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Mott's formula for the thermopower and the Wiedemann-Franz law
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The Mott formula for the thermopower, S =(m /3)(k~T/e)cr'/cr, and the Wiedemann-Franz law,
K/crT = (k~/e)'(m'/3), are shown to be exact for independent electrons interacting with static impurities
and phonons treated in the adiabatic approximation. This is true irrespective of the interaction strength.
These results are derived using a Green's-function technique that emphasizes the importance of corrections
to the free-electron heat current operator. These corrections have frequently been neglected in the past. The
Green's-function technique is well suited for going beyond the adiabatic phonon approximation, and the
implications of doing so are briefly discussed.

I. INTRODUCTION II. dc TRANSPORT COEFFICIENTS

It has been known for some time that for a sys-
tem of independent electrons interacting with sta-
tic scatterers, the Mott formula' for the thermo-
electric power S,

k~~T ding g

and

g= d& (2)

is exact for arbitrary values of the interaction
strength. It is also known that the Wiedemann-
Franz law, ' which relates the electrical conduc-
tivity c to the (electronic part of the) thermal con-
ductivity K by the relation

Z/& T =(a,/e)'(v'/3),

is exact for the same system.
These exact results were first derived by Ches-

ter and Thellung' using a wave-function formula-
tion of quantum mechanics. The purpose of this
note is to rederive Eqs. (1}and (3) using a
Green's -function technique. The motivation for
this is mainly pedagogical. However, the present
derivation also serves to emphasize the importance
of letting the various interactions modify the free-
electron form of the heat current operator. This
point has frequently been overlooked in the past.
A further merit of the Green's-function technique
is that it provides a basis for treating electrons
interacting with time dependent objects such as
phonons. In this case Eqs. (1}and (3}are not
exact; no similar exact results have been found,
but based on the results of the present approach
certain general conclusions can be drawn.

Transport coefficients like the electrical con-
ductivity 0, the thermoelectric power S, and the
thermal conductivity K are related to response
functions L J~, where'

j =L ~[ (1/T)V2(p-, +eV)]+L '2&V2(l/T), (4)

jo =L 212[—(I/T)V2(p+eV)]+.L" V2(l/T) . (5)

There j (jo ) is the a component of the electrical
(thermal} current, p. is the chemical potential,
and V is an electrostatic potential. The response
functions L '~2 (which are diagona. l in al3 for iso-
tropic systems) are given by Kubo formulas, which
in the Matsubara notation take the form4

8
L'~(i1d) = — . dre'"'(T, j, (r) j&(0)), (6)

(i(u) dQ

where d is the dimensionality and 0 is the volume
of the system, p =I/I2sT, and T, indicates an or-
dering of the current operators with respect to the
complex "time" v. The retarded response func-
tions that determine the transport coefficients
are obtained from L '~(i~) by the analytical con-
tinuation i~ -v +i6.

From Eqs. (4) and (5) one finds that if the chemi-
cal potential is constant,

o —e2L11/T

~V ]
gT eTL» &

(9)

Using Eqs. (I} and (9) we can furthermore define
L, the I,orenz number, as

(L 11L 22 L 12L 21)L—
gT e2T (L»)2
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[ln Eqs. (7)-(10), L'J =—lim„,ReL'~(u +i6) ] .For
many metals L is approximately a constant, and
we shall now proceed to show that in fact L = —,'n'
&& (}ts/&)' for a model system of independent elec-
trons interacting with static impurities and phonons
treated in the adiabatic (static) approximation. We
shall also show that the Mott formula [Eq. (1)] holds
for the same model system. The first step will be
to derive the current operators that appear in Eq.
(6). This will be done in the next section.

III. THE ENERGY CURRENT AND THE ADIABATIC
PHONON APPROXIMATION

In order to calculate the response functions L 'f

of Eq. (6) we have to find the proper expressions
for the particle current ~ and the energy current
]E, the latter being related to the heat current
] by the simple formula

R Rjkj y
H Aj (16)

)s =R = -i [R, H ] = i Q— R( [i»(, h~],
jf

with an obvious definition of hj. On performing
the commutation operations implied by Eq. (17)
and transforming back to the Fourier-space re-
presentation one finds that6 (noting that v» = V»»»

=iZ, 6i,e"')

3s =Q a»v»c, c»+ —Q V™(q)p''(q)3(q)

and Vj'&', nf' ', Wjf, and Q f are related to the re-
spective Fourier components in Eq. (12) in the
usual way.

The energy current is now found as the time
derivative of an energy position operator R (Ref.
5)

where p. is the chemical potential.
We shall consider a many-body system of in-

dependent electrons interacting with static im-
purities and phonons as described by the Hamil-
tonian

where

+ P w (q}Q (q))(q}
Q}t

'}7,W„q P„q p q,
q'A

(18)

+ V imy p imP1

+ g 1V,(q)Q, (q)p(q),

where p(q) is the electron density operator, W„(q)
is the electron-phonon interaction, and Q„(q) is the
phonon displacement operator

Q„(q) =(2M(o„,) ' '(a„+a„',).
The particle current operator corresponding to

Eq. (12) is just

] =~ v~c~c~,

where v»-=k/m is the velocity. The energy current
operator is nontrivial but is readily derived for
instance by choosing a real-space representation
for the Hamiltonian of Eq. (12)

V&m& g~mI'/ +V W" g" yzjf f
j6 jf j f)t

(15)

where

~g ~

VN

~- jlr ~ 6

jt

)(q}= Q (v, +v,/2)c»t„c,

P„(q) MQ„(q) = i(hf &u„-,/2)' ~' (a„,—a»~, ) (20)

is the phonon momentum operator.
We note that the first term of Eq. (18) is the

energy current of free electrons while the last
three terms represent corrections due to the in-
teractions between the electrons and static im-
purities and phonons, respectively. As we shall
see, these correction terms are important and in
particular retaining them (in a form consistent
with the adiabatic phonon approximation) is es-
sential to proving the Mott formula and the Wiede-
mann-Franz law.

The electron-phonon interaction makes the evalu-
ation of the response functions L"(i~) difficult.
This is because of the dynamics, i.e. , the time
dependence of the phonons. However, in the so-
called adiabatic phonon approximation we can find
formally exact results for L'~(iu&). Consider sys-
tems of high conductivity, like most metals. In
such a system an electron quickly travels past
any particular ion; i.e., the time. spent in the vi-
cinity of any ion is small compared to a typical
period of ion (phonon) vibration, so that the elec-
tron sees essentially static, displaced ions. It is
then tempting to neglect the time dependence of the
phonons altogether. This is known as the adia-
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batic or static phonon approximation and it makes
the phonon momentum operator P„(q) in Eq. (18)
zero while W„(q)Q„(q) of Eqs. (12) and (18) acts
like a random static potential that adds to the im-
purity potential. The electrons see a total static
potential U(q), where

U(q) = —„V' '(q)p' '(q)+ P W„(q)q,"(q). (21)
1

We shall proceed in the next section to calculate
the response functions L'~ in this approximation
and postpone a discussion of its validity to Sec. V.

IV. EVALUATION OF THE RESPONSE FUNCTIONS L"

We start by considering the response function
L" which is related to the conductivity by Eq. ('?).

On combining Eqs. (6) and (14) one finds that

iTL"(i(u) =- . dec'~'
(i&5))dA

aa'

x (T,c,(r)ck(7)c; (0)c;(0)) .
(22)

In the adiabatic phonon approximation the Hamil-
tonian [Eq. (12)] is quadratic in the electron opera-
tors while the phonon operators can be treated as
c numbers. This means that the Hamiltonian can
in principle be diagonalized and Wick's theorem
can be applied to Eq. (22) (Ref. 7) where the sta-
tistical average (ckt(v)ck(r)ck~. (0)c;(0)) then can
be expressed as a sum of contractions so that

& "(' ) = —,. ' 9 Qv, v, . (,&&,.&5('rv)- —Qq„(iq ~ '
)9,., ((P. )),(i(5) dA kkr fp

where the off-diagonal temperature Green's function 9». (ip} are defined as

(23)

The first term of Eq. (23} does not contribute to L"—=ReL" ((9) +i5) and will therefore be omitted. In the
second term me have used off-diagonal Green's functions. We may instead introduce a vertex function A~,
where

Q v;9„.(ip +i&59)9k.k(ii&) =9k(ip +is))9k(ip) A, (ip +i(e, ip) . (24}

The vertex function mill obey an integral equation

Ak(ip, ip +i(5)) = vk + —p W». (ii), ip +i&9)}9k,(ip)9k, (ip +i(5))Ak. (ip, ip + i(d) 9k g kh (25)

where W». is a generalized scattering function. The Matsubara sum over ip in Eq. (24} can now be per-
formed to give the following result (see Appendix):

(26)

tr(i)= — v r& (5 —'5 5+i5) —Rv 9 (5 —'5)' v + —vz (5 —'5))
e' Ak(e) -. . . , 1

k 2Z' (k) k 9 k k m k k

where A„ is the electron spectral function, 5, is the electron self-energy, and —I', is its imaginary part.
Equation (27) together with Eq. (25) constitute a formally exact result and was first obtained by Langer. k An

actual calculation without retreating to some approximation scheme or other would be a formidable but at
least, in principle, a doable task.

In order to calculate the next response function L", we need the heat current. This can be written as

j o =g vk$kcktck +g U(q) j (q), (28)

with $k =ek —p, and U(q) given by Eq. (21). One finds then that

1 ~vL"(' )= . , —TT v;(v, .q„.('l ~
' )9„.('l)+EU(q)(v, +ir&9). i„.q„.(9+' )9, , ('l)),

k(5) )f?rd (3
(29)

where we have followed the same steps that lead to Eq. (23} for L"(i(d) We want to tur. n Eq. (29)»ound
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so that it contains a factor like ip, the energy variable, rather than $~, the free-electron energy of a state
of momentum k. To achieve this we shall use the Dyson equation for the off-diagonal Green's function 9»..
The Dyson equation can be stated in two different but equivalent forms,

8)jjj. (ip) =8),(ip)6)j jj. +9)j(ip) Q U(q)8)j, jr. (ip) (30)

9, ,(ip) =9,'(ip)6, ., +9:(ip) g U(q)8, (ip), (31)

where

9;(ip) =I/(ip - 4) (32

is the free-electron Green's function. If we write the factor v, +v,/2 that appears in the second term of
Eq. (29) as —,'v, +&(v, +v, ) and make the variable substitution k-k -q in the part that will now be multiplied
by —,'(v, +v, ) we find that the last term of Eq. (29) can be written as

—'v ~ v„.g U(q}[8 ~ (ip+i(jj)9„. „(ip) +9, ~ (ip +i(jj)9 ~ (ip)].

0 ( )= . -E g (-, (0) (Tr 0)jr, r-, .0„.(0 )0„.,(0)--.Er, (0,(0 ~ ).0, (0)l),Qd P

where we have used Eq. (32). Performing the Matsubara sum over frequency in the last term of Eq. (34)
gives

(34}

v,' —n~(e g, (e),
zT 2. Gf

Z(0) Qd j ~ 2 Ir

which does not contribute to ReL"(&o+i6) We ar. e left with a final result for L'2(i&0) that looks very much
like Eq. (23) for L" except for the energy factor —,'ip+-,'(ip+i(d)! Indeed, performing the Matsubara sum
allows us to state the following result:

After this rearrangement we can use the Dyson equations (30) and (31) to solve for Z, U( q) 8,. „,and Z,U(q)
9. .., so that

e BR
d~ — co(e) )T (35)

where o(e) is given by Eq. (27) and an extra factor of z appears relative to Eq. (26) for L".
Finally we need to calculate L22(iv). We can draw on our previous results by decomposing the heat cur-

rent into a kinetic energy part jz «and a potential energy part j PE corresponding to the two terms of
Eq. (28). This decomposition allows us to write

L"(uo) =— f dr r' [(T,jr „(r) j „(0))r(Tj „(r) j (0))
0

+(T I . (r) ' j, (0))+(T,I, (r) 'I, (0)}] (36)

On inspection we realize that the first term of Eq. (36) will be given by Eq. (23) for L"(i(d) except for an
additional factor of $~$,. coming from the difference in ] „~ and j. Furthermore the second and third
terms will by given by Eq. (34) for L"(i(0)) except for an additional factor of $, We are then left with the
last term of Eq. (36) which we denote by L,"(i&a), where

L,"(i&a) = . gg U(q)U(q'}[—,'v, +—,'(v„+v,)] [—,'v, . +-,'(v, . +v, ,)] —+8,.„.(ip i(jj)9,. „(ip).
i(j) Qd j,gr ~

(37)

If we expand the square brackets



21 MOTT'S FORMULA FOR THE THERMOPOWER AND THE. . . 4227

[-,'v, +-,'(v, +v,}) [v„.+-,'(v, . +v,.)]=-,'v, v, . +-,'v, (v, .+v,.)+-,'(v, +v, } v„.+-,'(v, +v, ) (v, , +v, , )

and make variable transformations so that all four terms that arise contain the factor —,'v ~ v, , Eq. (37)
takes the form

L,"(i&a)= . , gg U(q)U(q') —,'v~. v„.

1
[9, , „.(iP+i(d)9; „,(iP) +9, ...„.(iP +is))9;,(iP)

+9, , (iP +i~)9;;„,(iP) +9. .., (iP + i(o)9., . .(iP) ] . (38)

Repeated use of the Dysons equations [Eqs. (30) and (31)], Eq. (32), and relabeling of dummy indices
enables us to rewrite this as

Lg (i(d) = . ~ g vt)
~ v„. —Q([z(iP —Kq)+ z(iP i+ (d—(~)] [2(ip —Z~)+ z(iP+z() —($)))]t(())Qd»~ P

x9„.(iP i+~)9„,,(iP) 2+(iP —(,)9,(iP)6, , + },
where the ellipsis represents purely real constants.

On performing the Matsubara sums, the second term of Eq. (39) gives a contribution

p l J —,(~)(c. -()&,(~)

(39)

which does not contribute to ReL"(&() +i6) We c. an now combine all four contributions of Eq. (36) to L"
(i&a) to get

(40}L' (z(d) = . P vt) vt, , —E [2iP+a(iP+i(())]'9», (iP+i(d)9)).))(iP).

This, again, looks much like Eq. (23) for L" except for the factor [—,'ip + —,'(ip + i(())]'. After performing the
Matsubara sum we obtain

2 ()0L= dc—— e o(e),22 8Ãp
(41)

with o(e) given by Eq. (2V) and two factors of the energy variable appearing.
To derive the Mott formula [Eq. (1)] and the Wiedemann-Franz law [Eq. (3)] from the above results for

L",L",L"=L", and L" we use the Sommerfeld expansion'

J de — ~ ~e"o(e) =—o(0)6„,+ (ksT)' [n(n ——1}e" 'o(e) +2'" 'o'(e) +e"o"(e)], ,
~ 40 Bf) (42)

Using Eq. (42) in conjunction with Eqs. (35) and

(41), we find that

Tr2L'2 = —,—(ksT)'o'(0)

T m2L"= —,—(ksT)'o(0).

Finally the Mott formula [Eq. (1)] follows from
Eq. (8) and the Wiedemann Franz law from Eq.
(10) with L = (s'/3) (ks/e}'.

The exact evaluation of the correlation functions
L", L'~ and L" shows that they differ only by

the additional factors of & and &' in the integral
over dz. In Green's-function language, the parti-
cle is assigned a wave vector k and an energy &,
and the Green's functions 9(k, e) provides the re-
lationship between them. Thus we associate g as
the energy variable of the thermal currents. The
correlation function L" has one factor of the heat
current, and has one power of g; L" has two
factors of the energy current, and has two powers
of z. This is an intuitively reasonable result,
that each factor of the energy current merely adds
another power of the energy variable to the inte-
grand. This exact result can only be found by in-
cluding all of the terms in the energy current when
it is expressed in wave-vector notation as in (18).
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V. CONCLUSIONS

We have shown that the Mott formula for the
thermopower and Wiedemann-Franz law are exact
for a system of independent electrons interacting
with static impurities and adiabatic (static) pho-
nons. Those exact results were derived using a
Green's-function technique, and we emphasize
again that it is important to use a, heat current
operator that is consistent with the Hamiltonian
that describes the system. Any interaction term
in the Hamiltonian will be reflected in the heat
current operator.

The adiabatic phonon approximation is adequate
in some situations but dubious in others. This
can be illustrated from the form of the electron-
phonon self-energy.

Eel-yh(~) — 1 g ~

iaaf ( )
~

2 y'(4+@) B( xe)

nr((, )+ns((O„)

(43)

Neglecting the time dependence of the phonons,
i.e. , making the adiabatic phonon approximation,
amounts to dropping the phonon frequencies &„,
from the denominators of Eq. (43) in which case

i.e. , the Fermi factors n~ cancel. As the pho-
non frequencies are small this is a reasonable
approximation for the electron-phonon energy
itself. However, it makes an important difference
in the energy derivative as the Fermi fa.ctors
make

g el -ph g el -phd

whereas in the adiabatic approximation

was adequately given by the adiabatic approxima-
tion provided the conductivity was well above the
limit where Anderson localization occurs. The
same should be true for the thermal conductivity
as neither E nor v, in contrast to the thermo-
power, depend on variation of electron proper-
ties around the Fermi level. The Wiedemann-
Franz law might therefore hold to a good approxi-
mation even when the dynamics of the phonons is
retained. This is indeed true for many metals
at and above room temperature" where the energy
change in inelastic electron-phonon collisions is
small compared to k~T." For lower temperatures
the I.orenz number becomes temperature depen-
dent and the adiabatic approximation breaks down.

Fina. lly we would like to add a comment on the
numerical importance of retaining the correct
energy current operator. Clearly, for good
metals, where the static impurity potential can
be treated as a small perturbation, the Boltzmann
equation is valid and the correction to the energy
current operator has only subsidiary numerical
importance (being of order 1/E )." Recently,
however, there has been a considerable interest
in poorly conducting metals. This is partly due
to their interesting transport properties, such
as the anomalous thermoelectric power of some
metallic glasses reported by Nagel. " For these
strongly disordered metals (their residual re-
sistivity may be as high as 200 pohm cm) it ap-
pears to be essential to go beyond perturbation
theory in treating the static impurity scattering. "
In fact, in order to explain the negative tempera-
ture coefficient of resistivity observed in many
of these metals it seems necessary to go beyond
the Boltzmann equation formalism. " In this con-
text we believe the present results, which have
been proved valid for arbitrary interaction
strength, to be usefuL In particular, the static
impurity correction to the energy current opera-
tor should be numerically significant.

E+1-1h ++1 &h/E-d
(46) ACKNOWLEDGMENTS

where co~ and E„are the Debye and Ferm. i ener-
gies, respectively.

The result of Eq. (45) is of order 1 and leads
to the large electron-phonon mass enhancement.
Noting that the Mott formula contains an energy
derivative, it is reasonable to assume that the
adiabatic approximation is poor for the thermo-
power and that this transport coefficient is af-
fected by the electron-phonon mass enhancement.
This question has been a subject of recent con-
troversy '0

Jonson and Girvin" have found that the electri-
cal conductivity of a model tight-binding system

APPENDIX

The Matsubara sums that have to be evaluated
in Eqs. (23), (34), and (40) can all be written in
the form

1
s(i~) = . —z P, (iP, iP+i(o),ill P

(A1)

where

It is a pleasure to thank S. M. Girvin for many
useful discussions. This research was supported
by the NSF through Grant No. DMR 7'7-11305.
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P, (ip, ip + i&a) = [,'(—ip)+-,'(ip + ho)]"9,(ip) ~ — 1 dzS(ie) = — . , —n (z)P, (z, z+i~),
14l) r 2z (As)

x 9~(iP +iru) A~(iP, iP +i&a) . (A2)

The sum over fermion frequencies (iP) in (A1}
can be converted to an integral

where I' is a path from (5 —i~} to (5 +i~) and from
(-5+i~) to (-5-i~) in the complex z plane. P~
(z, z+i&o) has branch cuts along z =z and z —i~;
i.e. , deforming the contour of integration gives

"
dgS((u+i5} =- — n(e)[—P(& +i5 z+&u+i5) -P(z —i5 z+(u+i5)„2n'

+P(z —&d —15
q e +15) —P(z —4l —t5 i z —15)]. (A4)

Making the variable transformation q -g+& in the
last two terms we find in the co-0 limit for the
real part of S(&o+i5)

ReS = de — z "f(z),Sy n

ef

where

(A5)

f(e) =Re [8,(z —i6)9„(e + i)6,A( e—i5, e +io)

—8~(e —i6}9~(f —i5)A, (z —i5, z —i6}]. (A6)

I

Using the relations

9,(e ~i5) =I/[z ~i6 —$, —Z, (& ~i6)],
I', (e) = -ImZ, (e —i5),

A, (e) =-2lmQ„(e -i6),
and the Ward identity

A„(z —i6, e —i5) =v, + (I/m) &,Z, (c —i5),
leads to the expression [Eq. (2I)] for a(z) .
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