor site of an existing excitation, there is a
change in the matrix elements of the relevant K'
and V due to the previous excitation; this change
is not included.

The nearest-neighbor pair approximation is
illustrated diagrammatically in Fig. 3. A new
feature in these diagrams is the simultaneous
creation (or destruction} of two excitations on
nearest-neighbor sites, which occurs because of
the off-diagonal disorder.

It now remains to solve the self-consistent set
of equations, making use of the translational sym-
metry of the augmented-space operators. We
accomplish this by Fourier transforms on the
disorder-space cluster-site labels. It is simplest
to describe these transforms when we have chosen
a specific basis set (~ g,)) for the original real-
space Hamiltonian H. Since the tight-binding
Hamiltonian is studied extensively in the theory

of disordered systems, and since the model cal-
culations presented in Secs. IV and V are for
tight-binding systems, we consider a localized
basis

~ g, ) where I refers to the lattice-site index.
The matrix elements of the augmented-space
operator A are of the general form A'~'„"'j" ',
where o,(f) represents a cluster of excitations as
defined in Eq. (3.6).

The Fourier transform on the clusters g is de-
fined by

Q(q)~i ~j =&
Nt ff l+e, l'+n

l, t'

with the inverse relation

(3.7}

~P(l ), ag(l'I fV Q g(q)+$ Nf e~.l ll' (3 6)t
c

where o, = o,(0), R„.is the lattice vector connect-
ing the reference sites l and l' of the two clusters,
and the q sum is over the Brillouin zone.

Of course, there is the usual Fourier transform
on the real-space coordinates

z(q) -=w-' g z„e-«R~i .
jj

Thus, Z of Eq. (2.19) becomes

(3.9)

Since the range of interaction in real space is fin-
ite, the perturbations K"i and V(q)'~'& are nonzero
only over a finite set of real sites. We designate
by I'" the projection onto the union of these real
sites.

For example, if there are interactions only be-
tween each site and each of its Z nearest neigh-
bors, and if we are considering the single-site
approximation, the V(q) and K' are (Z+ 1) x(2+ 1)
matrices. This is the minimum dimension nec-
essary to exhibit all the localized modes or states
about each defect.

We next rewrite Eq. (3.11) in terms of projec-
tion operators P'~,

P' ~F(q)"'~P'~ =P'~ G'~P'&6

+P P'&G'~P'~V ~ iP'~F'~ sP s.
l

(3.12)

In order to evaluate G' we rewrite Eq. (3.4) as

Go [(G J 1 +If] 1 (Q 1 ++0) 1

where Z'= (Z -Z'). Solving for Z' using Eqs.

(3.13)

Z(q)=Q Q K' F(q)'„'K' ' ' ' . (3.10)
fj ), m, n, P

In this notation, the transform F(q) of Eq. (3.2)
becomes

F(q} = .6""+Z G" V(q)""F(q)"" (3 )
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(3.1) and (3.5), we obtain

K'eF "K'" (3.14a) Z2 ——0. (3.15b)
eUa&T, or a'UaGT

fox' Q'y Q (= Ty ox'

Za= K' F K' +K' F K'

We can now solve for PaG'Pa in terms of G and
Z'. The method is described in Appendix C. We
find

eUaET e'

Z
aUaGT, e'UaCT

K' E K' (3.14b)
P'G'P'= X[I+(Z f —Z3G2Z3t)X+ ZSG)] ~, (3,16a)

where

ga K &aFeasKIta~

aUaET a'

-P' Z z If & &ft ]P''
aUaa T a'

(3.15a)

for n, a'(= T. Then we break Z' into blocks'.
Z q

=P'Z'P', Z2 =—(1-P') Z'(1 -P'), and Zg =P'Z'—
x (1-P'). Similarly, we define G, =P'GP'-, G2
—= (1 —P')G(1 —P')& and G3 =P'G(1—-P'). Using Eq
(3.14), we find for a, u'c T

X= (I+ G)zft) Gi ~ (3.16b)

In order to evaluate these expressions, we need
to calculate three terms: Zq, G3Z3 and +3G2Z3 .
Z~ is just a finite sum of finite matrices and can
be evaluated directly. The other two terms in-
volve sums which range over all sites in the solid
and must be evaluated by Fourier transforms.
We obtain

(G Z") .=N 'g V(q)g pe""«JVE(q u)'& ""~0-(G Z")
ff, f r

(Z3G2ZS')«=II'gg g C(q)e""»'I&f'(q u};f„e""«M(q'u')"'
rr' tf, f, u', f'

-(ZqG(zp~), , +(ZpG3zf ), , +(Z3G3zq ). . .

M( )' =pg &"&(q)""&'"',

(3.17a)

(3.17b)

(3.1Vc)

where I;, t', r, r' are sites onto which P' projects,
g&(u) Uo c T, o&gu ') Ue c T, and for o.

&
a ' c T

z =P g g z"P-'z '" P.
aUac T e'

(3.17d)

Z~, like Z&, can be evaluated directly.
In an effort to make these rather complicated

equations less formidable, we describe the rela-
tion between this self-consistent approximation
and the more familiar CPA. First rewrite E(q)
by combining Eqs. (3.11), (3.13), and (3.14), to
obtain

E(q)-„'={G{I [V(q) —Z ]G—) ')'~, (3.18)

where G is defined by (if, ~G ~jf;) =G;&5". If we
define V = H -HI by analogy with Eq. (2.16), and
calculate the self-energy (3.10), then using the
notation of Eq. (2.12)

0= -Z(q)+p e"'" gV'G{I- [V(q) -Z]G)-'V')„.

~3.19)

In the CPA, the configuration-averaged t matrix
is set equal to zero; i.e., ((V- Z)[l -(V-Z)G] ')„
=0, which can be expressed as

I

0=(V-Z)„+((V-Z)G[1-(V-Z)G] '(V- Z))„.

IV. ELECTRONS IN A ONE-DIMENSIONAL
TIGHT- BINDING ALLOY

One of the most studied models in disordered
systems is the one-dimensional, s-state, tight-
binding, binary alloy with nearest-neighbor inter-
actions,

H, q
——e(s, )5,~+ Wq(s, &sq) & (4.1)

(3.20}

Note that Eqs. (3.19) and (3.20) are similar in
structure. In the CPA limit, where we have only
diagonal disorder and single-site averages, (3.19)
reduces to (3.20) since V{q) is independent of q.
By comparison with the average t-matrix con-
struction of the CPA [Eq. (3.20)), we can view the
self-energy Eq. (3.19) [in the general disorder
case when V(q) is dependent on q] as containing the
analog of the t matrix for traveling clusters of
excitations.

In the following two sections we use the self-
consistent approximation for numerical calcula-
tions of the electronic and vibrational properties
of disordered linear chains.
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FIG. 4. Density of states for electrons in a linear.
chain with e(A)=-e(B)= —2.5, W(AQ)=1.0, W (A, B)
= W(B,B)= 0.5, and c~ = 0.3. Comparison of the exact
results (histogram) with the self-consistent (a) single-
site and (b) nearest-neighbor pair approximations.
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FIG. 5. Density of states for electrons in a linear
chain in the diagonal disorder limit; e(A)=- e(B)=
—2.5, W(A, A) =W(A, B)=W(B,B)=1.0, and c~ =0.3.
Comparison of the exact results (histogram) with the
self-consistent (a) single-site and (b) nearest-neighbor
pair approximations.

where 8',
~
40 when j= i + 1 and s, =A, B with prob-

abilities c&, c&. %e apply the self-consistent
approximation described above for two cases,
single-site scattering and nearest-neighbor pair
scattering.

A. Single-site approximation

We let T =(e
~

c=[i) io i] and &r(0) =(0], where the
sites of the linear chain are labeled consecutively.
P' projects onto the sites [-1,0, I] surrounding
[0}where V is nonzero. The equations in Sec. III
which define the self-consistent approximation are
described in terms of three matrices: K", V(q),
and K, whose values are given by

&z-e, i=j
Eq~

——
& -H(, i =j y1

0, otherwise

where

e =c„e(A)+ c,e(B},

e = cae(A) +c„e(B),
e' = (c„ca}'"[e(A}—e(B}],

Hq
——c„W(A,A) + 2 „cWc(eA,B) + caW(B,B),

H2=(ckcB) [cAW(AiA}+(cB —cA)W(AiB}

(4.4)

(4.5)

(e-e)+2H&cosq, i=j=0
H4-H~, i =0, j=+1&

V(q);}I=( H, e", i=i, j=-1
H3e ", i=-1, j=1
0, otherwise

i=+1, j=0

-e', i =j=0
K,",=( -H» i=0, j=+I; i =+I, j=0

~0, otherwise

(4.2)

(4.3)

—ca W(B,B}],
H3 = czca[W(A, A) —2W(A, B) + W(B&B)],

H4 ——c„ca[W(A,A) + W(B,B)]+(c„+ce) W(A, B}.
(We have chosen the lattice spacing to be 1 in
these examples. ) Even though we consider only a
single excitation, the effects of the neighbors are
included explicitly through the off-diagonal terms
Hf y H2, H3, and H4 ~

In Fig. 4(a) we compare the densities of states
evaluated with the self-consistent, single-site
approximation with the essentially exact results
obtained by node counting 2 for linear chains of
10 000 atoms with e(A) = -e(B)= -2.5, W(A, A)
=1.0, W(A, B)= W(B,B)=0.5 and ca =0.3. The
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single-site approximation produces a smooth dis-
tribution which predicts the band edges of the host
band centered at -2.5 quite accurately. For the
defect band the approximation results in a dis-
tribution which underestimates the bandwidth, but
which is centered properly about the major defect
band peaks. Since this calculation is a single-
site approximation, we do not pick up any of the
detailed peak structure in the bands.

For completeness we have included in Fig. 5(a)

a calculation for the limiting case of diagonal dis-
order where this self-consistent approximation
reduces to the CPA. Here e(A) =-e(B)=-2.5,
W(A, A) = W(A, B)= W(B,B)=1, and ce =0.3. Note
that in the defect band the self-consistent ap-
proximation gives a somewhat better estimate of
the bandwidth for diagonal disorder. We expect
to see a marked improvement in the defect bands
when we apply the self-consistent pair approxima-
tion below.

B. Pair approximation

In the pair approximation we include single-site and nearest-neighbor pair scattering. T = {o'~ o~
——{i},

oz ——{i,i+ I}p sites i}and o&(0) ={0},o&(0) ={0,1}. In this case, + & projects onto sites {-2,-1,0, 1,2} and
p 2 projects onto {-1,0, 1, ,2}. The matrix equations become somewhat more complex than those for the
single-site case above. IC"' and V(q)'&''& are identical to K" and V"' defined for the single-site case in
Eqs. (4.2) and (4.3) above, respectively. In addition, we find

i=O, j=l; i=1, j=0
ij

otherwise
(4.6)

e-e, i=j=0,1

H4-H(, i=0, j= -1;
V(q);)" =(

HS-Hg, i =1, j=O;

0, otherwise

e', i=j=1

i =-1, j=0;
i=0, j=1

i=1, j=2; i =2, j=1
(4 'I)

H6, i=1, j=0;
Hg, i=1, j=2;

i=O, j=1
i=2, j=1

V(q);.,"=(e'e ", i=-l, f=0
Hse ", i=O, j=O; i=-1, j=1
Hqe, i =-1, j=-1; i=2, j=0
0, otherwise

(4.5)

V(q)
+2+1 Vg(q) 1 2

where

H5
——c~ W(A, A) + 2c„csW(A, B)+ c„W(B,B),

H&
——(c„cs) ~ [csW(A,A) + (c„—cB)W(A,B) —c„W(B,B)].

(4.9)

(4.10)

As anticipated, the change from a single-site to
a pair approximation produces a significant im-
provement in the density of states generated by
the self-consistent approximation. For the off-
diagonal disorder example above, we find that not
only does the self-consistent theory give excellent
estimates of the bandwidths in both host and de-
fect bands, but a distinctive three-peaked struc-
ture has appeared in the defect band which closely
matches the major peaks in the exact results

[see Fig. 4(b)]. As noted by Dean, the central
peak in the defect band corresponds primarily to
states localized on isolated B atoms and the two
satellite peaks correspond primarily to bonding
and antibonding states localized on B-B pairs.
Furthermore, there is some smaller structure
which appears in the host band due to A-A and
A-B pairs.

The pair approximation produces similar re-
sults for the diagonal disorder example shown in
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Fig. 5(b). As we mentioned earlier, the diagonal
disorder limit of our self-consistent approxima-
tion is the traveling cluster approximation of
Mills and Ratanavararaksa. "

Of course, in order to reproduce all of the
spikes in the very ragged one-dimensional den-
sity of states it is necessary to include larger
clusters in the approximation. In higher dimen-
sions, the contributions from large clusters are
considerably less important since each atom has
many more neighbors. Thus, the atoms are in
a more nearly average environment, and the den-
sity of states is smoother.

V. PHONONS IN A DISORDERED HARMONIC
LINEAR CHAIN

In Sec. IV we examined a tight-binding system
with diagonal and off-diagonal disorder. In this
Section we calculate the frequency spectrum for
a system with environmental disorder as well.
The inverse of the Green's function for a binary,
harmonic, linear mixed crystal with nearest-

neighbor forces can be written as

+ &t&&g(&(»g) ~ (5.1)

where m(s, ) is the mass of the atom at site i, the
spring constant Q, &

a0 when j=i + 1, and s, =A, B
with probabilities c„,cs. [The force constant ma-
trix C is equal to the negative of the sum of the
last two terms on the right in Eq, (5.1).] The
environmental disorder appears in the second
term on the right-hand side of Eq. (5.1). As a
result of this term, the diagonal element G, ', de-
pends on the occupation of neighboring sites.
Since the density of states in a phonon system is
derived from the average of the operator MG
rather than G, we have included a brief descrip-
tion of the calculation of this quantity using aug-
mented-space methods in Appendix D.

We consider two cases, just as we did in Sec.
IV for the electronic problem.

A. Single-site approximation

We choose T as above, namely, T ={s~o={f}Vf}and o'(0) ={0}.Thus, we find

u (d -2D» i =j=0
D2, i=0, j=+1;

K() ——
( -D„ i=j=+1
.0, otherwise

i=+1, j=0 (5.2)

(u-u)u -2(D&-D4)-2D&cosq, f=j=0
(D) -D4) + D3e ")

0, j=-1;
i =-1, j=0; i=0, j=1

i=-l, j=l
1, j=-1

D4- Di

0, otherwise

(5 &)

u(d -2K(, i=j
Vq

——(&g, i =j+1
0, otherwise

(5.4)

where
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u = c„m(A) +c,m(B),

u =c m(A) + c„m(B),

u'=(c„ce) ~ [m(A)-m(B)],

Dq ——c„g(A,A) + 2c„ca/(A, B)+ csg(B,B),
D2= (ckce) [cke(AiA) + (ca —cA)e(AiB} —can'(B B}]

D3 ——c„cs[P(A,A) - 2$(A,B)]+ P(B,B),
D4 ——c„ce[iji(A,A)+ Q(B,B)]+(c'„+c2e)P(A,B) .

(5.5)

In Fig. 6(a) we compare the densities of states evaluated with the self-consistent, single-site approxima-
tion with the essentially exact results obtained by node counting' for a linear chain of 10 000 atoms with
m(A)=1.0, m(B)=0.5, P(A,A)=1.0, $(A,B)=1.25, P(B,B)=0.75, and ca=0.25. The frequency spectrum
of the single-site approximation is relatively smooth. It misses the remnant of the perfect A crystal
singularity near + =4 and has a tail in the high-frequency region just above where the exact results cut
off. However, it does give a good overall estimate of the density of states. Of course, none of the de-
tailed structure within the bands appears in the single-site approximation.

B. Pair approximation

Again we choose T as we did for the electron problem T = {o
~

e&
——{i),o2

——{i,i+ I}V i) and o, (0) ={0),c2(0)
={0,1). The projection operators are the same as before, P" projects onto sites {-2,-1,0,1,2j and P'2
projects onto {-1,0, 1,2). We find that K"~=K" and V'~ "~= V"' which are defined in (5.2} and (5.3), res-
pectively. In addition we have

i=j=0,1

KI& ——(D3, i=0, j =1; i= 1, j=0
0, otherwise

(u-u)v -2D~+D5+D4, i=0, j=0; i=1, j =1

(5.6)

Df D4, i =-1, j=0; i=0, j=-1;
V(q '2"2 =( D4 —D, ' =j= -1,2

Df D4p i=0, j=1; i=1, j=0
0, otherwise,

i=1, j=2; i=2 j=1
(5.7)

r(-u'u + D& + D6)e ", i = -1, j= 0

D6(1- e "), i=j =0

D6(e "-1), i =0, j = 1

-Dee ", i=-1, j=1
2-u'~ +D2+D6, i =j=1

V(g) g y

-D2e ', i =j= -1; i = -2, j= 0

D2e ", i= -2, j=-1

(5.6)

-D6, i=1, j=0
-D2, i=1, j=2;
,0, otherwise

V(~)t2
~1 Vg(q)'] '2

where

i=2, j=1

(5.9)

Dq
——ca/(A, A) + 2c„ca/(A, B}+ c„g(B,B),

Dq ——(c„ce) ~ [c„iji(A,A)+(ce —c„}P(A,B) -c„g(B,B}]. (5.10)
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FIG. 6. Density of states for phonons in a harmonic
linear chain with m(A) =1.0, m(B) = 0.5, ft)(A,A)
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parison of the exact results (histogram) with the self-
consistent (a) single-site and (b) nearest-neighbor pair
approximations.

Once again the change from a single-site to a
pair approximation produces significant improve-
ments in the frequency spectrum generated by
the self-consistent approximation. We see in
Fig. 6(b) that the pair approximation exhibits the
structure associated with the perfect A crystal
band edge near ~' = 4 and that the tailing at high
frequencies is reduced, giving a good estimate
of the high-frequency band edge. Furthermore,
we now see the major structure within the defect
band. There is a dominant peak at high frequen-
cies which is centered near the isolated B atom
modes. In addition there are shoulders to either
side of the central peak and one just above the
structure at (d' =4 as well as a small bump near
(d =5 which result from B-B and A-B pairs.
The host band remains relatively structureless
and the frequency spectrum approaches the vir-
tual-crystal limit as the frequency becomes small.

VI. CONCLUSION

We have presented a self-consistent cluster
theory for elementary excitations in random sub-
stitutional alloys with diagonal, off-diagonal, and
environmental disorder. In this theory a syste-
matic set of approximations for the self-energy
are developed in terms of an operator formalism,
and illustrated by diagrams. The approximate
configuration-averaged Green's function has the

proper translational symmetry and is proved to
be analytic. This theory is a natural generaliza-
tion of the diagonal disorder approximation of
Mills and Ratanavararaksa' to the more general
problem of off-diagonal and environmental dis-
order. Example calculations for single-site and
pair approximations for the one-dimensional
electron and phonon densities of states show good
agreement with exact results and demonstrate the
marked improvement which results from the in-
clusion of pair scattering. In three dimensions
we expect significantly better agreement since
much of the structure in the exact density of
states tends to disappear, as each atom sees a
more nearly average environment. A compari-
son of the diagonal disorder one-dimensional ex-
ample presented in Fig. 5 with the three-dimen-
sional examples presented by Mills and Ratan-
avararaksa" provides a clear demonstration of
this point.

This theory exhibits the proper behavior in all
physical limits (dilute, weak scattering, and
strong scattering). In particular, in the dilute
limit for nearest-neighbor interactions we note
that the approximation reduces to a (Z+ I) x(Z+ I)
matrix theory which appropriately gives all the
localized states about a single defect. Further-
more, since this theory is applicable to general
disorder problems, physical effects such as lat-
tice relaxation about defects and charge transfer
(which give rise to off-diagonal and environmen-
tal disorder) can be treated when the appropriate
Hamiltonians are known.

There as yet remains one important restric-
tion on this theory. It is not yet clear how to
apply this approximation to disordered systems
with short-range order (dependent random vari-
ables). This is despite the fact that short-range
order can be represented in augmented space. '

The nontranslationally invariant form of the aug-
mented-space operators for short-range order,
as presented in Ref. 14, invalidates the Fourier-
transform procedure used to solve the self-con-
sistent equations.

The theory appears quite complicated as a ma-
trix theory in q space. However, this complica-
tion is essential for properly including cluster
scattering in general disorder problems.
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APPENDIX A: PROOF OF ANALYTICITY

Using an argument similar to that in Ref. 11,
we will demonstrate that, subject to a few mild
conditions, the self-consistent equations developed
in Sec. III have a unique solution, and that this
solution yields a Herglotz Green's function. Re-
call that the operator-valued function F(z) is called
Herglotz provided E(z) is analytic in the cut plane
Imz a0, E(z*)=E'(z), and

ImF'(z) = (1/2f) [F(z}—F (z)] - 0

for all z in the upper half plane.
In the notation of Secs. II and III, 0=4'(39 is

the augmented Hilbert space, 4' is the real space
on which the random Hamiltonian H acts, and 9
is the disorder space. The space 9 is a direct
product ge„where l runs over the index set of
the random variables (s,},and we refer to 8, as
site l. A basis for 9 consists of the ground-state
vector ~f), together with vectors of the form

~f,),
where o represents a collection of sites which are
in the excited state (for multicomponent systems,
0 would also specify which excited state was pre-

sent at each site). The projection onto the sub-
space q'

~
f,) will be denoted by P„and, as cus-

tomary, when 0 is the null set we drop the sub-
script. Thus P is the projection onto 4'8 ~f). If
T is the collection of sets which defines the self-
consistent approximation (in Mills's notation, the
family of overlap sets), we set Pr=Z„r P,. Any
real-space operator X:4-4 can be enlarged to
an augmented-space operator X by defining X
=X|31e. If, for each 0(=- T, there is a real-
space operator X', we define (X'}r—=Z„r XP,.
For example, if X'= 1~ for all o, then (ZP}r=Pr.

From Eqs. (2.11)-(2.16), the configuration-
averaged Green's function is given by G= (G„,'
—Z) ~ and the self-energy Z =K'FK't, In the T
approximation [Eq. (3.3)],

P= [(( Gg-'}, —P,VP, ]-', (Al}

where V is the augmented. -space potential defined
by Eq. (2.16), o c T, and

G =(C '+Zg-' (A2)

with

&Ua& T, ar +'Ua&T

K' F"K'i' . (A3)

G'=(G, ,' —Z+Z') =(G,,'-Z') ' (A4)

and thus, substituting from Eqs. (AI) and (A3) we
find that

In the above equation, and in the following, n and
n' will denote sets of sites that belong to T. From
the definition (A2), we see that

-1K"[((G ) '},-P,VP, ] ""K""G =)G;.'-
aUaKT, a'Ua&T

If we denote by Pr, the projection Z o,~r P, Eqs. (A5) and (A4) become

G =(G,,'-K'Pr, [((G') }r-PrVPr] Pr P' )

(A5)

(A6}

Z'=G, ,'-(G') =K'Pr, [((G') }r—PrVPr J 'Pr, K'~.

Summing Eq. (A7) over o we finally obtain

(Z } =(K'P, [((G') } -P VP ] P,K'} = ((Z'} ) .

(A7)

(A8)

By virtue of its dependence on G' and Eq. (A4), p is a function of (Z'}r and E, and our task is to show that
6 has a unique fixed point (Z }rfor each E, and that this in turn yields a Herglotz Green's function G, By
suitably restricting the range of E and (Z }r, we can show that 6' maps a certain (complete metric) space
into itself. Iterating Eq. (A8) will yield a Cauchy sequence which converges to the required fixed point.

We make the following assumptions. The variable E is restricted to a compact subset R of the upper
half plane, and on R, -G,,(E) is a Herglotz function. Furthermore, for any Ec R, ImG, ,' is uniformly
bounded away from 0; i.e., ImG, ~(E) - y &0. For simplicity, we also assume that G={(G,,'-A) ~), where A
is Hermitian and independent of E; thus V is Hermitian, while K' and K'~ are Hermitian conjugates. This
assumption is true for the electronic problem, but not for the phonon problem. However, for the phonon
problem, a simple argument involving operator MG can be used to reduce this problem to the situation
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(A9)

(A10)

and using (A4)

1m[{(G ) )z Pz VPz]=(ImG, , —ImZ')r &
y .

This implies ll[((G') ')r-PrVPr] 'll -1/y and hence,

considered here. Finally, we assume that V and K' are bounded operators.
We begin the proof by showing that the imaginary part of $({Z )r) is negative definite:

I s((z'), ) =(I/2z) [s((z'),) —s((z'),)']
=(I/2i)((K'Pr, [{(G) )z PrVPr] Pz, ,K jr -(K Pz„[((G') }r—Pz VPr] Pr K }r)
=(K'P r, [((G') ')z -PrVPr) {-Im(G') }r[((G') ')r -PrVPr] Pr, K'z)r .

However, -Im(G') ' = ImZ'- ImG, ,', and since ImG„' & y &0, we see that -Im(G') ' (0 whenever ImZ' ~ 0.
Thus, if (Z')r has a negative definite imaginary Part, iteration of the equation (Z'}zr' = S((Z'}r) always
maintains this property. From ImG„& y &0 it also follows that S({Z'}z)is bounded:

II&({Z')r)ll = ll(K'P, .[((G') '), —P,VPr] 'Pr, K')„ll

(suy IIK'll IIK"II lll((G') '}r-PrVPz] 'll,

II s({Z')r)ll - y,
where y= IIK'll /y. If we define the set of augmented-space operators D by

D=( XlX={X)z,, IznX'(0, IIX'll (y),

(A11)

(A12)

(AI2)

then we can summarize the above results as showing that F: D- D.
We next prove that the sequence (Z')r'= S((Z')r) is a Cauchy sequence. Let &Z„=(Z')r'-(Z'}r; then

n Z„= s((Z'}",) —s((Z'}",")

=(K Pz„[{(G) ')r —PrVPr] AZ„ i[((G') ')z ' —PrVPr] 'Pr, K'}r .

Let g„=1m[{(G') }~r —PrVPr]=ImG, ,'Pr —Im(Z')r
~ y. Since g„ is positive definite, there is a posi-
tive-definite square root vg„, and we have

g„AZ„g E'„(
1 1

gn ~gn-&
(A14a)

where

F„=~g. [{(G) ')r P,VP.] 'P.-.K'. (A14b)

Let F„'= W„'J„' be the polar decomposition' of
F„'; J„=(F„'zF„')'~' and W„' is a partial isometry
from the range of J„' (= range of F„'zC P) to the
range of F„'. Since J„'maps P into P, (A14a) be-
comes

~z„=yq, Iw„~ ss„., ts„., (s„.,},.1 1

gn ~gn-&

(A15)

By defining X„=(J'„)zand

1 1A„= W„' ~ AZ„i
gn ~gn-i

(A16)

we can write (A15) as aZ„=X+„X„&,and substi-
tuting this back into (A16) we find

=sup g ~ X„,X„,~ g [i&(), A18

where $ c Pr, ( 40. Furthermore, using (A14b)
and (A9)

X„X„={(&'),=(F„'F„"},=-im(Z P'.
With the substitution X=(1/~g„$, we find

(A19)

A„= W„' X„gA„-)X„2 W„' ) . (A1V
~In ~g'n-f r

We will use (A17) to obtain an estimate of IIX„II in
terms of (IA„&[]. Since [)W'„[)=1, it follows that,
for an arbitrary v(= T

1 1 I 2

X (~ 8" ( X„g~
gn gn

2

x, , ~ lv'„--s p (s (z')".~ g) IIgll'g„c gn

- sup (x l
-Im(Z')"

l x)/(x
I g. I x)

- sup (X
I
-im{Z'}r

I X)/(y + (X
I
-im{Z'}r

I X)) ~ (A20)
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This last expression is of the form x/(y+ x), x &0, whose maximum occurs on the boundary. Since x
- IIIm{Z'}rll ~ y, we have

1X„(~ W„~y/(y + y) = X & 1 .
0

Thus, from (A17) IIA„II - & IIA„qll and IIA„II - V 'IIA, II. Furthermore,

ll»„li - IIX„ll II&„Il IlX„ II - yll&„jl - y&" 'Il&~II ~

It now follows immediately that {Z'}ris a Cauchy sequence:
n-1 n-1

(A21)

(A22)

(A23)

as m and n-~. Since the set of operators D is a closed set, {Z'}rconverges to a solution of the equation
&(X)=X, and this solution also belongs to D. To verify that this is the only solution, assume that $(Y) = Y.
Then, following the same line of reasoning as above for X-Y= P(X) —3'( Y), it is easy to show that IIX —Yll

=0, or that X= F.
It only remains to show that this solution {Z'}ryields a Herglotz G. Assuming {Z'}ris an analytic func-

tion of E, each succeeding term {Z'}ris analytic, and therefore the uniform limit (note that A. and y are
independent of E) {Z']r is also ana. lytic. Finally,

ImZ(E) =K' ImEK' (A24)

imP= [{(G') '},-P,VP, ) '[-{im(G') '},][{(Gg '},-P,VP, ]-'

= [{(G') } —P VP ] {ImZ'} [{(G') '} -P VP ] ',
and thus, ImF &0.

(A25)

APPENDIX B: DIAGRAM SYMMETRY RULE

Ever since the appearance of the article of
Nickel and Butler, the analyticity or Herglotz na-
ture of the approximate Green's function has been
a key test for any theory. For approximations
derived from a partial summation of diagrams, a
better understanding of this question was provided
by Mills and Ratanavararaksa" (which followed
an unpublished work of Mills). By introducing a
symmetry rule, they were able to guarantee that
ImZ is negative definite. The analyticity of the
approximate Green's function defined herein is
proved in Appendix A, but the essential feature
that allows this proof to go through is the sym-

Z =+K'GVGV ' ' ' VGK't. (B.l)

It therefore follows that

l

metry, imposed in accordance with Mills's rule,
of the diagrams that are summed [Eq. (A6)].
Mills's symmetry rule was derived essentially
as follows.

First, we consider the perturbation expansion of
self-energy Z obtained from Eqs. (2.19) and (2.20).
The crux of the argument is a clever rewriting
of the terms of ImZ =(1/2i)(Z —Z ) ~ The self-
energy is a sum of irreducible diagrams of the
general form

1 1—.(Z —Z ) =—. (E'GVGV ' ' VGE' -K'G VG'V ' ' VGtK't)
2i (B2)

A typical term in this summation can be rewritten
as a sum of terms containing Y=(1/2i)(G- G ), as
is illustrated by

(I/2i)(K'GVGVGK' -K G VG VGtK'~)

=&'YVG VGK'+K'G'V rVGa'+Z'O'Vg VyZ'.
(B3)

Thus, for each diagram included in Z, there ap-
pears in Z —Z a sum of terms formed by in-

I

0 ( 0 O

I

o

0
i

0
I

1

I

I 0 0
I

I

(a) (b} (c}
FIG. 7. Pair diagram (a), and the two new diagrams

(b) and (c) which are generated by using the diagram
parts to the left and right of the dotted line in (a) on both
sides.
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I Z=U YU. (B4)

From (B3) it is seen that this will be true if the
irreducible diagrams included in the particular
approximation are symmetric in the following
sense: If a particular diagram included in the
approximation is written in the form AGB, then
the diagrams AGA, BGA, and BGB must also be
included (here A and B refer to the parts of the

serting Y =6 —6' for a propagator 6, and re-
quiring that each propagator to the left (right) of
this insertion has the value G (G). Now, since
Y &0, ImZ will be negative definite if the sum
(B2) can be factored such that

diagram to the left and right of 6, respectively,
excluding K' and K'~). In Mills's terminology,
no new diagrams are formed by "cutting" existing
diagrams, and forming all possible diagrams from
the pieces. For example, in Fig. 7, the inclusion
of the pair diagram (a), by this rule, requires the
inclusion of the single-site diagram (b) and the
additional pair diagram (c) ~ Diagram (c), in turn,
requires the inclusion of more complex pair dia-
grams.

This symmetry rule was satisfied in the CPA,
the traveling cluster approximation of Ref. 11, and
in this work. The generalization of this argument
to self-consistent skeleton graphs is strai, ght-
forward and is also discussed in Ref. 11.

APPENDIX C

P'6'P' can be evaluated in terms of 6 and Z' by straightforward matrix manipulation. Let

FZg Z3)

yet 0)
~Gi G3 tG=
(G3 Gg)

(C la)

(C1b)

(G; G;)
&G G;)

(C1c)

where 6' is projected onto a 2&2 matrix in the same manner as Z' and 6 were projected in Sec. III. G&
=P'G'P', G;=(I-~G'(I -P'), and G;=P'6'(1 P'). No-te we have included the fact that Z&

——0 [Eq. (3.15b)J.
From Eq. (3.13) we have

G' = G (I+ Z'G) (C2)

Substituting the matrix forms and performing the matrix manipulation, we obtain

Gq ——[Gg-G3(1+ Z; G ) 'Z' G ) [1+ZfGq+ Z3Gq-(ZqGq+ Z;Gq}(1+Z3 G3) 'Zf G ] '=X&

where

X= [1 —G,(1+Zg G3) 'Zp]Gg

= [1-(G,—G)Z3 G3+ ~ ~ ~ )Z3 ]Gi

= [1-GqZS +(G3Z) ) —~ ~ ~ ]Gg

or

X=(1+GBZ3 ) Gi,

and where

D =(I + ZING(
-Z fG (1+ZB G3) 'Z' G + Z' [G -Gp(1+ Z3 G ) 'Z3 G, ]p'

= [1+Z~q(1+ G3Zf ) G, + Z3G~- Z3G~Z~ (1+G3Z' ) 'G, ]
'

or

D = [1+ (Z f —Z3G tZ~ )X+ ZBG3] ',

(C3)

(C4}

(C5)
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APPENDIX D: PHONON DENSITY OF STATES

The density of states z)(ar) for a phonon system
can be determined from the displacement-dis-
placement Green's function G by the relation

where u, u', and u are defined in Eq. (5.5) ~ Sub-
stituting (D3) into (D2) we obtain

~ Z(zf I3IGlzf&=~ Z(zf l~lzf&(zflGlzf&

„((„) lim Im Q [MG (z)],
ndS & Z-~'lO'

(Dl) +~ 2 ('f
I

M
I
zf &('f» I

G
I
'f &

(D2)

r
u5;& 0'= 0'

(zf. liVilg. , &=( '5,.„o=y, v'=z
/ ~

u5;» 0=a =z

where M is the mass matrix [see Eq. (2.3)], s is
the number of atoms per unit cell, d is the dimen-
sionality of the system, and N is the number of
sites. In the augmented space we have

[MG(z)1;; =(zf IMG(z)
I
zf &

G ' = -K K' G = -EK ' G, (D5}

where we set F=K ' to correspond with the nota-
tion used in Secs. II and III. Using the above ex-
pression we find

1
=uGpp+~ u' (if»IGlif) ~

(D4)

In order to evaluate (I/It)(Z; (if; I
G

If )», we use the
2 x 2 block notation defined in Eq. (2.2) for the
operators G and K=G '. Then

—g (zf
I
G

I
zf ) gag F )(i), (((»)II t

„()»G
i lu jn

If we Fourier transform on the sites in the disorder space according to Eq. (3.8), we have

—g(if, lGlzf&= —QQQQF(q)p("~e"' «&''" G
i jnl u

If we now Fourier transform G on the real-site indices, the equation can be reduced to the form

—Q(if, I
G

I
if) =QQQF(q}()(",~&""e"""G(q}.

u SS

All the terms on the right-hand side are given or are computed in the process of evaluating G. These re-
sults apply to any level approximation (single-site, pair, etc.) as long as we set (z,(i}=(i).

*Present address: Sektion Physik der Universitat
Munchen, Theoretische Physik, Theresienstr. 37,
D-8000 Munchen 2, West Germany.

For a complete review through 1973 see R. J. Elliott,
J.A. Krumhansl, and P. L. Leath, Rev. Mod. Phys.
46, 465 (1974).
P. Soven, Phys. Rev, 156, 809 (1967).

3D. W. Taylor, Phys. Rev. 156, 1017 (1967).
4J. A. Blackman, D. M. Zsterling, and N. F. Berk, Phys.

Rev. B 4, 2412 (1971).
H. Shiba, Prog. Theor. Phys. 46, 77 (1971).
T. Kaplan and M. Mostoller, Phys. Rev. B 9, 1783
(1974).

~S. Takeno, Prog. Theor. Phys. 40, 942 (1968);
L. Schwartz, H. Krakauer, and H. Fukuyama, Phys.
Rev. Lett. 30, 746 (1973).
B. G. Nickel and W.H. Butler, Phys. Rev. Lett. 30,
363 (1973).
F. Ducastelle, J. Phys. C 7, 1795 (1974); J. Mert-
sching, Phys. Status Solidi B 63, 241 (1974).
A. Gonis and J. W. Garland, Phys. Rev. B 18, 3999
(1978); C. W. Myles and J. D. Dow, Phys. Rev. Lett.
42, 254 (1979).
R. Mills and P. Ratanavararaksa, Phys. Rev. B 18,

5291 (1978).
~2A. Mookerjee, J. Phys. C 6, L205 (1973); 6, 1340

(1973).
T. Kaplan and L. J. Gray, Phys. Rev. B 14, 3462 (1976).
T. Kaplan and L. J. Gray, Phys. Rev. B 15, 3260
(1g77).
H. W. Diehl and P. L. Leath, Phys. Rev. B 19, 587
(1979).
H. W. Diehl and P. L. Leath, Phys. Rev. B 19, 596
(1979).

~H. W. Diehl, P. L. Leath, and T. Kaplan, Phys. Rev.
B 19, 5044 (1979).

SR. J. Elliott and D. W. Taylor, Proc. B. Soc. London
A296, 161 (1967).

9P. L. Leath and B. Goodman, Phys. Rev. 181, 1062
(1969).

20T. P. Schultz and D. Shapiro, Phys. Rev. B 7, 5090
(1973).

2 A. Mookerjee, J. Phys. C 8, 1524 (1975); 8, 2943
(1975).

2 P. Dean, Proc. R. Soc. London A26$ 262 (1961);Rev.
Mod. Phys. 44, 127 (1972).

3P. R. Halmos, Higbert Space Problem Book (Van
Nostrand, New York, 1g67).


