PHYSICAL REVIEW B

VOLUME 21, NUMBER 10

15 MAY 1980

Debye-Waller factors for incommensurate structures

J. D. Axe
Brookhaven National Laboratory, Upton, New York 11973
(Received 17 December 1979)

Overhauser has predicted that thermal fluctuations in the phase of the modulation wave will give rise to
large Q-independent Debye-Waller factors for incommensurate diffraction satellites. We show that a key to
understanding this surprising result is a spatial modulation of the fluctuation of atomic positions in an
incommensurate solid. The range of validity of Overhauser’s assumptions is discussed and an alternate
calculation which should be valid over a larger range of relative fluctuation amplitude is presented. This
new calculation predicts the existence of fluctuation- and displacement-dominated regimes, in which higher-
order diffraction satellites display qualitatively different behavior.

I. INTRODUCTION

There are by now many known examples of
solids in which the regular crystalline spatial
arrangement has been disturbed by small-ampli-
tude static displacements of the atoms with a
period incommensurate with the underlying crystal-
line periodicity.! For the purposes of this paper,
we say that such materials have “incommensurate
structures” although the more cumbersome
terminology “displacively modulated incommensu-
rate structures” is more proper, acknowledging
the possibility of composition and magnetic modu-
lation and of incommensurate intergrowth or
overlayer structures with which the present paper
is not concerned.

In the absence of impurity and surface-pinning
effects, the phases of the modulation waves rela-
tive to the lattice are not fixed by energetic con-
siderations in incommensurate structures. This
means that an excitation consisting of a uniform
phase shift is a zero-energy “Goldstone mode”
of the system. Furthermore, it can be shown that
the energy necessary to create a spatially slowly
varying change in the local phase of the modulation
goes to zero as the inverse of the wavelength
of distortion. In other words, there should exist
in incommensurate structures one or more lattice
excitation branches with linear dispersion,
w(q)~ q, in addition fo the three normal acoustic
phonon branches. Since these modes, which have
inevitably been termed “phasons,” represent a
new and characteristic feature of incommensurate
structures, and since their gapless nature guaran-
tees their substantial thermal excitation, itis
necessary to investigate their influence on various
thermal and transport properties.

In 1971, Overhauser? briefly discussed the in-
fluence of phason modes on the thermal fluctua-
tions of the atoms as manifested in diffraction
experiments and came to some surprising con-
clusions. In a normal solid, the effect of phonon
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fluctuations is to reduce the intensity of Bragg
reflections by a “ngye-Waller (DW) factor”

e ? where W=3(Q-0)?), u is the magnitude of
the fluctuation of atomic position, and Q is the
length of the reciprocal lattice vector specifying
the Bragg reflection. Making a number of seem-
ingly plausible assumptions, Overhauser found
that phason fluctuations should have no effect upon
the parent Bragg reflections, i.e., those reflec-
tions which arise from the underlying unmodulated
lattice. However, the modulation gives rise to a
series of satellite reflections and Overhauser
concluded that the effect of phason fluctuations

on these satellites was of the familiar exponential
form e~?¥', but with W’ independent of Q and given
approximately by W'= (n?/Q?A%W, where A is the
amplitude of the static modulation wave and »

the order of the satellite. This result is surpris-
ing not only for the unusual functional form, but
because it implies DW corrections that are not
only large, but which, as Overhauser pointed out,
could easily reduce the satellite intensities below
the limit of observability.

While Overhauser’s calculation is mathe-
matically straightforward, the result is not easy
to understand; i.e., it is not readily assimilated
in terms of our familiar conceptions of how
thermal fluctuations ought to behave, and thus
seems “mysterious.” And to the extent that it is
difficult to see the underlying physics, it is also
difficult to assess the true role of the various
assumptions on which the calculation is based.
These assumptions are, as we have stated, rather
plausible, but we shall see that they are not
uniquely so. Also at present there are a number
of examples, unknown in 1971, of incommensurate
structures for which it is believed that (QA)?
~ 145, for which satellite reflections have been
observed, arguments of the preceding paragraph
notwithstanding. This again suggests that a re-
examination of the question of DW factors for in-
commensurate structures is in order.
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In Sec. II we rederive in a somewhat different
way Overhauser’s basic results. The fundamental
assumption involved is seen to be that the rele-
vant thermal fluctuations act in such a way as to
cause the modulation of every atom to experience
a random phase having a Gaussian distribution.

It is possible to gain additional insight into the
nature of the results of this random Gaussian
phase approximation (GPA) by a comparison with
a conventional expansion of the DW factor in
powers of atomic displacements. More specifical-
ly, a consideration of the behavior of the mean-
square fluctuation of the individual atoms pro-
vides the key to understanding the peculiar fea-
tures of Overhauser’s results.

The conventional expansion procedure leads
naturally to a different approximation scheme,
that of random Gaussian displacements (GDA).
This approximation, which is developed in Sec.
III, has a number of attractive features. Unlike
the GPA, it has a well-defined theoretical basis.
It is easily modified to include the effect of simul-
taneous but independent fluctuations of amplitude
and phase of the modulation wave.

In Sec. IV, we compare the GPA and GDA pre-
dictions. The predictions are identical in the
small-@, small-fluctuation limit. There are both
quantitative and qualitative differences for large
fluctuations. In particular, the GDA predicts a
new regime in which the n> 2 satellite intensities
are dominated by spatial modulation of the fluc-
tuations. We conclude with a few brief comments
on existing experiments.

II. THE GAUSSIAN PHASE APPROXIMATION

In the spirit of Overhauser’s original discus-
sion, we simplify the problem by supposing that
we are dealing with (a) a Bravais lattice. (one
atom per unit cell) and (b) mean displacements
that can be specified by a single sinusoidal modu-
lation wave. The second restriction is more
serious in that it is now known that “umklapp”
potential terms exist which inevitably distort
simple sinusoidal modulation by adding higher
harmonic modulations. The period of the modu-
lation is also pulled toward that of the commensu-
rate umklapp-potential value. However, an analy-
sis® of this effect in the continuum approximation
shows that significant nonsinusoidal distortion
occurs only if the observed spatial period is quite
close to a simple (i.e., low-order) commensurate
one, either accidentally or through the pulling
effect of a strong umklapp potential. Thus, while
in principle the nonsinusoidal nature of the modu-
lation may greatly complicate the problem, in
reality there will be many instances in which the

D. AXE 21

sinusoidal approximation should be practical and
adequate.

The intensity and location in reciprocal space
of Bragg scattering is determined by the elastic
structure factor F ((3), the Fourier transform of
the atomic density. If we denote the instantaneous
position of gpe Ith atom (the atom assigned to the
lattice site I = 23;1;3;, where 3, are primitive lat-
tice vectors) by

%, =i+ﬁl ’ (1)
then
FQ= [axip@e™s
= fd%(Zo(g_i,)e@?)
= 2 Ty @)
1

where (- + + ) denotes the usual thermodynamic
ensemble average. Again, following Overhauser,
we assume that the effect of the thermal fluctua-
tions of the modulation occurs in the phase rather
than in the amplitude A of the modulating function.
This leads us to write

u,=A cos(Gy- 1 - ¢, —6,)=A cos(6, - ;) , 3)

where 8,=(d,* 1 —6,). [We shall usually write re-
lations for the magnitude of the displacement vec-
tor §, =«,€. In this way, we reserve the notation
A for the complex vector (Fig. 1)]. The thermal
fluctuations are specified by ¢;, assumed to have
a Gaussian distribution, i.e., for any quantity

1),

Im(uy)

]

Re (up)

FIG. 1. Geometrical representation of the complex
variables used to describe displacement fluctuations in
an incommensurate structure. The circle of radius A
is drawn in to emphasize that even if the amplitude A
does not fluctuate, the magnitude of the vector 7, which
defines the mean displacement &, =ncos6,, will in gen-
eral be less than A.
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o= [P)ieas,

with (4)
P($,) = (2m(¢$2) "2 exp[- 5 (#2/d?))] ,

so that ( f(¢,)) is independent of | and specified

by a single parameter {(¢2), the mean-square
fluctuation in ¢,. Because of its unique status

as the Goldstone variable, we have in Eq. (3) ex-
plicitly singled out an overall uniform phase shift
8, We must, at the end of the calculation, sepa-
rately consider the distribution of 6,. (This situa-
tion is exactly analogous to that of a Heisenberg
magnet, where we must separately consider the
distribution of moment directions as they change
from one macroscopic domain to the next.)

We cannot give a complete microscopic justifica-
tion of the GPA, i.e., of Egs. (3) and (4), a fact
which must be taken as a serious weakness of the
approximation. We will see in the following sec-
tion that there are circumstances in which phase
fluctuations are much more important than ampli-
tude fluctuations, although this is not always the
case. But as to the Gaussian distribution of ¢,,
we can only make the following plausible argu-
ment. Suppose that the proper elementary exci-
tations are collective Bloch wave phasons, so that

2 $@eta T

..

By the central limit theorem, P(¢,) will tend to
a Gaussian distribution, irrespective of the de-
tails of the distribution P(¢(q)), as long as the
number of ¢(q) is large and they are statistically
independent. However, this statistical indepen-
dence may be expected to break down for large-
amplitude fluctuations.

To calculate F(Q), we make use of the identity

izcos¢_ Z Z Z)e”'d’
to write
F(Q)= 3 (1e™00)'7, (@A) e*¥0) Qo) T
I,n

= Y (e, (@A) 2 (§4ny),  (5)

where A(é) E{G}G(Q’ G) is the familiar
periodic delta function, {G} being the complete

set of vectors in the lattice reciprocal to {l} and
we mtroduce Q (Q €) to denote the component

of Q along U,. Equation (5) demonstrates the well-
known result that every parent Bragg reflection

is decorated by an endless series of diffraction
harmonic satellites, the one of nth order dis-

placed from G by nd,. We assume that 6, is con-
stant over a region of the sample large compared
to the coherence length of the scattering radia-
tion so that we average the intensity I( Q) | F( Q)[2
over 6,. Then

1Q=G +ni§y) =J3(QA)e""

showing that (within the GPA) the effect of thermal
phase fluctuations is to reduce the intensity of the
nth-order satellite by a “DW factor” e""*®  which
is independent of Q and which vanishes for parent
n=0 reflections. [Expressions for F,(Q) obtained
using other approximations will appear subse-
quently. In all of them, the overall phase 6,
occurs only in the trivial factor ¢®°. Since this

is the case, in all that follows we choose 6,=0

in order to simplify the expressions.]

We defer for the moment from the discussion
of numerical estimates of (¢2) and turn instead
to our attempt to understand the basic result.
Among the points to be clarified is this: Although
the above calculation results in a DW factor for
any given reflection, it does so by sidestepping
the consideration of thermal smearing of the
positions of the individual atoms. The calcula-
tion, in other words, avoids the question of
atomic DW factors. This can be further con-
sidered by proceeding along more conventional
lines, writing

%, =1 +(8,) +061,,
where from Eq. (3),
(u,) ={A(cosb, cos¢, + sinb, sine,))
=A(cos¢) cosb, =1 cosb, (6)
and
duy=u; —uy
=A[(cosp,; —(cos¢)) cosh, +sin¢, sinb,| . (7)
Then Eq. (2) becomes

F@Q= 20 e E0eitety ®)
]

and the last factor in this equation can be identi-
fied as the DW factor of the /th atom. [We write
(f(¢,) as (f(¢)) to emphasize its / independence.|

The first extremely important point to note
from Eq. (6) is that phase fluctuations reduce the
effective amplitude of the mean modulation. [This
has an obvious geometrical interpretation which
can be seen by inspection of Fig. 1, in which the
magnitude of the physical displacement («;), is
represented as the real component of a complex
vector with amplitude A. Fluctuations about the
mean phase 6, have no effect on (u;) for 6,=7/2,
but reduce (u;) (by order ¢3) for 6,=0.] It is
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necessary to introduce the renormalized effective
amplitude 7 at this point in this line of develop-
ment since the fluctuations in displacement occur
about 1 cosb,, not A cosb,.

The DW factor (expi(Q- 6%,)) is not trivial to
evaluate. To see this, we consider the separate
terms in the expansion

(005 =([1+iQ- 6T, - $(Q- 65,2

- G/6)@- 66, + - - ], (9a)

(Q-5%,) =0, (9b)
(Q-5%,)%) = (Q- A)?*[(cos?p) —(cost)?) cos?,

+(sin%¢) sin%,], (9¢)

Q- 51,)%) = (Q- A)*[(*®) cos®0, + 3(xy?) cosh, sin%,]

(9d)

(@ 55)) = (Q A)(- - -), (9e)

where x = cos¢,; —(cos$) and y=sin¢,. [In general,
(Q-61,)") appears to be of order ($2)"? for n even
and ($2)™* D /2 for n odd if (¢?) is small.] The GPA
is thus fundamentally different from a conventional
harmonic phonon theory in that the atomic DW
factors involve terms in Q"(n>2).

Equation (9c) for the mean-square thermal fluc-
tuation is interesting to consider. It shows that
the thermal smearing effect of phase fluctuation
modes is fundamentally different from that of
normal (e.g., acoustic) phonons in yet another
way. These latter excitations make a contribution
to (6u?) which is ! independent, whereas phason
modes cause a spatial modulation of (6u?) with a
modulation wave vector 24,. From Eq. (7),

(6u?) = ((6n%) cos?6, +(6n3) sin’6,)
=z[(6m3) +(on)

- ((6m%) —<0m})) cos26,] , (10)

where we have introduced the notation (see Fig. 1)
(onf) =A%(cos?¢) —(cos)?), (11a)
(6n%) =A¥sin?p) . (11b)

Thus although (¢2) is independent of I, (u?)
is sinusoidally modulated. This is obvious by
inspection of Fig. 1. For 6, near 0 or 7, phase
fluctuations have little effect, and the effect is
maximal for 8, near 7/2 or 31/2. That every
atom in an incommensurate structure has its own
uniquely different (6uZ) is, of course, consistent
with the lack of translational symmetry in a modu-
lated structure.

We are now in a position to focus on the key
question in our attempt to understand Overhauser’s
result. How can it come about that by summing

Eq, (8) (in which each term in the expansion of
(e*°"1) depends explicitly upon Q) over I, we
obtain a result that is Q independent? Since the
x;esult is 6 independent, it must be true for small
Q [more precisely, for small values of (@A)] and
must therefore be manifest even in the leading-
order corrections [of order (QA)? terms in Eq.
(9). Retaining only these terms, Eq. (2) be-
comes

F@= 2 7@ [(1 - w) + w” cos2d,- 1)

1%
x i@ T (12)
where
w'=5Q*(6n2) +(6m3), (13a)
w" =3 Q2(6m2) —(6n3) . (13b)

Equation (12) makes explicitly clear that

the phase fluctuations modify the elastic scat-
tering in two distinctly different ways. The uni-
form term w’(Q) reduces the intensity of a given
reflection in the same way as do normal phonon
contributions. The spatially modulated fluctua-
tions, on the other hand, represented by w”(Q)
have the effect of mixing the diffraction harmonic
contributions of order J,(@n) and J,.,(@n). By
rearranging Eq. (11) to facilitate comparison with
Eq. (5), we find that to lowest order in (")

F(Q~= i"7,(Q" A)a(Q+nd,)

Jn(@n) w” (J,_,(@n)
X{J,.@A)}{“ 2 (J,(Q'm )} (14

where here, and in all that follows, we shall as-
sume n> 0, which is permissible since F_,,((S)
=F,(Q*.

Written in this way, we see that there are two
kinds of cgrx;ections to the static scattering amp-
litude J,(Q* A) (the two terms in curly brackets).
The second, just mentioned, is due to spatial
modulation of the mean-square displacements.
The first is due to the renormalization of the ef-
fective mean-displacement amplitude from A to 7.
Both of these correction terms contain @-inde-
pendent contributions, as can be most easily seen
by expanding for small (QA) and small {$?) in
which case w”=%(QA)*(¢?), and to leading (zero)
order in

w” J,(@n) _ 1 (Om)X92)
2 J,@m 2 (Gen?

=3n(n - 1X¢?)

n(n-1)

and
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3'7"{%:(%)"=1—§n<¢2>+- .,

so that the product of the terms in Eq. (14) be-
comes

(1=3nP*) ++ + + )1 =3n(n - 1(P?) +- - - ]

= (1-4n(9?) ++ - +)

which is in agreement with the expansion of
e "*%%2 a5 we should expect from Eq. (5).

Seen in this light, the e~"*%?Y2 DW factor which
results from the GPA is deceptively simple, in-
volving even in the lowest (harmonic) order in @,
strict cooperation on the part of terms arising
from two seemingly different physical effects.
Obviously similar but increasingly more compli-
cated cancellations between the moments of 6u,
and the renormalization of A must occur both
within and between the higher-order terms in Eq.
(9a) to ensure that Eq. (5) is valid for all values
of (QA). This last observation brings us to a new
point, namely that the e~"***Y2 result can be ex-
pected to fail, and do so in rather unpredictable
ways for deviations in the distribution of ¢, away
from Gaussian. Since it seems natural to ques-
tion the reliability of this Gaussian assumption
more closely the larger the value of {(¢?), it is
now appropriate to consider numerical estimation
of this quantity. We may, with Overhauser, rea-
son that the contribution to the mean-square
atomic displacements of a given phason mode
will be roughly equal to that made by an acoustic
phonon of identical frequency. If we also assume
equal numbers of phason and phonon modes and
since excitation amplitude scales inversely with
excitation frequency, we should therefore expect
that

(6uj(phason)) ~ A%(¢2) = (du} (phonon)) (v3/v3)
or
3($?) ~ [w(phonon)/Q%A?] (v3/v?),

where w(phonon) = 3Q%(u?(phonon)) and v, 4 is the
velocity of the excitation on the appropriate
branch. The results for incommensurate struc-
tures for which reasonably detailed studies exist
suggest that v3/v2~ 1 and A= 0.05-0.5 A. Coup-
ling these estimates with typical values for
(u*(phonon))~ 0.001-0.03 A2, we find plausible
values of (¢?) to lie in the range 0.004 <(¢?2)

<1.0 when A has attained its low-temperature
saturation value. However, (¢2) is certainly
estimated to be =1 for materials which have
normal-incommensurate phase transformations
since, nearthe phaseboundary, certainlyn, if notA,
tendstozero. In cases where (¢? ~ 1 we are entitled
toview the GPA result with considerable skepticism,
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and to look for a smaller parameter upon which
to make a Gaussian approximation. Fortunately,
such a parameter, (6u?) itself, is readily at
hand. We will develop this random Gaussian dis-
placement approximation (GDA) in Sec. III.

III. GAUSSIAN DISPLACEMENT APPROXIMATION

A phenomenological Landau theory provides a
reasonably satisfactory way of discussing the
stability of incommensurate structures in very
general terms. Similar treatments have ap-
peared before,* ° so we only sketch below the
principal features. We specify atomic displace-
ments relative to the parent unmodulated struc-
ture in terms of normal coordinates @,;,

_ iq 1
“I_Z_ i€,
al
where
- - - i j
Qaj‘Qfaj‘iQaile ai)

In the most elementary case, we concern our-
selves with a single branch so that the branch

index j can be suppressed. We expand the free
energy (again with respect to the unmodulated

parent structure),

>

a,a’,q’ e

(3; @)

+ 77 U3(4,0',9")Q,Q Qn(g+ ¢ +q")

Ir—a L=

* a0 Uug,9',9",9")

N

X Qo @y Qer QumA(g+q' +q" +q") +- - ) .

(15)

Neglect (initially) fluctuation effects and stabilize
sinusoidal static displacements by postulating

U,(9) = [Q2+v3(g -q.)3 . (16)

The static free energy F in this approximation
is given simply by

F=U,(q)Q%+3U,Q5, (%))
where we have set
Quo= Que™"%°, (18)

which will give static displacements of the form
ncos@,- I - 6,) with n=2(Q,). We also neglect

q dependence of U,. Minimizing F with respect
to @, gives for the equilibrium static amplitude

(Qu)?=-2(@Q5/U,), (19)
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a solution which is stable for 2<0, U, and
v%>0.

We now calculate the energy 6F=F — F caused
by adding to the static modulation (Q,,), a spatial
fluctuation Q... In addition to harmonic terms
of the type U,(qo+ q)Qqy+q@-q0-q» there are fourth-
order terms, e.g., proportional to

(quQ-qu¢o+aQ—¢o-q) a‘nd (Qa-aoan*'aQuo-q) ¢

To lowest order these terms renormalize the
harmonic stiffness since we may replace @, 0 by
its static value (®,). The net effect of all of the
fourth-order terms is to produce a renormalized
stiffness matrix V,(d):

a B*
Yz@z[s a]

in terms of which 8F to lowest order takes the
quadratic form

a=U,q,+0) +ULQ,)?,
B =5(Q,)%e? %

Qq°+q
oF =1 @) L@ 4@, @@=[Q_ ] (20)

LY M@IE@12+A, @ @17 1)

Equation (21) follows from Eq. (20) by a principal
axis transformation which has eigenvalues,

Ay(g) = —293+v§>(q—qo)2, (22a)
AL (@) =v%(g-4q,)°, (22b)

where we use the self-consistent value [Eq. (19)]
for (Q,). In terms of the eigenmodes ,(d) and
£,(q), the fluctuating displacements around the
static value 7 cos(q, ] -6, become

6u,=% E [COS@O' T_ 90)&1(‘1)

q

+sin(@, T- 00)g,(q)le®T .  (23)

Among the points to be noted in the above de-
velopment are the following:

(i) The static free energy F contains no cubic
contributions and is independent of the overall
phase 6,.

(ii) Quartic terms in F mix plane-wave modes
with wave vectors differing by ;thTo, giving rise
to new normal modes £,(q) and &,(q).

(iii) From Eq. (23), &,(q) modes represent (for
small q) long-wavelength modulation of the static
displacements, 7 cos(i(,' 7- 6,), and may thus be
legitimately called amplitude fluctuation modes.
The orthogonal £,(q) modes are only approximately
(to first order in displacement) phase-fluctuation
modes. (The notation || and L are again obvious by
inspection of Fig. 1.)
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(iv) £,(q) represent true Goldstone modes since,
from Eq. (22b), their stiffness v%(q —q,)* vanishes
at §=d,. Inthis sense, it is still appropriate to
describe them as phasons, in spite of the inac-
curacy in this term noted in (iii).

(v) From Eq. (21), §,(q) and £,(q) are statistic-
ally independent and have a Gaussian distribution.
Therefore, we again find a modulation of the
mean-square fluctuations

(8u?) =(5n%) cos®8, + (dn2) sin?6,

of the same form as Eq. (10). In addition, we
have the explicit expressions

(om2)=3 Y _(&qN= D 3kT/A(q), (24a)

(6md) =% D (&)= Y 5kT/A,(q). (24b)

(vi) It is not necessary for our purposes to dis-
cuss the time dependence of du;, but in the ab-
sence of damping this model predicts that the
phase and amplitude modes are harmonic (con-
structed from linear combinations of phonon
modes) with frequencies whose squares are given
by A, (q) and A (q), respectively. From this point
of view, the incommensurate structure is the re-
sult of an unstable soft-phonon mode of the un-
modulated parent structure with wave vector g,
and w?=Q2<0.

It is now straightforward to calculate DW factors
within the GDA. Since displacements now have a
Gaussian distribution

<ei6-051> = e‘(l/'a’)ﬁz(bu?) = ™' gW' cos26;

=™ Elm(wu)ezcmo, ,
m

where I,(z)=7""J (iz) are modified Bessel func-
tions of imaginary argument and %’ and w” [de-
fined in Eq. (13)] are now given by Eq. (24) rather
than Eq. (11). Combining this result with the Bes-
sel function expansion for e @’ ysed previously,
we find

F(Q)= Z iR, 10 <5y ><eea- 8)
1

- 2 e-‘a'i.c]k(‘l))lm(w,’ )eitﬁ‘(hzm)ﬂo]-l ,
Thm

where

v=Qn
and we have again chosen §,= 0 to simplify our ex-
pressions. To put this relation into a convenient
final form, we sum on [/ and look for the contribu-
tion at Q=G - nd, (n=Fk+ 2m):

F Q)= AQ+nd,)i"e™

m=0y£1y22¢ ¢

(=1)"J, )L, ™).

n=-2m

(25)
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For some purposes it is desirable to introduce
two new parameters

y=(6n)/n® and &=((512) —(6n2))/(6n?
in terms of which
w'=30%(2 - @) and w"=50%@®.

The anisotropy parameter ¢ can be evaluated for
the model described in this section by performing
the indicated sums in Eqs. (24) over the range

0< (g —q,)<k,, with the result

o= tan"(-}i‘") , (26)
k, K
where 22=v3«?, and k, is an (arbitrary) wave-
vector cutoff.

IV. DISCUSSION

Any comparison of GDA and GPA results is com-
plicated by inclusion within the GDA of indepen-
dent longitudinal and transverse fluctuations. In
the GPA, 7, and 7, are not independent but are
instead related through the equations (67%)
=7?sinh(¢?) and (6n%)=n?(cosh(¢?) —1), which
means that the anisotropy parameter & assumes
the special value

$°=1 —tanh(} (¢*)) . (27)

It is probable that this “constant-amplitude” as-
sumption for & represents something like the
minimum physically plausible ratio of (67} )/
(6n°) and it seems reasonable to adopt it in the
GDA at least for the purpose of making compari-
sons with the GPA. Specifically, w’ and w” are
calculated using & =®° and introducing (¢?) para-
metrically through the relation y = sinh(¢?)(=(¢*)
for y<1).

The results of the comparison can be summar-
ized as follows:

(@) v<1, n*(p*)«<1. In this regime, whichis
easily realizable in practice, GPA and GDA make
essentially identical predictions for F,. In par-
ticular, in the small-» limit we can write gen-
erally for all n

F,,(’l)- 0, <¢2>) = (%‘U)’Idn(((pz)) ’ (28)

where d,=1 and for »*(¢*)« 1 the DW factor d,
(n=1) is given by the GPA result

d(')l__.e-n(n-l)(cz)lz. (29)

(It is important to note that d written in this way
is equivalent to Overhauser’s result [Eq. (5)], but
expressed in terms of the average amplitude vari-
able v =@n rather than the unobservable quantity
QA(=v(cosd) ' =ve®®2), We prefer to write it in

this manner as it is in keeping with the traditional
idea of expanding about the mean position.)

(b) v>1, n?(¢p?)<«< 1, Here quantitative differ-
ences appear in the two approximations. Most
notable are shifts in the positions of the nodes and
extrema of F,(Q) from the GPA result F (@)
~J,(QA). Much of this effect can be traced to the
replacement of the variable @A by »=@n, i.e., to
the renormalization of the static displacement by
the fluctuations just discussed. A comparison of
the two predictions for F,(v) for (¢ =0.1 shown
in Fig. 2(a) is typical.

(c) n*(¢?) =1. Even at small v, strikingly dif-
ferent behaviors are predicted by the two approxi-
mations for » >2. The cause of this can be seen
most clearly by examining the GDA result, Eq.
(26), in the v -0 limit. Retaining only those
terms which give contributions to leading order
in v,

F,(v=0)=[J,)w") =,y (0")]ymo. - (30)
The meaning of the two terms is the same as has
already been explained in Sec. II. The first term

is the nth-order diffraction harmonic of the static
displacement wave. The second term results from
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FIG. 2. Comparison of predicted satellite intensities
|Fpv,{6%) 1% using the GDA and GPA. (a) (3%)=0.1
<(@Demte (B ($?)=0.357>($?) ;. The additional node
at » =0. 38 for the GDA curve marks the transition to
fluctuation-dominated behavior.
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a modulation of the (n - 2)nd diffraction harmonic
by the spatial periodicity of the fluctuation (6u?).
There is a critical value of y® = ((677) — (67*))/ P
below which the J,/, term is larger in magnitude
than the J,_, I, term and above which the converse
is true. Inthe limit » -0 its value is easily
shown to be (y®),.,,=2[n(r-1)]", or interms

o

@ i =1n{[1 - 2/nr - )]}
=2nn-1)]"* forns<3. (31)

(y®),,, Separates the behavior of F, into two
regions which we will call displacement dominated
(DD) and fluctuation dominated (FD) regimes, re-
spectively. The locus of the boundary between the
two types of behavior is readily extended through-
out the ((¢?),v) plane by determining the location
of the roots of the equation F, (v, w’,w"”)=0. The
approximate results for »=3 and 4 are plotted in
Fig. 3.

The index »=2 is marginal in the sense that for
n>2, crossover from DD to FD behavior occurs
at finite (¢%).,,. Atn=2, (¢%) ., =~ and FD be-
havior is excluded for » <2. This marginal behav-
ior at »=2 depends critically on the assumed an-
isotropy ®=®,. A slight further suppression of
(67%) gives a finite (¢?) ., for n=2, and complete
suppression (572 =0, gives y ., =1 or (¢?,,=0.88
for n=2. It nevertheless seems likely that well
away from the normal-incommensurate phase
boundary that (¢? ., is not easily exceeded for
n =2 satellites; i.e., under most conditions sec-
ondary satellites are probably safely within the
DD regime, but the situation is surely reversed

1.0 T T T
r n=3 i
| FLUCTUATION -
DOMINATED ned
.
2

<05 -
DISPLACEMENT _|

DOMINATED
o) | 1 1 3
(o] 2 4 6 8

v=Qn
FIG. 3. The area to the upper left of the appropriate
boundary is the fluctuation-dominated regime for the
nth-order satellites; the area to the lower left, the dis-
placement-dominated regime.

0.8 H

0.6

|da [P=|Fa (v=01/ )72

o
>

0.2

0.2 0.4 0.6 0.8 1.0
<#?>
FIG. 4. Comparison of factors for nth-order satel-
lites as calculated in GDA (solid lines) and GPA (dashed
lines) in the limit v= TQ’n—-O. Both approximations give
identical results forn=0, 1, and 2 for this particular
choice of the anisotropy parameter = q:o.

at some point for higher satellites. (Note that
satellites with » as high as 6 have been observed
in Na,CO0,.")

The significance of the crossover from DD to
FD behavior is well illustrated by Fig. 4 which
compares d,({(¢?)) [defined in Eq. (28)] calculated
in the GDA with the GPA results d?, for inter-
mediate values of (¢2). Inthis v -0 limit the GDA
and GPA results are in precise agreement for
n=0, 1, and 2. For n=>2 the two results agree
asymptotically as (¢?) -0, as we have already
stated; but whereas d 9 tends monotonically to
zero at large (¢?), the GDA result passes through
zero at (¢%),,, and further increases in (¢? (i.e.,
in the fluctuations) causes the diffracted intensity
to increase. This seemingly odd behavior is en-
tirely reasonable once the concept of a FD regime
is grasped.

It is not possible to succinctly characterize the
differences in the two approximations at large
values of v. However, it is useful to compare Fig.
2(a) where (¢?) is small enough as to be every-
where in the DD regime with Fig. 2(b) where
(@®) >(¢?).1,- Note that in addition to the extra
node in the GDA result at » ~3.8, which marks
the boundary between FD and DD behavior, the
GDA result is less attenuated than the GPA re-
sult even in the DD (large-v) regime.

(@) v—-0, (¢*>1. This remaining region must
be singled out for special study because it is most
likely to occur in the vicinity of a second-order
normal-incommensurate phase boundary, where
(¢®) (or (67%)/77) diverges because n—~0. As might
have been expected, there is some subtlety in-
volved in this limit. Consider, for example, the
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fundamental inequality

(o) = <om) , _ 2
n” nn-1)’

which must be exceeded to observe FD behavior
in nth-order satellites. It is not difficult to show
that with the constant-amplitude assumption & = 4°,
both 77 and ({677 - (677)) go to zero (as e ‘**) for
large (¢?) such that their ratio % —1. This is
again the statement that (¢?) ., ~ = at n=2, which
we saw was critically dependent on placing & =&°,
Clearly, a better assumption for & near the phase
boundary (and, in fact, the only one fully compat-
ible with the quasiharmonic nature of the GDA
model) are those of classical mean-field theory,
for which ((6m%) = (6m®)) ~ k~ (T .- T)*'? [from Eq.
(25)] and 7 ~(T,~ T), so that the left side of the
above inequality diverges as T - T,. Thus, the
mean-field-GDA model predicts that there is no
escape from a crossover to FD behavior even for
n=2 (and, of course, for n >2 as well) as one ap-
proaches the phase boundary.

In general, mean-field predictions of critical
behavior are not to be trusted and, in particular,
Bruce and Cowley® have exploited correspondences
with xy spin systems together with scaling argu-
ments to show that mean-field theory is not ex-.
pected to adequately describe the behavior of in-
commensurate systems near the normal phase
boundary. Bruce® has recently analyzed the ex-
pected behavior of n=1 and 2 satellite intensities
near the phase boundary. It is not appropriate to
discuss these results here in detail, but his an-
alysis indicates that the mean-field GDA results
given here do in fact fail in the critical region,
and do so in a way that cannot be remedied by
simply replacing the mean-field exponents for
n and k by their xy-model values. Interestingly
enough, although the asymptotic behavior of n=1
satellites is controlled by the order-parameter
exponent 8, the n=2 satellite intensity is governed
by a crossover exponent associated with energy-
density fluctuations. The relationship of this pre-
dicted fluctuation dominated behavior for » =2
satellites to that predicted by the mean-field GDA
model for n > 2 requires some clarification, but
the result is provocative. It may also be remarked
that these new results do not in the least imply
that the mean-field results have no region of val-
idity, but only that they must be treated with in-
creasing skepticism the more closely the phase
boundary is approached.

We conclude with some comments on pertinent
experimental observations. No special consider-
ation of “unusual” DW factors has been accorded

to most data on incommensurate satellite inten-
sities. Overhauser!® states that DW effects (cal-
culated in the GPA) lower the apparent transform-
ation temperature of K, P{(CN),Bv, , (KCP), as
judged by the growth of the n=1 satellite intensity
some 40% below the actual onset of the incommen-
surate phase. This interpretation is complicated
by the now widespread belief that random impur-
ity-pinning effects prevent KCP from ever attain-
ing true incommensurate long-range order.

There is, however, a more fundamental point to
be made. By applying a DW factor e¢~¢**”2 to the
n=1 satellite, we are really just renormalizing
the mean amplitude so that if, as a result, the sat-
ellite intensity vanishes, it is because n-0, and
there would seem to be no sense in which the in-
commensurate phase could be thought to exist
beyond this point. It is to avoid such misinterpre-
tations that we prefer the alternative definition
for which dg=e-n(n-1 X 02)/2.

Recently, a Méssbauer x-ray scattering experi-
ment was carried out which was designed to de-
tect low-lying inelastic phason scattering which
might be present in copious amounts near incom-
mensurate satellite positions and “mistaken” for
elastic scattering in a conventional experiment.!!
No such effect was found and the authors concluded
from this that “phasons do not make anomalously
large contributions to the DW factors.” Although
this conclusion may be too strong (it is not clear
whether the experiment sampled a sufficiently
large region of reciprocal space to be able to set
an interesting limit), the results are at least not
in contradiction to notions set forth here.

In the present context, perhaps the most inter-
esting result to date is a careful crystallographic
refinement of the structure of Na,CO, by Hoger-
vorst et al.'? using intensities of several hundred
satellites for each of the orders n=1-4. Using
conventional DW factors, they find that the calcu-
lated n =2-4 satellites intensities are system-
atically high and that an additional @-independent
reduction factor of the form (1 - n%(¢?)) with (¢?)
=0.012 greatly improves the fit. They speculate
that this correction is necessary because of ran-
dom fluctuations in the phase of the modulation
wave. It is not clear whether the authors have
static or dynamic fluctuations in mind. It is also
interesting to note that in spite of the chosen form
of the reduction factor, Hogervorst et al. are
careful not to attribute any directly measurable
anomalous reduction to n=1 satellites, which is
of course in accord with the present reformulation
of Overhauser’s result. It would be worthwhile
to test whether or not a reduction factor of the
form [1—n(n - 1){¢? ] would fit their results more
accurately. (See Note added in proof.)
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V. SUMMARY

(1) As first pointed out by Overhauser, the ef-
fect of phase fluctuations on incommensurate sat-
ellite intensities requires special treatment. The
form of the corrections are of a fundamentally
different form from that given by a normal Debye-
Waller factor. This remains true despite the as-
sumption of harmonic fluctuations.

(2) The explanation of (1) involves two distinctly
different physical processes. Phase fluctuations
(a) reduce the mean amplitude of the atomic dis-
placements and (b) produce spatially modulated
fluctuations of the atomic displacements.

(3) In the small-Q, small-fluctuation limit
@1 < 1,n%(¢2) << 1) the effect of phase fluctu-
ations alone on the structure factor of the nth-
order satellite can be approximated by a @-inde-
pendent Debye-Waller factor

F(Q=d4,@,
where

e-n(n-l)(oz)/z’ n=2
d, (%)=
1, n=0,1.

This result is mathematically equivalent to Over-
hauser’s result

e'”2<°2)/2J,,(QA), n>1

F, (@)=
1, n=0,

However, in using this version it is essential to
understand that the distinction set forth in (2) is
ignored and that the argument of J, refers not to
the actual mean displacement amplitude but rather
to a fictitious amplitude A, which the modulation
would assume in the absence of fluctuations.

(4) Wherever the GPA and GDA results differ
(and, in particular, for n?(¢?)3 1), the latter

approximation is probably preferable. The most
notable difference between the two treatments is
that the latter predicts that for any value of n > 2
and @n, there is a critical value of (¢?) above
which a further increase in ($?) serves to in-
crease rather than diminish the satellite inten-
sity.

(5) In any actual case, one must also be pre-
pared to assess the importance and make appro-
priate allowances for amplitude as well as phase
fluctuations as well as fluctuations from other
normal phonon branches. Likewise, the existence
in real materials of several sublattices (i.e.,
non-Bravais parent lattices) cause further prac-
tical complications although these effects are
formally straightforward to include.

Note added in proof. Professor de Wolff has
kindly informed me that the intensity data of Ref.
12 are indeed better described by a [1 —n(n
- 1){¢?)] reduction factor than by (1 -n*{¢2)).
These results are not regarded as conclusive,
however, as the magnitudes of the reduction fac-
tors are small in Na,CO, in any case. Professor
de Wolff also cautions that the data have not been

-corrected for inelastic scattering which could

conceivably alter the resulting comparison. [Of
course, such corrections should include contri-
butions from phason modes as well as acoustic
phonons and the relative weights of such contri-
butions for higher order satellites (n = 2) have
yet to be explored.]
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